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Abstract

This paper performs a comparison of several methods for Kemeny rank
aggregation (104 algorithms and combinations thereof in total) originating
in social choice theory, machine learning, and theoretical computer science,
with the goal of establishing the best trade-offs between search time and
performance. We find that, for this theoretically NP-hard task, in practice
the problems span three regimes: strong consensus, weak consensus, and
no consensus. We make specific recommendations for each, and propose a
computationally fast test to distinguish between the regimes.

In spite of the great variety of algorithms, there are few classes that
are consistently Pareto optimal. In the most interesting regime, the inte-
ger program exact formulation, local search algorithms and the approximate
version of a theoretically exact branch and bound algorithm arise as strong
contenders.

Keywords: Kemeny ranking, consensus ranking, branch and bound,
sorting, experimental evaluation

1. Introduction

Preference aggregation has been extensively studied by economists un-
der social choice theory. Arrow discussed certain desirable properties that a
ranking rule must have and showed that no rule can simultaneously satisfy
them all [2]. Thus, a variety of models of preference aggregation have been
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proposed, each of which satisfy subsets of properties deemed desirable. In
theoretical computer science, too, many applications of preference aggrega-
tion exist, including merging the results of various search engines [8, 14],
collaborative filtering [26], and multiagent planning [16].

The Kemeny ranking rule [18] is widely used in both of these areas. From
Arrow’s Axioms’ point of view, the Kemeny ranking is the unique rule satis-
fying the independence of irrelevant alternatives and the reinforcement axiom
[29]. More recently, it has been found to have a natural interpretation as the
maximum likelihood ranking under a very simple noise model proposed by
Condorcet [30]. The same noise model was proposed independently in statis-
tics by [21] and refined by [17], under the name Mallows’ model. Further
extensions that go beyond the scope of this paper but that are relevant to
modeling preferences have been proposed by [23, 25].

Finding the Kemeny ranking is unfortunately a computational challenge,
since the problem is NP-hard even for only four votes [3, 8]. Since the problem
is important across a variety of fields, many researchers across these fields
have converged on finding good, practical algorithms for its solution. There
are formulations of the problem that lead to exact algorithms, of course
without polynomial running time guarantees, and we present two of these
in Section 3.1. There are also a large number of heuristic and approximate
algorithms, and we enumerate several classes of these algorithms in Section
3.2.

Surveying the various approaches is only the first step, since we are inter-
ested in finding which algorithms (or combinations of algorithms) are likely
to perform well in practice. For this, we perform a systematic comparison,
running all algorithms on a batch of real-world and synthetic Kemeny ranking
tasks.

Since we are attacking an intractable task, what we can examine is the
trade-off between computational effort and quality of the obtained solution.
We will examine which algorithms, if any, are systematically achieving opti-
mal trade-offs. We hope thereby to be able to recommend reliable methods
to practitioners.

Such an analysis was recently undertaken by Schalekampf and van Zuylen
[28], forthwith abbreviated as SvZ, with whose work several parallels exist.
While from the point of view of the experimental setup our work has little
to add, we differ fundamentally in the conclusions we draw. That is because
we factor in the difficulty of the actual problem, something that SvZ do not
consider. Since both the performance and running time of an algorithm can
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change with the difficulty of the problem, we expect that the “best” algorithm
to use will differ depending on the operating regime.

Hence, we propose several natural measures of difficulty for the Kemeny
ranking problem, and re-examine the algorithms’ performance results from
this perspective.

The rest of the paper is structured as follows. The next section formally
defines the Kemeny ranking problem and introduces the relevant notation.
Sections 3.1 and 3.2 review the algorithms, while Section 4 presents the
datasets we used for experimental evaluation and how they were obtained.
The experimental results follow in Section 5; this section already gives some
insights into what algorithms are promising, and into the role of the problem
difficulty in shaping the performance landscape. We further examine these
findings in Section 6. Section 7 discusses the different regimes of difficulty of
the Kemeny ranking problem and proposes a simple heuristic to distinguish
between them in practice. The paper concludes with Section 8.

2. The Kemeny ranking problem

Given a profile of N rankings1 π1, π2, . . . πN over n alternatives, the Ke-
meny ranking problem is the problem of finding the ranking

π∗0 = argminπ0
1

N

N∑
i=1

d(πi, π0), (1)

In the above, d(π, π′) represents the the Kendall distance between two per-
mutations π, π′ defined as the minimum number of adjacent transpositions
needed to turn π into π′. The ranking π∗0 is the ranking that minimizes the
total number of disagreements with the rankings contained in the profile, and
is called the Kemeny ranking of this profile.

Our interest is in the algorithms proposed to solve the NP-hard minimiza-
tion in Equation 1. But, before we review the algorithms, it will be useful to
introduce an alternative representation of the profile π1, π2, . . . πN .

This is the precedence matrix Q = [Qab]a,b=1:n defined by

Qab =
1

N

N∑
i=1

I(a ≺πi b)

1We do not distinguish in this paper between rankings, permutations, and orderings.
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where I(·) is the indicator function and ≺π means “precedes in the ranking
π.” That is, Qab represents the fraction of times item a is ranked higher than
item b across all the input rankings. The diagonal of Q is 0 by definition.
Note also that Qab +Qba = 1, a form of antisymmetry.

Since Q has n(n − 1) entries and the profile has N × n entries (here we
have not counted the entries that can be inferred based on other entries), for
the situation where there are more votes N than alternatives n, the matrix Q
represents a lossy compression of the profile, in the sense that in general the
profile cannot be reconstructed uniquely from Q. But the real importance of
Q lies in the fact, observed many times independently [8, 10, 24], that the
precedence matrix is sufficient for determining the Kemeny ranking of the
profile.

Thus, it will not be surprising that many of the algorithms below can be
described in terms of the precedence matrix.

3. Algorithms

We aimed for an ensemble of algorithms that would allow for various
trade-offs between performance and accuracy. We first discuss the algorithms
we experimented with that return an exact solution to the Kemeny ranking
problem. Then, we discuss algorithms that return an approximate solution.

3.1. Exact algorithms

3.1.1. Integer linear program

We solve the following integer linear program (ILP) which returns an
exact solution to the Kemeny ranking problem:

minimize
∑
a,b

Qabxba +Qbaxab (2)

subject to xab ∈ {0, 1} (3)

xab + xba = 1, ∀a, b (4)

xab + xbc + xca ≥ 1, ∀a, b, c (5)

The first constraint means that the xab are binary variables, set to 1
when a ≺π0 b. The second constraint captures the fact that either a ≺ b or
b ≺ a in the Kemeny ranking. The third constraint enforces the transitivity
a ≺ b ∧ b ≺ c⇒ a ≺ c.
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The above ILP formulation has been given before [10, 28]. This formula-
tion can also be interpreted as solving the minimum weighted feedback arc
set problem from computer science [10, 19].

Because this algorithm will terminate with an exact solution given enough
time, we use it as a baseline for accuracy.

3.1.2. Branch and Bound algorithm

In [24] it is shown that another way to solve Equation 1 exactly is by a
branch and bound (B&B) algorithm. Each node in the search tree corresponds
to a prefix σ = [a1, a2, . . . aj] of π0, so that level j in the tree contains all
possible prefixes of length j; branching is on the item to be added in rank
j + 1 which is an element of the set σ̄ = {1 : n} \ {a1, a2, . . . aj}. The cost
and cost-to-go at a node are computed from the submatrix Qσ̄,σ̄. If one uses
admissible heuristics then the B&B algorithm is guaranteed to optimize ex-
actly; however the search tree has n! paths and in the worst case the search
is intractable. On the other hand, it can be shown theoretically and empiri-
cally [24] that in favorable cases, which are equivalent with strong agreement
between the rankings π1, . . . πN , the B&B algorithm will expand only a limited
number of nodes (of order n2). Moreover, as with any B&B algorithm, limit-
ing the available memory (a technique called beam search) leads to a family
of approximate algorithms in which memory/runtime can be traded off for
accuracy. In our experiments we will examine this trade-off as well.

The admissible heuristic used by [24] is a restatement of one of the bounds
proposed in [10] in a form that makes it efficiently implementable. The
authors of [24] observe (see also [22]) that having a good heuristic has a
strong impact on the algorithm’s time and storage.

3.2. Approximate algorithms

We divide the approximate algorithms into various classes and discuss
each class in turn.

3.2.1. Sort based approximate algorithms

As discussed in SvZ and [1], several classic sorting algorithms from the
computer science literature can be adapted to use the precedence matrix;
Condorcet’s paradox allows different sorting algorithms to produce different
rankings. This is done by using the predicate Qab > Qba instead of the
standard comparison operator. That is, if alternative a is preferred to b by
a majority of the profile, then the “a ≺ b” is considered true [28]. The
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advantage of doing so is that these algorithms an approximate solution that
can be fast and easy to implement. Here we adapt 3 classic sorting algorithms
for this purpose.

InsertionSort InsertionSort (IS) starts from the front of an un-
ordered list of the items that are to be ranked, and places them one-by-one
into a sorted list that maintains an ordering over its items. Items are placed
from the unordered list into the ordered list according to the following rule:
if Qab > Qba (that is, if item a is preferred to item b by a strict majority of
the profile) then place a ahead of b in the sorted list [28].

MergeSort MergeSort recursively divides an unsorted list into two
sublists. The sublists are then merged, according to the comparison rule
described above, resulting in a fully-sorted list. There are several possible
ways to divide lists into sublists. MergeSort places the items to the right of
the median index into one list, and the rest of the items into another [28].
MS places even-indexed items in one list, and odd-indexed items in another
[28].

QuickSort QuickSort recursively divides an unsorted list into two
lists—one list comprising items that occur before a chosen index (called the
pivot), and another comprising items that occur after—and then sorts each
of the two lists. There are several ways to choose the pivot. QuickSort

chooses the pivot uniformly at random [1]. DetQuickSort (DetQS) evalu-
ates each item as a pivot and finally selects the item that has the fewest
pairwise preference disagreements with the items that come before and af-
ter it according to Q given the current state of the list [31]. LogQuickSort

(LogQS) proceeds just as DetQuickSort does, but only considers log n items
(chosen at random) as the pivot, reducing its runtime [28]. QS chooses the
item with the median index as the pivot [28]. [1] and SvZ, respectively, show
that QuickSort and DetQS are 2-approximation algorithms for the Kemeny
ranking problem.

3.2.2. Graph based approximate algorithms

There are several algorithms across the computer science, artificial intel-
ligence, and machine learning communities that cast the Kemeny ranking
problem as solving a problem on a graph [28, 13, 14, 8]. One can then resort
to familiar methods for solving these graph based problems.
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MC4 [14] introduce several Markov chain based methods for approxi-
mately solving the rank aggregation problem, of which MC4 performs the best
across their experiments, so we focus on it here. MC4 constructs a Markov
chain over items, where each entry Pab, a 6= b, of the row stochastic transition
matrix P is set to

(1− α)
I(Qab > Qba)

n
+
α

n
. (6)

where α is a teleport parameter used to make sure the Markov chain is
ergodic, and is often set to 1/7 in PageRank implementations. The indicator
function in Equation 6 above returns 1 if item a is strictly preferred by the
profile to item b and 0 otherwise. Diagonal entries Paa are set to 1−

∑
b6=a Pab.

MC4 then solves for the stationary distribution (by, e.g., the power method),
and lastly ranks items in order of descending probability.

MC4Approx MC4Approx (MC4a) is intended to be a faster, approxi-
mate version of MC4 [28]. Instead of solving for the stationary distribution,
it computes vP n, where v is a randomly initialized probability vector.

Footrule aggregation Footrule returns the ranking that minimizes
the mean Spearman footrule distance. That is it minimizes

1

N

N∑
i=1

n∑
a=1

|πi(a)− π0(a)| (7)

where π(a) is the rank of item a in π. Thus, the objective represents the
sum of the deviations in rank, for all items, between the candidate solution
and each ranking in the profile, averaged over the profile [14, 13]. The solution
to this problem is a 2-approximation to the Kemeny ranking. This problem
can be solved by solving a minimum cost bipartite matching problem between
items and their positions where the cost between item a and position p is
set to

∑
i |πi(a)− p| [28, 13]. We use the Hungarian algorithm to solve this

problem, which has a runtime of O(n3), making Footrule one of the slowest
algorithms that we experiment with.

CSS CSS is a greedy version of the B&B algorithm discussed previously
introduced by [8].

7



3.2.3. Other approximate algorithms

These algorithms don’t quite fit in any of the classes mentioned previously
but have properties that make them interesting to investigate.

Pick-a-Perm Pick-a-Perm (Pick) randomly selects a ranking from
the profile as the solution [28]. This algorithm is included here for com-
pleteness, as a default “pre-processing step” for other algorithms, and as a
“strawman” algorithm. In this latter guise, comparing how other algorithms
improve on the Pick-a-Perm gives a crude estimate of the potential gain of
searching for a solution versus the lazy Pick-a-Perm solution.

Best-of-k Best-of-k returns the ranking in the profile with the small-
est mean Kendall distance to the rest of the profile; it is a deterministic
version of Pick-a-Perm [28].

Borda Borda sorts items in descending order according to their average
position across all the input rankings [6]. This is equivalent to computing
the columns sums of Q i.e. qa =

∑
bQab, then returning the permutation

that sorts qa in ascending order. In [17] it is shown that when the data are
generated from the Mallows’ model (which we define in the next section),
this algorithm is asymptotically optimal.

Copeland’s method Copeland sorts items in descending order accord-
ing to the number of pairwise contests each item has won [11, 28]. In other
words, it computes qa =

∑
b I(Qab > Qba), and then returns the permutation

that sorts qa in descending order.

Chanas Chanas [7] iteratively swaps item positions as long as doing
so reduces the number of pairwise disagreements with the profile. When
no more moves can be made, the candidate solution is reversed, and the
swapping phase begins once more, before returning the final solution. This
algorithm demonstrated good empirical results in [28, 9].

Linear programming relaxation We also experiment with solving
a linear programming relaxation (denoted LP or LPRelaxation) to the ILP

mentioned previously in Equation 2.
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3.2.4. Combinations of algorithms

Many of the algorithms mentioned previously start with an unordered
list. Similar to SvZ, we experiment with combining these algorithms by
initializing one algorithm with the output of another. This has the possibility
of improving convergence to the optimal solution.

We experimented with all combinations of the algorithms mentioned
above (denoted in subsequent sections with a “+” separating the combined
algorithms).

3.2.5. Local search

We also experimented with running a local search procedure (denoted LS

or LocalSearch) after all of the singleton and combination algorithms dis-
cussed previously—including following the family of exact and approximate
B&B algorithms, which has not been attempted previously.

This procedure works by iteratively moving each item in the input list
to the position that yields a candidate solution with the fewest number of
pairwise disagreements with the profile; if none of the items are moved from
their positions, then the algorithm terminates. Variations on this local search
idea have been shown to give good theoretical approximation bounds as well
as empirical results [28, 9, 19].

The complete list of algorithms we evaluated (comprising more than 104
different algorithms and combinations thereof) is given in the supplementary
material2.

3.3. Implementation remarks

All the algorithms were run on an 8 core, 1.86 Ghz machine with 32 GB
of memory.

All the algorithms except for a few were implemented in Java. The ILP

and LP were implemented in MATLAB calling into CPLEX. We note that the
core ILP solver is written in highly optimized and parallelized code, biasing
results towards the ILP. The family of B&B algorithms were implemented
in Java by Bhushan Mandhani, as described in [22]. MC4 and MC4a were
implemented in MATLAB, again slightly biasing results in their favor.

The reader is of course aware that the implementation of an algorithm
will affect its running time and our experiments are no exception. We cannot

2http://www.stat.washington.edu/mmp/mss2011_complete_experimental_

evaluation.pdf.

9



remove all implementation and programming language effects on the running
time. However, we made efforts to make the comparison as fair as possible,
and in particular to make sure that no algorithm is specifically favored or
disfavored. We took care to randomize the tie breaking, so that the algorithm
solution is not affected by implementation. In addition we took special pre-
cautions (omitted since they are outside the scope of this paper) to control
for systemic effects as garbage collection, initialization of large structures not
belonging to the algorithm, etc. The code will be made public, and we believe
the running times presented here accurately reflect what our implementation
would do if another researcher used it.

4. Datasets

In this section, we discuss the datasets that we used for our experiments.
In collecting these datasets, we aimed for a variety of lengths (n), number of
rankings (N), and degrees of consensus. To this end, we used real-world and
synthetic datasets. We first describe the real-world and then move on to the
synthetic datasets.

4.1. Real world datasets

We procured several real world data sets, aiming for problems where a
Kemeny ranking would be meaningful, but challenging to find.

4.1.1. Websearch dataset

In order to generate this dataset, we issued a set of 37 queries to N = 4
commercial search engines and captured the top 100 results returned. If
a particular engine did not have the same results as the others, then we
appended the set of results belonging to the other engines to the end of the top
100 results from the given engine (in random order). This procedure as well
as the queries used replicate those of SvZ. This will facilitate a comparison
between the results. The queries used and the total number of search results
(i.e. alternatives in the Kemeny ranking) for each query are given in Table
1.

4.1.2. Skiers dataset

We obtained another dataset from the web site www.ski-db.com which
records the results of World Cup (WC) and Olympic ski races from 1967
to the present. For our experiment, we used the rankings in the 8 WC
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query n

affirmative action 316
alcoholism 316
amusement parks 315
architecture 314
bicycling 318
blues 300
cheese 309
citrus groves 335
classical guitar 310
computer vision 296
cruises 290
Death Valley 322
field hockey 338
gardening 314
graphic design 329
Gulf war 318
HIV 282
java 313
Lipari 324
lyme disease 289
mutual funds 306
National parks 333
parallel architecture 341
Penelope Fitzgerald 329
recycling cans 336
rock climbing 348
San Francisco 319
Shakespeare 291
stamp collecting 300
sushi 326
table tennis 303
telecommuting 315
Thailand tourism 321
vintage cars 341
volcano 275
zen buddhism 298
Zener 320

Table 1: The 37 queries and their respective number of results, n, returned by N = 4
search engines used to curate the websearch dataset. n = 314.86 and σn = 17.35 for the
entire dataset.
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races in Giant Slalom for women during the 2008-2009 season. Each race
comprised two runs, so our dataset contains 16 rankings. A total of 59 skiers
participated. However, not every skier ran in every race, and some were
disqualified after the first run. We ranked all the non-participants after the
participants, and broke ties alphabetically by last name. Consequently, we
obtained a data set with n = 59 items and N = 16 rankings.

4.2. Synthetic datasets

We generated the following datasets in order to more thoroughly investi-
gate algorithm performance on datasets of varying length, number of rank-
ings, and consensus.

4.2.1. Mallows’ model datasets

We drew samples from a Mallows’ model (MM) with various parameter
settings. The Mallows’ model is an exponential model over rankings intro-
duced by [21] and is given by:

Pπ0,θ(π) =
exp (−θd(π, π0))

Z
Z =

n−1∏
i=1

1− exp ((−n− i+ 1)θi)

1− exp (−θi)
(8)

In the above, π0 is the central ranking of the model and θ ≥ 0.
The parameter θ of the Mallows’ model quantifies the concentration of

the distribution around its peak π0. For θ = 0 the distribution is uniform (no
peak, and no consensus), and for larger θ the distribution becomes increas-
ingly peaked. Therefore, we expect that the larger the θ value, the stronger
the consensus in the data, and therefore the easier the Kemeny ranking prob-
lem. We shall see that our experiments support this intuition. Also, from
the point of view of an algorithm, increasing the number of items n will make
the problem harder. The values for n, θ,N that we used are listed in Table 2.
In selecting these parameters, we aimed to have a range of difficulties, with
more emphasis on the challenging and hard problems.

4.2.2. Plackett-Luce model datasets

We also drew samples from a Plackett-Luce (P-L) model. The P-L model
is a probability distribution over rankings introduced independently by [27]
and [20] and is given by:

12



N n θ (MM) sπ−1(i) (P-L)

100 10 0.001 10, 9, ..., 2, 1
100 50 0.001 50, 49, ..., 2, 1
100 10 0.01 -
100 50 0.01 -
100 10 0.1 -
100 50 0.1 -
5000 10 0.1 -
5000 50 0.1 -

Table 2: The parameters used to generate the Mallows’ model and Plackett-Luce datasets.

Ps(π) =
n∏
i=1

sπ−1(i)

Zi
Zi =

n∑
i≤j

sπ−1(j) (9)

where si > 0 are parameters, and π−1(i) returns the alternative in rank i of
the permutations.

Each alternative is assigned one s parameter, which can be considered
as its importance. It is easy to see that the mode of the P-L distribution
is represented by the ranking that sorts the alternatives decreasingly w.r.t.
si. Beyond this, the si parameters of the P-L model are not as clearly in-
terpretable as those of the Mallows’ model, in the sense that it is harder to
derive other more complex properties of the distribution by inspecting them.

However, from Equation 9 one sees that the consensus will be stronger
when the si values decrease faster. The values we chose for our experiments
decrease slowly, making our test cases relatively hard3.

As with the Mallows’ model, the problem becomes more difficult for larger
n. Table 2 lists the parameters we used in our experiments.

We chose the P-L distribution, because it is a distribution peaked around
the mode, but has a different shape and rate of decay than the Mallows’
model. While the Kemeny ranking cost given by the r.h.s. of Equation 1
represents the log-likelihood for the Mallows’ model, no analogous relation
exists between the Kemeny cost and the log-likelihood of the P-L model.

3We ran pilot experiments with other values before settling on these.
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4.2.3. “Random” dataset

Lastly, we generated a synthetic dataset consisting of N = 100 and n =
100 random permutations.

5. Experiments

5.1. Methodology

We ran each algorithm described above on each data set (i.e. 104 algo-
rithms × 49 data sets) and recorded the running time, resulting ranking, and
other variables.

As a measure of algorithm accuracy we use the number of pairwise dis-
agreements between the algorithm’s output ranking and all the data, i.e.

cost(π0) =
N∑
i=1

d(πi, π0) (10)

The above is nothing else than the rescaled r.h.s. of Equation 1, so it reflects
how well the algorithm has optimized the desired objective. We call this
objective the cost of π0 and by extension the cost of the algorithm that
produced π0.

B&B is controlled by a beam size parameter, which limits the memory
allocated by the algorithm. When this limit is attained, then B&B reverts to
beam search. We run the algorithm with a range of beam sizes from a default
2000 down to 1. Thus, in our experiments, B&B is typically an approximate
algorithm.

For each data set, we plot the runtime versus cost for all algorithms. Then
we select the algorithms which are not dominated both in accuracy and in
runtime by another algorithm. These form the Pareto boundary, displayed
on all figures. For clarity, only selected algorithms have their names listed,
the other algorithms are not named. Among the selected ones, we list B&B,
ILP and selected algorithms on or near the Pareto boundary.

Another possible measure of accuracy would have been to subtract the
optimal cost, associated to the true Kemeny ranking, from each algorithm’s
cost, showing only the regret incurred by a given algorithm w.r.t. to the
ideal ranking. We do not do this when we first present the results, because
we found it informative to consider the size of the regret in the context of the
optimal cost value. Later, it will become apparent that for difficult Kemeny
ranking problems, the regret incurred by the better algorithms is very small
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compared to the cost. To enhance this perspective, we present analyses where
the regret is expressed as a fraction of the optimal cost.

Another possibility to measure algorithm accuracy is the inversion dis-
tance d(π0, π

∗
0) between the algorithm’s output π0 and the true Kemeny rank-

ing π∗0. We have not pursued this route because, in many cases and especially
for the websearch data, the Kemeny ranking is not unique, so this measure
would have made little sense. By the triangle inequality, we know that the
inversion distance to any Kemeny optimal permutation must be greater or
equal to the regret divided by the number of samples N .

5.2. Mallows’ model datasets

Figure 1: Mallows’ model dataset results with N = 100, n = 50, and θ = 0.001: all
algorithms (left) and detail (right). LS algorithms and B&B when it reverts to beam search
are shown in green triangles.

We present the experimental results starting with the most difficult cases
and proceeding towards the easiest.

The case of N = 100, n = 50, and θ = 0.001 (indicating no consensus)
is plotted in Figure 1. The left panel shows the overall picture, while the
right panel focuses on the left side of the plot, where the more competitive
algorithms are located.

We discuss both graphs in some detail, since the other data sets produce
qualitatively similar results.

Starting with the left plot, at one end of the Pareto curve is Pick-a-Perm,
included as a “strawman” algorithm, while at the other end is the exact
integer program ILP, which takes about 20 seconds to run (recall that the
ILP is parallelized so the real run time should be multiplied by 8). Borda
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is the fastest algorithm that improves the cost considerably; all algorithms
that outperform Borda in cost are more than 10 times slower. Copeland

and CSS follow on the Pareto curve, after which the LS algorithms and
the B&B algorithms with limited beam size cluster on and near the Pareto
curve. One notices that a large number of algorithms have relatively large
running time (comparable with LS and B&B) without the performance. This
observation is replicated in all the experiments we performed. Therefore, in
the right panel and in the subsequent experiments we focus on the subset of
algorithms that are near the optimal cost.

In this area, one notices that the LS algorithms are near a knee in the
Pareto curve, attaining the optimum or near optimum 100 times faster than
ILP. In close pursuit but suboptimal are the B&B algorithms (all with limited
memory) with comparable run time, but with costs approximately 0.2% away
from optimum. This group of algorithms is about 100 times slower than
Borda. Next come CSS and Copeland which are 2–5 times faster, but with
worse cost. Also near the Pareto boundary are DetQS and MC4.

The case of N = 100, n = 50, and θ = 0.01 is plotted in Figure 2. The
results are similar to those in Figure 1, with Borda, Copeland, B&B1, B&B2,
LP, ILP and some LS algorithms on the Pareto curve, and DetQS, MC4 and
the remaining B&B and LS algorithms near it.

This example shows that practically there is little difference between this
data set and the one with θ = 0.001. While in the limit of large N the
case θ = 0.01 would exhibit more consensus, and minimizing the cost in Q
would become tractable, at this sample size (N = 100) both have almost no
consensus and their distributions are indistinguishable.

The case of N = 100, n = 10, θ = 0.001 is not plotted. All LS, all
B&B (with the exception of B&B1), and the majority of the QuickSort based
algorithms reach the optimum. The fastest to reach the optimum is Copeland
(10 times faster than the rest). 22 algorithms do not attain the optimum,
Borda being the first one on the Pareto curve. Among the others are the
greedy CSS, Foot and Best-of-k, Chanas, and 14 sort based algorithms,
including IS, MS, and QuickSort. B&B is exact from beam size 2000 up4.
Note also that the “true model,” the central permutation which generated
the data, is not optimal. This is the case in all our artificial examples; it was

4The beam size is in units corresponding almost exactly to 2 nodes: for instance,
B&B2000 will maintain a queue of at most 4000 nodes.
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Figure 2: Mallows’ model dataset results with N = 100, n = 50, and θ = 0.01. Some
algorithms are not shown because they were far from the Pareto boundary. LS algorithms
and B&B when it reverts to beam search are shown in green triangles.

an experimental choice in order to prevent the particular shape of the data
distribution, in this case the Mallows’ model, to influence our results.

The case of N = 100, n = 10, and θ = 0.01 (indicating weak con-
sensus) is very similar to the above. All LS algorithms and all B&B algo-
rithms except for B&B1 and B&B2 reach the optimal cost; B&B is exact from
beam size 1000 upward. MS, Best-of-k+IS also reach the optimum. Barely
faster than these, but suboptimal are DetQS, B&B2,B&B1, CSS, Borda+MS,

Copeland+QuickSort, MC4a+QuickSort, MC4a+MS, Copeland+MS, Pick+IS.
Finally, much faster and slightly worse in cost are Copeland and Borda.

5.3. P-L datasets

The case of N = 100, n = 50 is plotted in Figure 4. The results were
mostly similar to Figure 1. The B&B and LS algorithms are clustered together
on or near the upper part of the Pareto boundary, and its highest knee; the
range of costs in this cluster is < 0.03%. LogQS is at the inverted knee,
and Copeland and Borda (not shown) are suboptimal and much faster. The
range of costs between Borda and optimum is of 0.3% of the optimal cost.

In the case of N = 100, n = 10 (no figure), most algorithms reached the
optimal cost, the fastest one being Copeland. B&B algorithms were exact
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Figure 3: Mallows’ model dataset results with N = 1000, n = 10, and θ = 0.01. Some
algorithms are not shown because they were far from the Pareto boundary. LS algorithms
and B&B when it reverts to beam search are shown in green triangles.

from beam size 1000 upward.

5.4. Random dataset

The results on the random data set (Figure 5) are visually similar to the
previous plots of artificial data with weak or no consensus.

5.5. Skiers dataset

This dataset distribution was between a peaked and a uniform distribu-
tion with consensus near the top but lack thereof in the other ranks. The
results, in Figure 6, are strikingly similar to those on the artificial data with
weak consensus. Therefore, we do not plot the lower part of the Pareto curve,
spanned by Copeland and Borda. The LS algorithms have an advantage of
1−1.6% over the B&B algorithms; a group of QuickSort algorithms is another
1.5% further in cost.

5.6. Websearch datasets

These tasks are more challenging for an algorithm as the consensus is
weak, especially in the lower ranks, and they feature long rankings (n =
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Figure 4: P-L dataset results with N = 100, n = 50. Detail of the upper part of the
Pareto boundary. LS algorithms and B&B when it reverts to beam search are shown in
green triangles. The algorithms on or near the undisplayed part of the Pareto curve are
LogQS, Copeland, Borda, and Pick-a-Perm. Some algorithms are not shown because
they were far from the Pareto boundary.

314.86, σn = 17.35). The results are plotted in Figure 7 and are an average
over the results for each of the 37 individual queries comprising the dataset.
The LS algorithms and the lower memory B&B algorithms are 2–3 orders of
magnitude faster than ILP and LP. The LS algorithms are within 0.05% of
the optimum, on average, while the B&B algorithms are approximately 0.06%
higher in cost. Copeland remains the next fastest significant algorithm, but
on these data its advantage in speed is only of a factor of 2 with respect to
the more accurate low memory B&B algorithms. Borda stands out as much
faster (10 times faster than Copeland) but at a significantly worse cost.

Because the websearch dataset is a real world dataset and also contains
the longest permutations out of all the datasets we experiment with, we
decided to further compare the group of B&B algorithms with the group of LS
algorithms, with ILP as a reference point. For this, we normalized the costs
by the optimal cost, and the running times by the running time of ILP. It
appears (see Figure 8) that the optimal costs increase linearly with n while
the run times increase approximately exponentially with n.

We then displayed the normalized running times and costs of all algo-
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Figure 5: random dataset results (N = 100, n = 100). Some algorithms are not shown
because they were far from the Pareto boundary. LS algorithms and B&B when it reverts to
beam search are shown in green triangles. The algorithm on the “inverted knee” is DetQS.

rithms, but this time with the means and the standard deviations in both
dimensions. These results are plotted in Figure 9. A number of algorithms
had very large variations in cost; not surprisingly, these algorithms were the
same algorithms that ran in time comparable with the LS algorithms, but
did not achieve costs close to optimal, so we removed them from the plot.

The figure shows immediately that all LS algorithms always have very
low cost, but high variance in running time. By contrast, the B&B algorithms
have much higher variance in cost, attaining the optimal cost occasionally,
with little variance in running time (which is dictated in the present imple-
mentation by the memory limit).

Thus, it seems that with a B&B the running time is predictable (either
indirectly by the memory limit, or directly by setting a stopping time), but
the cost may fluctuate away from the optimum. The opposite is true about
the LS algorithms as a group. In addtion, the best cost and the best running
times of LS algorithms outperform any of the B&B algorithms. Thus, is it
worth running the B&B algorithms at all?

We investigated this question by first studying the LS algorithms sepa-
rately. Figure 10 displays the normalized running times and costs of the LS

algorithms only. The figure shows that the LS algorithms perform similarly,
in the sense that the variations in both cost and run time depend much more
on the data set than on the initialization method for the LS. Since for all LS
algorithms the median cost is at the optimum, this means that a good rule
of thumb is to run LS a small number of times with different initializations
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in order to have a high probability of getting the best possible result by LS5.
The running time of B&B1000 (labeled B&B) and B&B200 are respectively

about 15 times and 6 times the mean time of the LS, while the other B&B al-
gorithms have shorter running times. Thus running a B&B algorithm once is
comparable with running LS with multiple initializations. This also suggests
the idea of running an approximate B&B followed by LS, which we discuss
shortly.

Figure 11 revealed another surprising property of B&B: this figure plots
the ranks of the B&B algorithms on the 37 data sets, where the data sets are
sorted by increasing n. The figure shows a strong dichotomy in the ranks:
each B&B algorithm is either optimal or worse than most LS algorithms6 The
effect of the beam size is negligible except for the extreme cases (B&B1000 is
somewhat better, while B&B2 and B&B1 are worse).

A second striking dichotomy in this plot is that the data sets on which
B&B algorithms are superior are without exception the queries with large n.
Thus, as n grows larger, the B&B searches become more competitive.

These features also suggest that running B&B with a moderate beam size
of 25–100, followed by a single LS could be a very promising strategy, es-
pecially for larger n. We tested this hypothesis on all our data sets by
running B&Bwith beam size varying from 1 to 100000 followed by LS, and
the results were in line with the other LS algorithms, for all the beam sizes.
The interesting case is at lower beam sizes, where the added cost of initial-
ization time is of the same order or smaller than that of LS. The perfor-
mance of these algorithms was similar to the other LS algorithms. Figure
14 shows that the performance of B&B10+LS is identical with that of one of
the faster LS algorithms, QuickSortLS. B&B10+LS’s running time was faster
than QuickSortLS’s; moreover, B&B10+LS attained the best cost of any LS

5In more detail, we can reason as follows: there is a probability of approximately 1/2
of achieving the optimum in one run; therefore, therefore, every additional run halves the
probability of not attaining the optimum. Hence, if we run LS, say, 5 times, and take the
lowest cost, then the probability that that is not optimal is approximately 1/25 = 1/32.

6When several algorithms reach the optimal cost, as for any other ties, we automatically
rank a B&B algorithm before any other algorithm. This was not in order to “cheat” in favor
of the B&B algorithms, but to better illustrate the phenomenon taking place. This is, we
stress again, that while the ranking within the group of LS algorithm appear random and
unstable, the ranking between any B&B algorithm and all the LS algorithms w.r.t. cost is
practically always of the form: some B&B which attain the optimum, then all LS algorithms
(some of which attain the optimum too), and finally the remaining B&B algorithms.
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algorithms on all data sets but the random data set.

6. The Pareto curves and general observations

Across all experiments described here we observe the following. First, no
algorithm reaches both the lowest cost and lowest runtime simultaneously
over all experiments. This is why in our experimental results, we traced the
Pareto boundary, i.e. the set of algorithms that cannot be bettered in both
cost and running time by another algorithm.

The shape of the Pareto boundary tell us about the possible trade-offs
between run time and accuracy. It is easy to observe that in practically
all experiments the Pareto boundary has the same angular shape, with two
“knees.” One of these is represented by the Borda algorithm, which we
recommend as the best trade-off if time is more important than accuracy. In
our experiments, Borda is no more than 2.5% over the optimal cost, which
agrees with the results of SvZ.

At the other knee, the boundary turns sharply towards high running
times. In this regime, large increases in running time are needed for very
small gains in cost. The LS algorithms cluster near the vertical part bound-
ary cluster; they attain good, often optimal costs, but are relatively slow
compared to Borda. Also in this area are the restricted beam size B&B al-
gorithms, with comparable running times but slightly suboptimal costs. On
the same boundary, than the LS and B&B groups of algorithms, sometimes
by 1–2 orders of magnitude, are LP and ILP. In our experiments, LP found
the optimal cost in all websearch data sets and in several of the other data
sets.

In between these two extremes lie a set of other algorithms, among which
the most frequent are Copeland, DetQS, MC4, CSS, MC4a—sometimes joined
by QuickSort or IS. The Pareto curve is concave in this area, showing that
with small losses in one criterion, one can gain much in the other criterion,
by effectively “sliding” to one of the knees. The exception to this rule is
Copeland which is always the fastest of them, and which always improves on
Borda. Of the other algorithms, only DetQS is consistently near the bound-
ary, but it is practically always overshadowed by the B&B algorithms with
small memory. Therefore, the only algorithm we recommend as a reliable
trade-off is Copeland.

The geometric shape of the boundary, and especially the very steep left
side, is bad news, indicating that the availability of so many algorithms does
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not translate in a comparable number of trade-off points between computa-
tional effort and cost. The two knees, with their almost 90 degrees angles
(no angle in the Pareto boundary can be less than or equal to 90 degrees),
indicate that there are effectively only two good and robustly attainable
trade-offs: the point at Borda and the small boundary region determined by
the group of LS/B&B algorithms. A minor third point of interest is given by
the Copeland algorithm.

If Borda or Copeland attain the optimum, then we are in luck to have an
easy problem at hand. Otherwise, further gains in cost can be obtained only
with very large (orders of magnitude) increases in run time.

Our conclusions agree with the previous experiments of SvZ, with respect
to the LS algorithms, and to Borda and Copeland. In addition, we have
shown that the B&B type of algorithms are also competitive, in the same high
accuracy / high cost regime as LS, especially for large n.

An intriguing possibility is to accelerate the limited memory B&B algo-
rithms by a more efficient implementation. This would have as an effect the
filling up of the inverted knee region with a convex and almost continuous
boundary controlled by a single parameter, the memory size of B&B. This is a
real option, since our current implementation leaves room for improvement.

Besides underscoring the future potential of B&B, we want to draw at-
tention to another aspect of practical importance in computing the Kemeny
ranking. It is the fact that in evaluating Kemeny ranking methods, the line
between theory and implementation detail is blurred. The care in implemen-
tation, the programming language and machine dependent optimization, can
account for about an order of magnitude in running time and perhaps more
in memory. Here we did not make special efforts for any particular algorithm,
and were careful to remove as many of the implementation-dependent factors
that we could. Never the less, the reader must be aware that in any empirical
evaluation these factors will play a role.

7. Regimes of difficulty: strong, weak, and no consensus

In the tasks above, we presented the algorithms with difficulties ranging
from hard to easy. The reader has probably noted that the success of the
algorithms (and implicitly the difficulty of the problem) did not depend on
n alone, but also on the data distribution. In particular, the concentration
of the data around the Kemeny ranking had a strong influence on the algo-
rithms’ ability to optimize the cost, and for some algorithms (like B&B) it also
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influenced the running time. We now discuss specific lessons that depend on
the difficulty of the data distribution distribution.

7.1. Strong consensus

There are easy distributions, like the Mallows’ with θ = 0.1, n = 50 or
10, and the P-L with n = 10, where the data are concentrated around a
central permutation. In these cases, the Kemeny ranking is found by many
algorithms, and for those algorithms whose running time varies the search is
short. We refer to this situation as having strong consensus.

For strong consensus cases we recommend using Borda which emerges
as a consistent winner. Many other algorithms, including B&B (which is
exact), LP, the exact ILP and LS also solve these cases but are not worth the
overhead.

7.2. No consensus

At the opposite end of the difficulty spectrum is the no consensus sit-
uation. In these cases, the data distribution is almost uniform, without a
mode. This is typified by the random data set, but also by distributions like
the Mallows’ model data in Figure 1), which is almost indistinguishable from
random data7.

Another situation with no consensus is clustered data. That is, the data is
the union of two or more groups, each of them having consensus, but around
a different π0. In this case, the cost may have local minima (correspond-
ing to the Kemeny rankings of the groups) but not necessarily a minimum
corresponding to a global consensus. An extreme example is the case where
there are two equal groups, one with center π0 and the other centered on the
reverse of π0. In this case, the Q matrix has all entries equal to 0.5, and
every ranking is a Kemeny ranking.

In general, in this case the Kemeny ranking is too sensitive to small
perturbations in the data (e.g. adding a single new ranking) to have any
real meaning. In fact, especially for small data sets, like in the websearch

data sets, there are multiple Kemeny rankings. Approximate solutions ob-
tained from different algorithms can in fact be at large Kendall distances

7At a very large sample size, this Mallows’ model and any non-uniform unimodal dis-
tribution will produce data for which Borda will find the true π0 which will also be the
Kemeny ranking. However, our sample size is N = 100, much too small for this effect, as
shown next.
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from each other. Algorithmically speaking, no consensus is an unstable situ-
ation. Intuitively, it is futile and misleading to give meaning to the computed
(approximate) Kemeny rankings.

To better drive home this point, for the synthetic data, we tested the
quality of the true π0 that generated the data as a candidate for a Kemeny
ranking. They are listed as MallowsModel and PlackettLuce in the sup-
plementary material. For the difficult, no consensus distributions this cost
is higher than that achieved by many other algorithms (e.g. by an ≈ 6%
increase over the algorithm with the lowest cost in the case of the MM model
with θ = 0.001, N = 100, n = 50). For the P-L model, the true permutation
is not optimal even in the n = 10 case.

In such cases it is important to carefully examine the need for a Kemeny
ranking and to detect and signal the lack of consensus.

If the situation is a decision task, for instance voting, then the decision
maker (or decision algorithm) must always output a ranking. We recommend
in this case8 picking a fast algorithm (e.g. Borda, Copeland), as there is not
a substantial difference in costs achieved by the best algorithm, nor can one
attach more significance to a lower cost ranking.

In such a case, the important trade-offs will not be of a computational
nature, but of a social nature (like having an simple, understandable rule) and
are beyond the scope of our investigation. We do recommend that, whenever
possible, the lack of consensus be detected. The B&B algorithm has a natural
way of detecting the lack of consensus, in the guise of very large number of
optimal or almost optimal partial solutions in the algorithm’s queue. It is
not necessary to run the algorithm to completion in order to diagnose lack of
consensus—it is sufficient to monitor if the queue extends in breadth rather
than in depth. If N is large enough, then the bootstrap [15], i.e. repeating
the algorithm (e.g Borda) many times, with slight variations in the sample,
will also indicate lack of consensus.

There are other situations, for instance when our aim is descriptive, and
the Kemeny ranking is to be used as a summary of the voters’ preferences.
In this case, we recommend that one declares that no ranking can summarize
the expressed preferences in an acceptable way, and changes the model. For

8If the exact solution cannot be found in the available time. When the exact solution
can be found, and in particular a certificate of optimality, this has additional advantages
from a social choice stanpoint.
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instance, one could investigate the existence of consensus within groups, i.e.
the existence of “voting blocks.”

7.3. Weak consensus

The more interesting case from a computational point of view is the case
of weak consensus. In such cases, the distribution has a mode, but this is
not pronounced, or appears only in some of the ranks (typically the higher
ranks). Here, the Pareto boundary presented in Section 6 is relevant: having
a high performance algorithm can make a difference in cost.

In these cases the user can choose between speed for suboptimal cost
(with Borda, Copeland) and more effort for almost optimal cost (with LS,
B&B , and, whenever possible, ILP).

The important question is how to establish whether we are in a weak
consensus regime or not, preferably before running one of the time-consuming
algorithms? We investigate this question in the next section.

7.4. Heuristic measures of hardness and consensus

Intuitively, we have argued that in the event that the data has consensus,
the problem of finding the Kemeny ranking becomes tractable. Formally, one
would like a function of the data, which we denote symbolically h(n, {π1:N}),
that accurately upper bounds the time to solve the current Kemeny ranking
instance.

A remarkable theoretical approach in this direction is [5] which finds such
a function h which is exponential in the Kemeny score. Other approximation
bounds and worst case bounds exist, see e.g. SvZ and [9], but they are not
of practical utility for the Kemeny ranking problem.

Therefore, here we have taken the approach of experimentally searching
for good surrogate functions to measure the amount of consensus and the
hardness of the problem.

We formulated the following possible functions.

The lower bound to the optimal cost Defined as:
hlow = 2

Nn(n−1)

∑
a,b min(Qab, Qba).

Related measures one can consider are: the upper bound

huplow =
2

Nn(n− 1)

∑
a,b

[max(Qab, Qba)−min(Qab, Qba)] (11)
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= 1− 2hlow; (12)

the improved, but computationally more demanding bounds introduced in
[12] and [10]; and lower bounds produced by running a few steps of B&B (a
constant number of node expansions).

The uniformity hunif =
1

n(n− 1)

∑
a,b

I(0.5− δ ≤ Qab ≤ 0.5), which is

the proportion of weights Qab which are within δ from 0.5, for e.g. δ = 0.1.

The intransitivity hintrans, which is the proportion of intransitive
triplets a, b, c in Q. An unordered triplet of alternatives (a, b, c) is called
intransitive if all three of Qab, Qbc, Qca are either simultaneously greater than
0.5 or simultaneously smaller than 0.5.

The average rank entropy henti =
1

n

n∑
a=1

H(a), where H(a) is the

discrete entropy of the rank distribution of alternative a.

The average rank variance hrankvar =
1

n

n∑
a=1

var(π(a)), with π(a)

being the rank of a in π.

The Borda cost hborda, which is the cost of the ranking given by the
Borda algorithm, normalized by N . We will also use the normalized Borda

cost h̃borda =
2

n(n− 1)
hborda.

Since we also have available the exact cost, and the running time of, the
exact ILP algorithm, we use these two as surrogates for the amount of con-
sensus, respectively for the problem hardness (in fact we use the normalized

optimal cost
cost(ILP)

Nn(n− 1)/2
).

In the list above, we aimed to include measures of “consensus” which are
varied, natural, and tractable to compute. If we take the running time of
the Borda algorithm as a working definition for “fast,” then all measures are
fast, with the exception of hintrans which is cubic in n.
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We computed these consensus measures for all data sets we used, and
investigated extensively the dependencies of these measures on each other
and on the optimal cost and ILP running time. Here we include only the
findings most significant for our purpose.

Figure 12 shows that the Borda cost, hborda, is a good predictor of the
ILP running time. We have already seen in Figure 8 that the running time
of algorithms on the websearch datasets grow roughly exponentially with n.
We prefer the Borda cost to the Borda running time, not just because the
former relationship appears to hold better on the ensemble of all our data
sets, but also because the running time of Borda can be subject to much
more variation and simply harder to measure. This is useful, since as we said
before, the running time of the exact ILP whether we can afford to run the
algorithm or not, is a de facto good upper bound on the tractability of the
instance at hand. The linear regression obtained from the 53 data sets is

log10 ILP run time = 1.46 log10 hborda + 5.5335

with an R2 value of 0.95. Removing the logarithms we get the following
relationship

ILP run time = 34, 160ns× hborda.

We have also found a weaker dependence of the ILP running time on henti,
the rank entropy, and another, non-linear dependence on

√
hrankvar, the rank

standard deviation. These are not shown.
While hborda, together with the experimental results of Section 5, can

indicate how tractable are the more expensive algorithms like ILP or B&B on
the problem instance, it does not tell us whether to expect a significant
improvement in cost from actually running them. Figure 13 shows that our
proxy measures, the tractability as expressed by the ILP run time and the
amount of consensus as expressed by the normalized optimal cost, are not
predictive of each other.

7.5. A simple rule

Below we propose a simple way to determine the regime, strong, weak or
no consensus. In fact, more practically, we introduce a simple rule to predict
whether running a high performance Kemeny ranking heuristic, like B&B or
LS, will result in significant improvements to the cost.

We know that hlow and h̃borda represent respectively a lower and an up-
per bound to the normalized optimal cost. Hence, one expects that when
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these are close, the Borda heuristic is practically optimal, and there is lit-
tle to gain from another, more sophisticated algorithm. Figure 14 shows,
for two LS algorithms, QuickSort+LS and BB10+LS, the relative gain in cost
cost/cost(Borda) versus the ratio h̃borda/hlow. This dependence is remark-
ably close to linear, with slope 1. Qualitatively similar plots were obtained
for other LS, B&B+LS and pure B&B algorithms. Thus, the abscissa is a good
predictor of what we stand to gain from running a more expensive algorithm.

Moreover, the data sets separate cleanly into the websearch data sets, the
group for which largest gains are expected, the skiers data sets (the original
data set and two variations where we randomly perturbed the ranks by a
small amount), and the group of synthetic data sets, all with h̃borda/hlow <
1.02. This last group includes both the strong consensus data sets (like
Mallows’ with θ = 0.1), and the no consensus data sets (like random, the red
dot in the left graph). In other words, the values of h̃borda/hlow distinguish
between the weak consensus regime on one side and the no consensus or
strong consensus regimes on the other side, with h̃borda/hlow away from 1
indicating a likelihood that with more running time one can improve the
cost.

We caution that there can be cases when the optimal cost is near or even
identical to the Borda cost, even though h̃borda/hlow is high. This can happen,
for instance, with a cyclic data set with 3 alternatives a ≺ b ≺ c, c ≺ a ≺
b, b ≺ c ≺ a. An interesting theoretical question, which is to our knowledge
unsolved, is finding lower and upper bounds on the optimal cost, given n and
h̃borda/hlow.

8. Conclusions

We have performed an extensive comparison of algorithms for the Ke-
meny rank aggregation problem, originating in social choice theory, machine
learning, and theoretical computer science. The problem being NP-hard, the
focus has been on establishing the best trade-offs between search time and
performance.

8.1. Conclusions on Kemeny ranking algorithms

Our first conclusion is with respect to the available Kemeny ranking al-
gorithms. The first choice, whenever available, is to search for the exact
solution. In our experiments, the commercial ILP solver CPLEX found the
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optimum in every instance. If the user is in one of these fortunate situa-
tions, then having a provably optimal solution is of additional importance in
a social choice situation (as it removes disagreements or suspicions related
to which approximation to be used).

On the other hand, the focus of this paper is on possible replacements of
the exact ILP algorithm when using it is not practical, and we assume this
to be the case from now on. We find that, in spite of the many algorithms
formulated, a user has only a few reliable choices.

There are the fast and cheap algorithms like Borda and perhaps Copeland.
However, if one can afford up to two orders of magnitude more time, one can
hope improve the cost significantly by running an LS algorithm. The dom-
inance of LS algorithms for good cost requirements with large but tractable
running time has already been remarked on by SvZ. We have shown addi-
tionally that the theoretically exact B&B algorithm introduced by [24] can
form the basis for a second family of approximate algorithms, which also offer
good cost with run times comparable with LS. Note that the improvements
are potentially significant (up to 10-12%) only if the problem has consensus,
but is not too easy; this is a second aspect we study in our paper.

In our experiments, LS dominate B&B type algorithms slightly, while a
combination of B&B followed by LS is the most competitive algorithm we
found. We note that in practice, one will likely find that the running times
for the algorithms in these categories are implementation and machine de-
pendent. This is why we do not rule out either of these two categories of
algorithms for the time being.

In particular, LS has the following advantages: it uses a fixed amount
memory, is easy to program, and presently achieves better cost for running
time than B&B. The running time is unpredictable9, however.

The B&B approximate algorithm family offers some advantages, too. It
offers control of the memory and time resources with one parameter (in our
experiments, memory), which tracks extremely well the cost vs time trade-off.
This is particularly attractive, because with a 10 times faster implementa-
tion, these algorithms can smoothly fill in the concave region of the Pareto
boundaries where no algorithms are available. In addition, a B&B method
returns a lower bound on the Kemeny cost, detects when the optimum is

9However, a LS algorithm, just like a B&B one, can be stopped any time. We did not
experiment with this class of methods in our paper.
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found10, and in general, because of its global approach, can produce a wealth
of diagnostic information.

There is a category of algorithms not studied here, that appear as very
promising complements to any high performance algorithm. These are the
set of exact preprocessing methods that can reduce the size of the problem
without affecting the solution. In this category we see the Branch and Bound
solver for the Integer Program described in [12] with improved heuristics in
[10], the heuristics in [8], and the exact transformations of [4].

8.2. Conclusions on Kemeny ranking problems

First, our paper demonstrates empirically that Kemeny ranking problems
are not uniformly hard. The truly hard cases are the ones where no consensus
exists, while the cases when the data exhibits consensus become gradually
tractable. Moreover, tractability depends both on consensus and on the
problem size n. Such ideas are foreshadowed in other experimental trials,
like [12] and [10] which show a connection between problem difficulty and
consensus.

In the extremely hard and extremely easy cases, namely the no consensus
or strong consensus cases, one has limited possibility to trade off computing
power for improvements in the (approximate) Kemeny cost or Kemeny rank-
ing. In either case, the fast Borda algorithm will be close to optimal.

We found however evidence of the existence of a middle ground of weak
consensus problems. On such problems, the tradeoffs described in Section 8.1
above are possible, and this is the regime for which developing new algorithms
can bring the most gains.

Second, we quantify the hardness and the consensus, in order to provide
quantitative criteria for the choice of algorithm. We introduce a simple and
practical criterion, the ratio between an upper and a lower bound to the
optimal cost, to detect the possibility of being in the weak consensus regime,
and thus to help a user decide whether to run a computationally expensive
algorithm or not.

The work of [5] has conceptual similarities to ours: they introduce a
variety of consensus measures, all but the optimal cost being tractable, and
prove (exponential) upper bounds on the running time as a function of these.

10This may not be a real option when an exponential number of Kemeny rankings exist,
since B&B will have to explore them all before declaring optimality.
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Figure 6: skiers dataset results. Detail of the upper part of the Pareto boundary. LS

algorithms and B&B when it reverts to beam search are shown in green triangles.

Figure 7: websearch dataset results (averaged). Detail of the upper part of the Pareto
boundary. LS algorithms and B&B when it reverts to beam search are shown in green
triangles.
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Figure 8: websearch dataset: normalized optimal cost vs. n (left) and normalized running
times of all algorithms vs. n (right). The runing time of ILP is shown in red.

Figure 9: websearch dataset: normalized running time vs. normalized cost. Left: mean
and standard deviations by algorithm. Some algorithms with high cost and high cost vari-
ance were excluded. Right: detail of the top-left part of the graph. Here a dot represents
each individual run. The B&B algorithms are in shades of green, the LS algorithms are
in shades of red (clustered near the running time axis), and the other algorithms are in
shades of blue. Note that the B&B and the other algorithms cluster by running times, while
the LS algorithms runs do not appear differentiated.
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Figure 10: websearch dataset: normalized optimal cost (left) and normalized running
times (right) for the LS algorithms. Boxplots are over the data sets. In both graphs, the
algorithms were sorted by their mean running time.

Figure 11: websearch dataset: ranks of the B&B algorithms w.r.t. cost, for each of the
37 queries / data sets. Note that most ranks are either below 10 or above 30. There
are 9 B&B beam sizes, and 30 LS algorithms. In computing the ranks, ties were broken
alphabetically, meaning that if a B&B algorithm attains the optimal cost it will be in ranks
1–9. Conversely, if all the LS algorithms have better cost than a B&B algorithm, then its
rank will be > 30 (because ILP will also be ranked better). The B&B algorithms are sorted
by decreasing beam size, B&B is B&B1000; the queries are sorted by increasing n.
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Figure 12: The Borda algorithm cost versus the running time of the ILP algorithm on the
53 data sets: Mallows’ model (black), Plackett-Luce (magenta), ski (cyan), websearch

(green), websearch with the results of several queries merged together to form a single
dataset (yellow), random (red).

Figure 13: The optimal cost normalized by Nn(n − 1)/2 versus the running time of the
ILP algorithm on the 53 data sets: Mallows’ model (black), Plackett-Luce (magenta), ski
(cyan), websearch (green), websearch with the results for several queries merged to form
a single dataset (yellow), random (red).
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Figure 14: Tradeoffs for two high performance algorithms. The horizontal axis represents
h̃borda/hlow; the vertical axis represents Borda cost/algorithm cost. Both quantities are
always greater or equal to 1. The color (red is higher) measures the log10 or the relative
running time of the high performance algorithm w.r.t the Borda algorithm; its maximum
is 3.7 for QuickSortLS and 3.5 for BB10+LS.
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