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Abstract

We present a new view of image segmentation by pairwise similarities. We

interpret the similarities as edge 
ows in a Markov random walk and study the

eigenvalues and eigenvectors of the walk's transition matrix. This interpretation

shows that spectral methods for clustering and segmentation have a probabilistic

foundation. In particular, we prove that the Normalized Cut method arises

naturally from our framework. Finally, the framework provides a principled

method for learning the similarity function as a combination of features.

1 Introduction

Among the most successful methods in image segmentation combine a global optimality segmen-

tation criterion with local similarity features[3]. Similarity between two pixels i; j is de�ned as

a positive function S

ij

depending on the local image properties of the pixels(e.g. color, texture,

edge 
ow). Local features are not only computationally convenient, they are also supported by

neurological evidence about the human perception of shapes.

The global segmentation criterion is formulated either as energy functions[7, 4] or as weighted

graph cut [10, 13]. In both cases, optimizing the chosen criterion turns out to be computationally

extremely di�cult. Recently[10, 11] connected the graph cuts problems with a set of techniques

called spectral methods that segment using the eigenvectors and eigenvalues of (certain transfor-

mations of) the similarity matrix S

ij

. As demonstrated in [10, 9, 13], these methods are capable

of delivering impressive image segmentation results using simple low-level image features. More-

over, computational e�ciency is achieved using sparse and multiscale[9] matrix techniques, which

amounts to parallel local computations.

In spite of their practical successes, spectral methods are still incompletely understood. So is

the signi�cance of the similarity matrix itself, or, more precisely, the way to combine the various

types of lower-level image features into one single matrix S. Is it also of interest to introduce

high level knowledge, perhaps through examples, into the de�nition of the similarity connections

S

ij

.

In this paper, we interpret the local connections as describing a random walk. With this inter-

pretation we achieve:

� a better understanding of spectral methods. We give a simple probabilistic interpretation to

the normalized cut (NCut) segmentation and show strong connections to other spectral methods.

� the similarity matrix can be learned in a principled way. Given image/segmentation pairs, we

optimize the similarity measure as a combination of features

� the framework inspires us to introduce a new feature

Figure 1 depicts the relationship between the main concepts in the paper. Starting from the

similarities S

ij

, we can de�ne a weighted graph G with the set of pixels I as nodes, and S

ij

as

the graph edge weights. Image segmentation can be formulated as a graph partitioning problem

which seeks to �nd small cuts, such as NCut, in the graph. Computationally, the discrete
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Figure 1: The relationships between the similarity matrix S

ij

, a Markov random walk, spectral segmen-

tation such as Ncut, and image segmentation. The equivalance between key properties of the Markov

random walk and the Ncut critirion o�ers a principled way of learning the feature similarity matrix S

ij

in a probabilistic framework.

optimization of NCut is achieved by computing the generalized eigenvectors of (D�S)y = �Dy

(with D the diagonal of S) in the real valued space. This variant of spectral segmentation, called

here the NCut algorithm, works well in practice.

The similaritymatrix can also be used to de�ne a Markov randomwalk with transition matrixP

ij

through normalization. One of the interesting properties of the Markov random walk is its mixing

rate or conductance: the rate at which walks propogates over the entire space. The conductance

depends on sets of states where the random walk tends to be \trapped" with high probability.

In the image, these sets can be seen as segmented regions. In turns out, the conductance can be

measured by the NCut criterion, and the low conductivity sets are exactly the results of NCut.

This is described in detail in section 2.

A probabilistic interpretation of NCut as a Markov random walk sheds new lights on why and

how spectral methods work in segmentation. In particular, it o�ers a principled way of learning

the weights in S

ij

. A segmented image can provide a \target" transition matrix to which a

learning algorithm matches in KL divergence the \learned" transition probabilities. The latter

are output by a model as a function of a set of features measured from the training image. This

is described in section 3.

To test our theory, we show an experiment on segmenting objects with smooth and rounded

shape. In section 4 we show that by training with synthetic images, one can learn to segment

real images.

2 Markov random walks, spectral clustering and normalized cut

This section describes our view of spectral segmentation in the framework of Markov random

walks. This view provides a new and better motivation for several spectral segmentation and

clustering methods. It is also at the core of the learning algorithm presented in the next section.

For the sake of brevity, here we outline only the relationship to the NCut algorithm and criterion;

the rest will be treated in a longer version of this paper

1

. Low conductivity cuts have been studied

before within spectral graph theory; however, all the consequences pertaining to segmentation

presented in this paper (Propositions 1,2, relationship to NCut, the learning model) are new.

Here we assume that the similarity function S

ij

is given, and concern ourselves with using it to

partition the image. The rest of the paper will be devoted to the opposite task, i.e. learning a

good similarity function from segmented images. First we present \ideal" cases, that demonstrate

why spectral methods are expected to work. Then we show that the NCut criterion and algorithm

fall out naturally from our representation and that the ideal cases are solved exactly by the NCut

algorithm.

1
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Obtaining a Markov chain from a similarity matrix By analogy with a graph's adjacency

matrix, we call d

i

=

P

j2I

S

ij

the degree of node i. For a subset of nodes A 2 I the volume

of A is volA =

P

i2A

d

i

. Let D be the diagonal matrix consisting of the node degrees. By

\normalizing" the similarity matrix S one obtains the stochastic matrix P = D

�1

S whose row

sums are all 1. As it is known from the theory of Markov random walks, P

ij

represents the

probability of moving from node i to j in one step, given that we are in i. The eigenvalues of P

are �

0

= 1 � �

1

� : : : �

n�1

� �1; x

0:::n�1

are the eigenvectors; �

0

is called the �rst eigenvalue.

Proposition 0. Disconnected GIf the graph G has k connected components, P will have

k eigenvalues equal to 1 and all the other eigenvalues < 1. (Call this P type 0). The �rst k

eigenvectors are the indicator functions of the respective connected components.

This fact represents the fundamental idea of spectral segmentation. The number of unit �s tells

us the number of segments. Then, because x

0:::k�1

are indicator functions, we can simply project

the pixels on the space spanned by these vectors. All pixels in the same segment will project

to the same point in R

k

(or close by, if there is noise). K-means (with k known) or some other

simple clustering algorithm can then separate the segments. We call this segmentation method

the NCut algorithm. Experiments [10] show that NCut works well on many graphs that are not

disconnected. The following results motivate this behavior.

Proposition 1. Same connections Assume that I admits a segmentation into k segments so

that all pixels in a segment correspond to equal rows in P (call this P type 1). Let R = [P

SS

0

]

where S; S

0

are segments and P

SS

0

= Pr[S ! S

0

jS]. Let �

0

= 1 � �

1

� : : :�

k�1

and y

0

; : : :y

k�1

be the eigenvalues/vectors of R. Then

(i) The �rst k eigenvalues of P are �

0

; : : :�

k�1

; the other eigenvalues are 0.

(ii) If x is an eigenvector of P corresponding to a non-zero eigenvalue, then x

i

= x

j

if pixels i

and j belong to the same segment.

(iii) If x

l

is an eigenvector of P corresponding to a non-zero eigenvalue �

l

, then x

l

i

= y

l

S

for all

pixels i belonging to segment S.

Proposition 2. Linear combination and multiplication Assume we have two stochastic

matrices P

0

; P

00

that admit the same partition and have types 1 and 0 respectively. The nonzero

eigenvalues of P

0

are �

0:::k�1

and the corresponding eigenvectors are x

0:::k�1

. Then

(i) the convex combination P = �P

0

+ (1 � �)P

00

is a stochastic matrix and ��

0:::k�1

+ 1 � �

and x

0:::k�1

are eigenvalues and eigenvectors of P .

(ii) the products P

0

P

00

and P

00

P

0

are type 1 matrices with �rst k eigenvalues/vectors equal to

�

0:::k�1

, x

0:::k�1

.

Intuitively, proposition 1 says that spectral segmentation will group together pixels that have the

same neighbors. Proposition 2 says that spectral segmentation is successful even when the two

criteria, disconnection and same neighbors, are combined linearly or by multiplication. These

results motivate the practical usage of spectral clustering methods in general and of the NCut

algorithm in particular.

The normalized cut criterion of [10] is a graph theoretical criterion of segmenting an image

into two by minimizing the the following expression over all subsets A of I

NCut(A;

�

A) =

P

i2A;j2

�

A

S

ij

P

i2A;j2I

S

ij

+

P

i2A;j2

�

A

S

ij

P

i2

�

A;j2I

S

ij

=

X

i2A;j2

�

A

S

ij

�

1

volA

+

1

vol

�

A

�

(1)

NCut measures the weight of the cut normalized by the volumes of the two segments. In [10] it

is shown that if the second eigenvector of P is piecewise constant, like in Propositions 0,1,2 then

NCut(A;

�

A) = 1 � �

1

. It is also easy to see that NCut(A;

�

A) = P

A

�

A

+ P

�

A
A

. Thus, NCut has

a natural probabilistic interpretation in the framework of random walks, and the quality of the

cut is indicated by �

1

.

In [10] the practical solution for NCut (which is NP-hard) is given by the generalized eigen-

value/vector problem (D � S)x = �x. We show (in the full paper) that this problem has

identical solutions with Px = (1� �)x. Hence, the NCut algorithm described here is essentially

identical to the original NCut algorithm of [10]. Random walks provide a simple and natural
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Figure 2: The general framework for learning image segmentation.

alternative interpretation for both the NCut algorithm and criterion.

We found that the NCut algorithm is strongly related to another graph theoretical problem: low

conductivity sets [1] as well as to other spectral clustering methods for documents or the web

[2]. We discuss these in the light of Markov random walks in the full paper.

3 The framework for learning image segmentation

The previous section has stressed the connection between NCut as a criterion for image seg-

mentation and searching for low conductivity sets in a random walk. Here we will exploit this

connection to develop a framework for supervised learning of image segmentation. Our goal is

to obtain an algorithm that starts with a training set of segmented images and with a set of

features and learns a function of the features that produces correct segmentations. The idea is

sketched in �gure 2.

For simplicity, assume the training set consists of one image only and its correct segmentation.

From the latter it is easy to obtain \ideal" or target transition probabilities

P

�

ij

=

�

0; j 62 A

1

jAj

; j 2 A:

for i in segment A with jAj elements (2)

We also have a prede�ned set of features f

q

; q = 1; : : :Q which measure similarity between

two pixels according to di�erent criteria and their values for I. Examples of such features are

Euclidean distance between pixels, di�erence in color, presence of an edge crossing the connecting

line between the two pixels , etc. A feature associates to a pair i; j of pixels a value f

ij

.

The model is the part of the framework that is subject to learning. It takes the features f

q

ij

as

inputs and outputs the global similarity measure S

ij

. For the present experiments we use the

simple model

S

ij

= e

P

q

�

q

f

q

ij

(3)

This model has the advantage that S

ij

is always positive. Intuitively, it represents a set of

independent \experts", the factors e

�

q

f

q

voting on the probability of a transition i ! j. The

�

q

values account for both the features' relative importance and scaling. Being an additive

model, (3) has limited representation power. In particular, it cannot model contextual changes

or dependencies between features. The goal of learning is to �nd an optimal S

ij

of the given

form as a function of the features.

In our framework, based on the fact that a segmentation is equivalent to a random walk, optimal-

ity is de�ned as the minimization of the conditional Kullback-Leibler (KL) divergence

2

between

the target probabilities P

�

ij

and the transition probabilities P

ij

obtained by normalizing S

ij

. Be-

cause P

�

is �xed, the above minimization is equivalent to maximizing the crossentropy between

the two (conditional) distributions, i.e. max J , where

J =

X

i2I

1

jIj

X

j2I

P

�

ij

logP

ij

(4)

2

The KL divergence between distributions P and P

0

is given by

P

x

P (x) log

P (x)

P

0

(x)

.
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Figure 3: Features for segmenting objects with smooth rounded shape. (a) The edge strength provides

a cue of region boundary. It biases against random walks in a direction orthogonal to an edge. (b) Edge

orientation provides a cue for the object's shape. The induced edge 
ow is used to bias the random

walk along the edge, and transitions between co-circular edge 
ows are encouraged. (c) Edge 
ow for

the bump in �gure 4. Note that the 
ow reverses directions on the two sides of an edge.
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Figure 4: \Bump" images (a)-(f) are used for training. From (a) to (f), the contrast is gradually reduced.

(g) shows the relation between the image edge contrast and the learned value of �

IC

, demonstrating

automatic adaptation to the dynamic range of the IC. (h) shows the dependence on image contrast of

�

CL

. The importance of the co-linear/co-circular(CL) feature remains relatively constant until the image

contrast becomes very low. At low image contrast, CL becomes more important.

If we interpret the factor 1=jIj as a uniform distribution over states �

0

then the criterion in (4)

is equivalent to the KL divergence between two distributions over transitions KL(P

�1

i!j

jjP

i!j

)

where P

(�)

i!j

= �

0

i

P

(�)

ij

3

.

Maximizing J can be done via gradient ascent in the parameters �. We obtain

@J

@�

q

=

1

jIj

0

@

X

ij

P

�

ij

f

q

ij

�

X

ij

P

ij

f

q

ij

1

A

(5)

Hence, the gradient of J w.r.t to a parameter �

q

measures the di�erence between the means

of the corresponding feature f

q

under the target and the current distribution. The optimal

parameters are attained when the two means are equal. One can further note that the optimum

of J corresponds to the solution of the following maximum entropy problem:

max

P

jji

H(jji) s:t: < f

q

ij

>

�

0

P

jji

= < f

q

ij

>

�

0

P

�

jji

for q = 1; : : :Q (6)

Since this is a convex optimization problem with convex constraints, it has a unique optimum (

if any). Thus for this simple model the problem of local maxima is avoided. Knowing that the

values of �

q

may grow inde�nitely during learning, we shall stop the parameters from growing

after they reach a certain upper bound.

4 Segmentation with shape and region information

In this section, we exemplify our approach on a set of synthetic and real images and we use

features carrying contour and shape information. First we use a set of local �ler banks as edge

3

We choose to minimize this criterion instead of e.g. KL(P

�

i!j

jj�

1

P

ij

) because (1) �

1

converges to

�

0

if P converges to P

�

so the two criteria are asymptotically equivalent and (2) we prefer to weight the

contribution of P

ij

to the KL divergence by the image statistics represented by �

0

.
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Figure 5: Testing on real images: (a) test images; (b) canny edges computed with the Matlab \edge"

function; (c) NCut segmentation computed using the weights learned on the image in 5(c). The system

learns to prefer contiguous groups with smooth boundary. The canny edge map indicates that simply

looking for edges is likely gives brittle and less meaningful segmentations.

detectors. They capture both edge strength and orientation. From this basic information we

construct two features: the intervening contour (IC) and the co-linearity/co-circularity (CL).

The �rst feature is based on the assumption that if two pixels are separated by an edge, then

they are less likely to belong together(�gure 3). In the random walk interpretation, we are less

likely to walk in a direction perpendicular to an edge. The intervening contour [6] is computed

by [8]

f

IC

ij

= MAX

k2l(i;j)

Edge(k); (7)

where l(i; j) is a line connecting pixel i and j, and Edge(k) is the edge strength at pixel k.

While the IC provides a cue for region boundaries, the edge orientation provides a cue for

object shape. Human visual studies suggest that the shape of an object's boundary has a

strong in
uence on how objects are grouped. For example, a convex region is more likely to be

perceived as a single object [5]

4

Thinking of segmentation as a random walk provides a natural

way of exploiting this knowledge. Each discrete edge in the image induces an edge 
ow in its

neighborhood. This can be used to bias random walks of non-edge pixels in a direction following

the edge orientation. To favor convex regions, we can further bias the random walk by enhancing

the transition probabilities between pixels with co-circular edge 
ow. Thus we de�ne the CL

feature as:

f

CL

ij

=

2� cos(2�

i

)� cos(2�

j

)

1� cos(�

l

)

+

2� cos(2�

i

+ �

j

)

1� cos(�

o

)

; (8)

where �

i

; �

j

are de�ned as in �gure 3(b).

For training, we have constructed the set of \bump" images with varying image contrast, shown

in �gure 4a{f. Figure 4g,h shows the learned �

IC

; �

CL

. To check that this system is indeed

able to pick up the relevant features, we introduced a cue called rand, which assigns random

connections to each pixel pair from 0 to 1. The learned value of �

rand

is �0:0002, negligible

w.r.t. both �

IC

and �

CL

.

Most real images are not as simple as these synthetic \bump" image. Can the segmentation

knowledge learned in these synthetic images be transfer to the real images? Figure 5 shows

segmentation results using the weights trained with the \bump" image in �gure 4(c). We see

that although both feature that we use are local, i.e computed from small image neighborhoods,

and although the NCut algorithm has no built-in notion of contiguity, the segmentations are able

to produce large contiguous regions with mostly smooth boundaries. Thus suitably chosen local

features are able to achieve meaningful global e�ects.

4

The numerous e�orts in this area[12] have been mostly focused on grouping together discrete edge

elements into smooth curves. The question remains on how to transfer this shape information into image

region segmentation.



5 Discussion

The main contribution of our paper is showing that spectral segmentation methods have a prob-

abilistic foundation. In the framework of random walks, we give a new interpretation to the

NCut criterion and algorithm and a better understanding of its motivation. The probabilis-

tic framework also allows us to de�ne a principled criterion for supervised learning of image

segmentation.

We see supervised learning as feasible in this traditionally unsupervised domain because: (1) We

are proposing to learn a combination of �xed features. This is a relatively simple model and we

expect it to require proportionally little training data. (2) Since we are using only local features,

the training set may consist of synthetic images that reproduce the feature statistics of the real

images we want to segment. Both arguments are supported by our preliminary experiments where

one 60�60 synthetic noisy image was su�cient. Learning is an alternative to the current lack of

a principled approach to constructing similarity functions. In domains like medical imaging, cell

biology, where the relative importance of features is less clear, learning has a strong potential in

automatic segmentation.
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