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Abstract

We present a new view of image segmentation by pairwise similarities. We
interpret the similarities as edge flows in a Markov random walk and study the
eigenvalues and eigenvectors of the walk’s transition matrix. This interpretation
shows that spectral methods for clustering and segmentation have a probabilistic
foundation. In particular, we prove that the Normalized Cut method arises
naturally from our framework. Finally, the framework provides a principled
method for learning the similarity function as a combination of features.

1 Introduction

Among the most successful methods in image segmentation combine a global optimality segmen-
tation criterion with local similarity features[3]. Similarity between two pixels 4, j is defined as
a positive function S;; depending on the local image properties of the pixels(e.g. color, texture,
edge flow). Local features are not only computationally convenient, they are also supported by
neurological evidence about the human perception of shapes.

The global segmentation criterion is formulated either as energy functions[7, 4] or as weighted
graph cut [10, 13]. In both cases, optimizing the chosen criterion turns out to be computationally
extremely difficult. Recently[10, 11] connected the graph cuts problems with a set of techniques
called spectral methods that segment using the eigenvectors and eigenvalues of (certain transfor-
mations of) the similarity matrix S;;. As demonstrated in [10, 9, 13], these methods are capable
of delivering impressive image segmentation results using simple low-level image features. More-
over, computational efficiency is achieved using sparse and multiscale[9] matrix techniques, which
amounts to parallel local computations.

In spite of their practical successes; spectral methods are still incompletely understood. So is
the significance of the similarity matrix itself, or, more precisely, the way to combine the various
types of lower-level image features into one single matrix S. Is it also of interest to introduce
high level knowledge, perhaps through examples, into the definition of the similarity connections

Sis.

In this paper, we interpret the local connections as describing a random walk. With this inter-
pretation we achieve:

e a better understanding of spectral methods. We give a simple probabilistic interpretation to
the normalized cut (NCut) segmentation and show strong connections to other spectral methods.
¢ the similarity matrix can be learned in a principled way. Given image/segmentation pairs, we
optimize the similarity measure as a combination of features

e the framework inspires us to introduce a new feature

Figure 1 depicts the relationship between the main concepts in the paper. Starting from the
similarities S;;, we can define a weighted graph G with the set of pixels I as nodes, and S;; as
the graph edge weights. Image segmentation can be formulated as a graph partitioning problem
which seeks to find small cuts, such as NCut, in the graph. Computationally, the discrete
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Figure 1: The relationships between the similarity matrix S;;, a Markov random walk, spectral segmen-
tation such as Ncut, and image segmentation. The equivalance between key properties of the Markov
random walk and the Ncut critirion offers a principled way of learning the feature similarity matrix .S;;
in a probabilistic framework.

optimization of NCut is achieved by computing the generalized eigenvectors of (D — S)y = ADy
(with D the diagonal of S) in the real valued space. This variant of spectral segmentation, called
here the NCut algorithm, works well in practice.

The similarity matrix can also be used to define a Markov random walk with transition matrix F;;
through normalization. One of the interesting properties of the Markov random walk is its mixing
rate or conductance: the rate at which walks propogates over the entire space. The conductance
depends on sets of states where the random walk tends to be “trapped” with high probability.
In the image, these sets can be seen as segmented regions. In turns out, the conductance can be
measured by the NCut criterion, and the low conductivity sets are exactly the results of NCut.
This is described in detail in section 2.

A probabilistic interpretation of NCut as a Markov random walk sheds new lights on why and
how spectral methods work in segmentation. In particular, it offers a principled way of learning
the weights in S;;. A segmented image can provide a “target” transition matrix to which a
learning algorithm matches in KL divergence the “learned” transition probabilities. The latter
are output by a model as a function of a set of features measured from the training image. This
is described in section 3.

To test our theory, we show an experiment on segmenting objects with smooth and rounded
shape. In section 4 we show that by training with synthetic images, one can learn to segment
real images.

2 Markov random walks, spectral clustering and normalized cut

This section describes our view of spectral segmentation in the framework of Markov random
walks. This view provides a new and better motivation for several spectral segmentation and
clustering methods. It is also at the core of the learning algorithm presented in the next section.
For the sake of brevity, here we outline only the relationship to the NCut algorithm and criterion;
the rest will be treated in a longer version of this paper'. Low conductivity cuts have been studied
before within spectral graph theory; however, all the consequences pertaining to segmentation
presented in this paper (Propositions 1,2, relationship to NCut, the learning model) are new.

Here we assume that the similarity function S;; is given, and concern ourselves with using it to
partition the image. The rest of the paper will be devoted to the opposite task, i.e. learning a
good similarity function from segmented images. First we present “ideal” cases, that demonstrate
why spectral methods are expected to work. Then we show that the NCut criterion and algorithm
fall out naturally from our representation and that the ideal cases are solved exactly by the NCut
algorithm.

"http://www.cs.cmu.edu/ mmp/Papers/segment—long.ps



Obtaining a Markov chain from a similarity matrix By analogy with a graph’s adjacency
matrix, we call d; = Zje[ S;; the degree of node 7. For a subset of nodes A € I the volume
of Ais volA = ), ,di. Let D be the diagonal matrix consisting of the node degrees. By
“normalizing” the similarity matrix S one obtains the stochastic matrix P = D715 whose row
sums are all 1. As it is known from the theory of Markov random walks, P;; represents the
probability of moving from node i to j in one step, given that we are in ¢. The eigenvalues of P
are Ao =1> X1 > ... A1 > —1; 29771 are the eigenvectors; \g is called the first eigenvalue.

Proposition 0. Disconnected GIf the graph G has k connected components, P will have
k eigenvalues equal to 1 and all the other eigenvalues < 1. (Call this P type 0). The first k
etgenvectors are the indicator functions of the respective connected components.

This fact represents the fundamental idea of spectral segmentation. The number of unit As tells
us the number of segments. Then, because 2 *~1 are indicator functions, we can simply project
the pixels on the space spanned by these vectors. All pixels in the same segment will project
to the same point in R* (or close by, if there is noise). K-means (with k& known) or some other
simple clustering algorithm can then separate the segments. We call this segmentation method
the NCut algorithm. Experiments [10] show that NCut works well on many graphs that are not
disconnected. The following results motivate this behavior.

Proposition 1. Same connections Assume that I admits a segmentation into k segments so
that all pizels in a segment correspond to equal rows in P (call this P type 1). Let R = [Psg/]
where S,S" are segments and Pss: = Pr[S — S'|S]. Let o = 1> p1 > ... ppe_1 and y°, .. .yF~1
be the eigenvalues/vectors of R. Then

(i) The first k eigenvalues of P are pg, ... px—1; the other eigenvalues are 0.

(i) If x is an eigenvector of P corresponding to a non-zero eigenvalue, then x; = x; if pivels
and j belong to the same segment.

(11i) If ' is an eigenvector of P corresponding to a non-zero eigenvalue pi!, then zt = y for all
pizels © belonging to segment S.

Proposition 2. Linear combination and multiplication Assume we have two stochastic
matrices P', P" that admit the same partition and have types 1 and 0 respectively. The nonzero
eigenvalues of P’ are Mg p_1 and the corresponding eigenvectors are %=1, Then

(i) the convexr combination P = aP' + (1 — a)P" is a stochastic matriz and oy -1+ 1 — «
and 2 *~1 are eigenvalues and eigenvectors of P.

(ii) the prodzcts P'P" and P"P’ are type 1 matrices with first k eigenvalues/vectors equal to
Ao -1, #0KL

Intuitively, proposition 1 says that spectral segmentation will group together pixels that have the
same neighbors. Proposition 2 says that spectral segmentation is successful even when the two
criteria, disconnection and same neighbors, are combined linearly or by multiplication. These
results motivate the practical usage of spectral clustering methods in general and of the NCut
algorithm in particular.

The normalized cut criterion of [10] is a graph theoretical criterion of segmenting an image
into two by minimizing the the following expression over all subsets A of 1

ZieA,jeA Sij n ZieA,jEA Sij _ Z S, (L + L)
ZiEA,jEI Sij Zie&jel Sij Y \vold  vol 4

NCut measures the weight of the cut normalized by the volumes of the two segments. In [10] it
is shown that if the second eigenvector of P is piecewise constant, like in Propositions 0,1,2 then
NCut(A,A) = 1 — Ay, Tt is also easy to see that NCut(A, A) = P45+ Pi4. Thus, NCut has
a natural probabilistic interpretation in the framework of random walks, and the quality of the
cut 1s indicated by Aj.

NCut(A, A) = (1)

i€AjEA

In [10] the practical solution for NCut (which is NP-hard) is given by the generalized eigen-
value/vector problem (D — S)xz = Az. We show (in the full paper) that this problem has
identical solutions with Pz = (1 — A)z. Hence, the NCut algorithm described here is essentially
identical to the original NCut algorithm of [10]. Random walks provide a simple and natural
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Figure 2: The general framework for learning image segmentation.

alternative interpretation for both the NCut algorithm and criterion.

We found that the NCut algorithm is strongly related to another graph theoretical problem: low
conductivity sets [1] as well as to other spectral clustering methods for documents or the web
[2]. We discuss these in the light of Markov random walks in the full paper.

3 The framework for learning image segmentation

The previous section has stressed the connection between NCut as a criterion for image seg-
mentation and searching for low conductivity sets in a random walk. Here we will exploit this
connection to develop a framework for supervised learning of image segmentation. Our goal is
to obtain an algorithm that starts with a training set of segmented images and with a set of
features and learns a function of the features that produces correct segmentations. The idea is
sketched in figure 2.

For simplicity, assume the training set consists of one image only and its correct segmentation.
From the latter it is easy to obtain “ideal” or target transition probabilities

0 & A
Py = { %’ ; z 4 foriinsegment A with [A[ elements (2)
We also have a predefined set of features f¢, ¢ = 1,...Q which measure similarity between

two pixels according to different criteria and their values for I. Examples of such features are
Euclidean distance between pixels, difference in color, presence of an edge crossing the connecting
line between the two pixels , etc. A feature associates to a pair 7, j of pixels a value f;;.

The model 1s the part of the framework that is subject to learning. It takes the features ffy as
inputs and outputs the global similarity measure .S;;. For the present experiments we use the
simple model

Sij = ezq Aally (3)

This model has the advantage that S;; is always positive. Intuitively, it represents a set of

independent “experts”, the factors e*a/” voting on the probability of a transition i — j. The
Ag values account for both the features’ relative importance and scaling. Being an additive
model, (3) has limited representation power. In particular, it cannot model contextual changes
or dependencies between features. The goal of learning is to find an optimal S;; of the given
form as a function of the features.

In our framework, based on the fact that a segmentation is equivalent to a random walk, optimal-
ity is defined as the minimization of the conditional Kullback-Leibler (KL) divergence? between
the target probabilities P; and the transition probabilities P;; obtained by normalizing S;;. Be-
cause P~ is fixed, the above minimization i1s equivalent to maximizing the crossentropy between

the two (conditional) distributions, i.e. max .J, where

1
J = Z m Z P;; log Pz'j (4)

iel J€I

2The KL divergence between distributions P and P’ is given by Zm P(z)log 5,(—(?).



Figure 3: Features for segmenting objects with smooth rounded shape. (a) The edge strength provides
a cue of region boundary. It biases against random walks in a direction orthogonal to an edge. (b) Edge
orientation provides a cue for the object’s shape. The induced edge flow is used to bias the random
walk along the edge, and transitions between co-circular edge flows are encouraged. (c) Edge flow for
the bump in figure 4. Note that the flow reverses directions on the two sides of an edge.
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Figure 4: “Bump” images (a)-(f) are used for training. From (a) to (), the contrast is gradually reduced.
(g) shows the relation between the image edge contrast and the learned value of Arc, demonstrating
automatic adaptation to the dynamic range of the IC. (h) shows the dependence on image contrast of
Acr. The importance of the co—linear/co—circular(CL) feature remains relatively constant until the image
contrast becomes very low. At low image contrast, CL. becomes more important.

If we interpret the factor 1/|I] as a uniform distribution over states 7° then the criterion in (4)
is equivalent to the KL divergence between two distributions over transitions K L(PfL||Pis;)

where Pi(i)j = ﬂ?PZ»S»*)B.

Maximizing J can be done via gradient ascent in the parameters A. We obtain

8. 1 . .
8—/\(1: m Zpij z’j_ZPij ij (5)
1] 1]

Hence, the gradient of J w.r.t to a parameter A? measures the difference between the means
of the corresponding feature f?¢ under the target and the current distribution. The optimal
parameters are attained when the two means are equal. One can further note that the optimum
of J corresponds to the solution of the following maximum entropy problem:

max H(jli) st. < ffy >rop;, = < ffy >ropy forg=1,...Q (6)

. |

7le
Since this is a convex optimization problem with convex constraints, it has a unique optimum (
if any). Thus for this simple model the problem of local maxima is avoided. Knowing that the
values of A\; may grow indefinitely during learning, we shall stop the parameters from growing

after they reach a certain upper bound.

4 Segmentation with shape and region information

In this section, we exemplify our approach on a set of synthetic and real images and we use
features carrying contour and shape information. First we use a set of local filer banks as edge

*We choose to minimize this criterion instead of e.g. K L(P},;||7> P;;) because (1) 7> converges to

7% if P converges to P* so the two criteria are asymptotically equivalent and (2) we prefer to weight the
contribution of P;; to the KL divergence by the image statistics represented by #°.
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Figure 5: Testing on real images: (a) test images; (b) canny edges computed with the Matlab “edge”
function; (c¢) NCut segmentation computed using the weights learned on the image in 5(c). The system
learns to prefer contiguous groups with smooth boundary. The canny edge map indicates that simply
looking for edges is likely gives brittle and less meaningful segmentations.

detectors. They capture both edge strength and orientation. From this basic information we
construct two features: the intervening contour (IC) and the co-linearity/co-circularity (CL).

The first feature is based on the assumption that if two pixels are separated by an edge, then
they are less likely to belong together(figure 3). In the random walk interpretation, we are less
likely to walk in a direction perpendicular to an edge. The intervening contour [6] is computed
by [8]

1C = MAXgei j) Edge(k), (7)

where [(i, ) is a line connecting pixel ¢ and j, and Edge(k) is the edge strength at pixel .

i3

While the IC provides a cue for region boundaries, the edge orientation provides a cue for
object shape. Human visual studies suggest that the shape of an object’s boundary has a
strong influence on how objects are grouped. For example, a convex region is more likely to be
perceived as a single object [5]* Thinking of segmentation as a random walk provides a natural
way of exploiting this knowledge. Each discrete edge in the image induces an edge flow in its
neighborhood. This can be used to bias random walks of non-edge pixels in a direction following
the edge orientation. To favor convex regions, we can further bias the random walk by enhancing
the transition probabilities between pixels with co-circular edge flow. Thus we define the CL

feature as:
cr _ 2—cos(20;) — cos(2a;) 2 — cos(2a; + )

, (8)

o 1 —cos(aq) 1 —cos(a,)
where a;, a; are defined as in figure 3(b).

For training, we have constructed the set of “bump” images with varying image contrast, shown
in figure 4a—f. Figure 4g h shows the learned Aro, Acr. To check that this system is indeed
able to pick up the relevant features, we introduced a cue called rand, which assigns random
connections to each pixel pair from 0 to 1. The learned value of A.4,4 18 —0.0002, negligible
w.r.t. both Aj¢ and Acp.

Most real images are not as simple as these synthetic “bump” image. Can the segmentation
knowledge learned in these synthetic images be transfer to the real images? Figure 5 shows
segmentation results using the weights trained with the “bump” image in figure 4(c). We see
that although both feature that we use are local, 1.e computed from small image neighborhoods,
and although the NCut algorithm has no built-in notion of contiguity, the segmentations are able
to produce large contiguous regions with mostly smooth boundaries. Thus suitably chosen local
features are able to achieve meaningful global effects.

*The numerous efforts in this area[12] have been mostly focused on grouping together discrete edge
elements into smooth curves. The question remains on how to transfer this shape information into image
region segmentation.



5 Discussion

The main contribution of our paper i1s showing that spectral segmentation methods have a prob-
abilistic foundation. In the framework of random walks, we give a new interpretation to the
NCut criterion and algorithm and a better understanding of its motivation. The probabilis-
tic framework also allows us to define a principled criterion for supervised learning of image
segmentation.

We see supervised learning as feasible in this traditionally unsupervised domain because: (1) We
are proposing to learn a combination of fixed features. This is a relatively simple model and we
expect it to require proportionally little training data. (2) Since we are using only local features,
the training set may consist of synthetic images that reproduce the feature statistics of the real
images we want to segment. Both arguments are supported by our preliminary experiments where
one 60x60 synthetic noisy image was sufficient. Learning is an alternative to the current lack of
a principled approach to constructing similarity functions. In domains like medical imaging, cell
biology, where the relative importance of features is less clear, learning has a strong potential in
automatic segmentation.
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