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Abstract

In this paper we present decomposable priors, a family of priors over

structure and parameters of tree belief nets for which Bayesian learning

with complete observations is tractable, in the sense that the posterior

is also decomposable and can be completely determined analytically

in polynomial time. Our result is the first where computing the nor-

malization constant and averaging over a super-exponential number of

graph structures can be performed in polynomial time. This follows

from two main results: First, we show that factored distributions over

spanning trees in a graph can be integrated in closed form. Second, we

examine priors over tree parameters and show that a set of assumptions

similar to (Heckerman and al., 1995) constrain the tree parameter pri-

ors to be a compactly parametrized product of Dirichlet distributions.

Besides allowing for exact Bayesian learning, these results permit us to

formulate a new class of tractable latent variable models in which the

likelihood of a data point is computed through an ensemble average

over tree structures.
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1 Introduction

Effective inference in high-dimesional domains requires the combina-

tion of observed data with prior knowledge. When the prior knowledge

is expressed as a probability distribution over the possible models and

their parameters, Bayesian analysis provides the framework. In the

field of graphical probability models, the first advances were made by

[Spiegelhalter and Lauritzen, 1990, Dawid and Lauritzen, 1993] who con-

sidered priors and updates for a graphical model with a given, fixed,

structure. In this context, the challenge is to define priors that can

be expressed by a tractable number of hyper-parameter and for which

computing the posterior is tractable.

Defining priors over both model structures and parameters, and

effectively computing with them, is generally a much more challenging

task. The reason is the very large (indeed super-exponential) number

of possible model structures, each of them entailing a different param-

eter space. In order to circumvent this problem, several authors intro-

duced independence assumptions that allow one to define the parame-

ter prior by considering only the local graph structure (for example, a

variable and its parents in a Bayes net, or a clique in a decomposable

graphical model) [Dawid and Lauritzen, 1993, Heckerman et al., 1995,

Giudici and Green, 1999, Madigan and Raftery, 1994]. The model classes

most frequently analyzed are Bayesian networks [Cooper and Herskovits, 1992,

Dawid and Lauritzen, 1993, Heckerman et al., 1995, Madigan and Raftery, 1994]

and decomposable graphical models [Dawid and Lauritzen, 1993, Giudici and Green, 1999,

Madigan and Raftery, 1994].

As prior for model structures [Giudici and Green, 1999, Madigan and Raftery, 1994,

Cooper and Herskovits, 1992] use a uniform prior. Factored priors,

suggested among others by [Madigan and Raftery, 1994] and used by

[Heckerman et al., 1995], are priors where each edge of the graph con-
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tributes a constant factor to the prior probability of each structure

where it is present. Note that having a prior expressed in a prod-

uct form over the graph edges does not imply independence between

edges for either of these two classes. This point is discussed in detail

in section 4. Note also that the above priors are only defined up to a

normalization constant that cannot be computed in closed form, not

even for the uniform prior of [Giudici and Green, 1999].

The above simplifications allow for a correspondingly factored form

of the posterior if the observations are complete. In some special

cases (e.g uninformative Dirichlet prior) the prior can be specified by

a tractable number of hyper-parameters. In such cases the posterior

probability of a model structure can be computed in closed form up to

a multiplicative normalization constant and therefore the evidence for

different model structures can be compared. Several authors developed

search algorithms to find model structures with high posterior probabil-

ity: [Cooper and Herskovits, 1992, Heckerman et al., 1995, Spirtes and Meek, 1995]

for Bayesian networks, [Giudici and Green, 1999] for decomposable graph-

ical models, and [Madigan and Raftery, 1994] for both. If model av-

eraging is performed, this is done explicitly on a subset of the models

examined during the search, typically the high scoring ones. It is not

known how to find a set of models with provably high scores. Even

finding the single model structure with highest posterior probability is

intractable for Bayesian networks [Heckerman et al., 1995], polytrees

[Dasgupta, 1999] and decomposable graphical models with bounded

clique size [Srebro, 2001]. Averaging over all possible model structures

in a familiy of non-polynomial size3 is generally considered intractable

and not attempted.

The family of graphical models whose structure is an undirected

tree, called trees throughout this paper, was considered no exception.
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In [Meilă and Jordan, 2000] and [Heckerman et al., 1995] (called HGC

in the forthcoming) priors for trees were used with the assumption that

computing the prior’s normalization constant over the set of all trees

is intractable. The present paper shows that this is not so: trees are

the first super-exponential family of graphical models for which one

can tractably integrate a distribution that factors over the edges.

The papers focuses on discrete variable domains, but our results

also hold for real-valued variables with jointly normal distributions. We

show that, with the standard assumptions of HGC (namely likelihood

equivalence, parameter independence and parameter modularity), the

prior for tree parameters is constrained to be a product of Dirichlet

distributions whose hyper-parameters satisfy a set of consistency re-

lations. We combine this with a factored prior for the tree structure

to obtain what we call decomposable priors for structure and param-

eters. The term decomposable prior was first introduced by HGC in

the context of general Bayes nets. It should not be confused with

a decomposable graphical model [Pearl, 1988] which is a distribution

over the variables. A decomposable prior over tree distributions can

be represented with O(n2) hyper-parameters and, more importantly,

its normalization constant over tree structures and parameters can be

computed analytically in closed form. This last result is a consequence

of the fact that a factored distribution over tree structures can be inte-

grated exactly, using a theorem from combinatorics called the Matrix

tree theorem.

We show that if the prior is decomposable and we have a data set

consisting of N complete i.i.d. observations, then the posterior distri-

bution is also decomposable, and its hyper-parameters and normaliza-

tion constant can be computed in O(n3 +n2N) operations. Evaluating

the posterior probability of a given tree takes then O(n) time.
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The paper starts by defining tree distributions and the problem of

Bayesian learning in section 2 and 3 respectively; it presents decom-

posable priors over tree structures and parameters in sections 4 and 5;

the pieces of the puzzle are put together in section 6 where Bayesian

learning for trees is described. Section 7 discusses possible extensions.

In section 7.1 and 7.2 we present two cases of “disconnected” trees.

In section 7.3 we exploit a different set of possibilities opened by our

tractability results: we define a new model, ensembles of trees, and

show that it can be learned by gradient ascent in the ML framework.

Section 8 contains the final remarks.

2 Tree distributions

2.1 Tree distributions as graphical models

In this section we introduce the tree model and the notation that will

be used throughout the paper. Let V = {1, . . . , n} denote the set of

variables of interest. Let rv be the number of values of variable v ∈ V ,

rMAX = max rv, xv a particular value of v, and x an assignment to all

the variables in V .

According to the graphical model paradigm, each variable is viewed

as a vertex of a graph. We shall call a graph that is connected and has

no cycles a tree and shall denote by E its edge set. In this case E has ex-

actly n−1 edges. In this definition, we differ from the traditional graph-

ical models terminology (see [Pearl, 1988] or [Meilă and Jordan, 2000])

where trees and polytrees are not required to be connected. We will

discuss the case of disconnected trees in section 7.

Now we define a probability distribution T that is factored according
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to a tree. Let us denote by Tuv and Tv the marginals of T :

Tuv(xu, xv) =
∑

x:u=xu,v=xv

T (x)

Tv(xv) =
∑

x:v=xv

T (x).

Let deg v be the degree of vertex v, i.e. the number of edges incident

to v ∈ V . Then, the distribution T is factored according to the tree

(V, E) if it can be represented as:

T (x) =
∏

v∈V

Tv(xv)
∏

uv∈E

Tuv(xu, xv)

Tu(xu)Tv(xv)
(1)

The distribution itself will be called a tree when no confusion is

possible.

In the above definition, T (x) factors into a product of variable

marginals, which depends only on the variable set V , and a product

over the edges uv ∈ E, in which each factor depends only on the re-

spective edge marginal Tuv. This factors is symmetric in u, v, reflecting

the fact that the edges E of the graph are undirected.

A tree (V, E) can be transformed into a directed tree by choosing

an arbitrary node as root. The edges are recursively directed outwards

from the root. We shall denote a thus directed edge set with E. For

the example in figure 1 the undirected edge set is E = {ab, bc, bd}; if

node a is chosen as root, the directed edge set is E = {ab, bc, bd} (figure

1,b) and if b is chosen as root then we obtain E = {ba, bc, bd}. If a

directed edge uv goes from u to v we say that u is the parent of v (and

respectively that v is the child of u). The above procedure creates a

directed graph where each node has at most one parent (the root being

the only node with no parents).

A distribution that factors according to the tree (V, E) by equation

(1) can be put in a new factored form that matches a given directed tree
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(V, E) obtained from (V, E). To do this, one applies the substitution

Tvu

Tu

= Tv|u

for each directed edge uv in E. In [Meilă and Jordan, 2000] it is shown

that after simplifying the common factors, the denominator of equation

(1) contains exactly one Tv factor for each child of v. The result is

called the directed representation of the tree distribution:

T (x) =
∏

v∈V

Tv|pa(v)(xv|xpa(v)) (2)

where pa(v) represents the parent of v in the thus directed tree or the

empty set if v is the root. By operating the reverse substition one

obtains the undirected representation from the directed one.

There is one distinct form (2) for each choice of the root node.

The undirected tree representation (1) and the directed representa-

tions (2) are equivalent, in the sense that for any variable configura-

tion x we obtain the same value of the probability T (x) no matter

which representation is used to compute it. For an extensive presen-

tation of tree distributions and their properties the reader is referred

to [Meilă and Jordan, 2000]. Here we only add that both representa-

tions have advantages that will be drawn upon in the next sections:

the directed tree representation exhibits the parameter independencies,

while the undirected representation, due to its symmetry, will be most

useful otherwise.

A tree distribution is a graphical model. In this context, the un-

derlying (undirected) graph is called the structure of the tree graphical

model. Since in this paper the focus is on the family of trees which

share the same set of variables V but have different sets of edges, we

will assimilate the structure of a tree with its edge set E and henceforth

we will call E the tree structure.
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Tree graphical models are a subset of the more general class of

polytrees [Pearl, 1988]. While in a tree a node always has at most one

parent, in polytrees nodes can have more than one parent. For the

results in this paper it is essential that each node has no more than

one parent. Therefore they do not generalize to polytrees. Trees are

also a subclass of Bayes nets, Markov nets and decomposable models

(see e.g. [Pearl, 1988]). The results in this paper do not extend to

these model classes.

2.2 Parametrizations

A tree distribution is described by its structure and parameters. In

the following, without loss of generality, we will consider that both the

directed and the undirected tree representation are in the probability

table parametrizations. For a tree distribution T with structure E over

the set of variables V we define

θE = {θuv(ij), uv ∈ E, i = 1, . . . ru, j = 1, . . . rv}

θuv(ij) = Tuv(ij) (3)

θv(j) = Tv(j) (4)

In the directed representation corresponding to an orientation E of E

the same distribution is described by the parameters

θ
E

= {θu|v(ij), vu ∈ E, i = 1, . . . ru, j = 1, . . . rv}

θu|v(i|j) = Tu|v(i|j) (5)

To simplify notation we assume by convention that if v ∈ V is the root,

then pa(v) takes one value only and θv|pa(v) = θv.

Hence, each directed representation of T has a distinct set of pa-

rameters θ
E

. These parameters are related to the parameters θE of
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i.

a b

cd

T = Tab

TaTb

Tbc

TbTc

Tbd

TbTd
TaTbTcTd

{θab(00) θab(01) θab(10) θab(11)} {θa(0) θa(1)}

{θbc(00) θbc(01) θbc(10) θbc(11))} {θb(0) θb(1)}

{θbd(00) θbd(01) θbd(10) θbd(11)} {θc(0) θc(1)}

{θd(0) θd(1)}

ii.

a b

cd

T = TaTb|aTc|bTd|b

{θa(0) θa(1)}

{θb|a(0|0) θb|a(1|0)} {θb|a(0|1) θb|a(1|1)}

{θc|b(0|0) θc|b(1|0)} {θc|b(0|1) θc|b(1|1)}

{θd|b(0|0) θd|b(1|0)} {θd|b(0|1) θd|b(1|1)}

iii.

a b

cd

T = TbTa|bTc|bTd|b

{θb(0) θb(1)}

{θa|b(0|0) θa|b(1|0)} {θa|b(0|1) θa|b(1|1)}

{θc|b(0|0) θc|b(1|0)} {θc|b(0|1) θc|b(1|1)}

{θd|b(0|0) θd|b(1|0)} {θd|b(0|1) θd|b(1|1)}

Figure 1: A tree over four variables in three equivalent representations: i.

undirected, ii. directed with root a and iii. directed with root b. The

parameters for each representation are enumerated next to the graph, as-

suming that a, b, c, d take values in {0, 1}. The groups of parameters that

sum to 1 are enclosed in braces. The sets of parameters in (i) and (ii) are

related by the equations: θb|a(00) = θab(00)
θa(0) . . . . . . θd|b(11) = θbd(11)

θb(1)
The

total number of free parameters for this tree is equal to 7, verifying (10).
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the undirected representation by

θu|v(i|j) =
θuv(ij)

θv(j)
for vu ∈ E, i = 1, . . . ru, j = 1, . . . rv (6)

In addition, the parameters satisfy the usual normalization constraints

ru∑

i=1

θu|v(i|j) = 1 for vu ∈ E, j = 1, . . . rv (7)

ru∑

i=1

θuv(ij) = θv(j) for uv ∈ E, j = 1, . . . rv (8)

rv∑

j=1

θv(j) = 1 for v ∈ V (9)

Taking into account the normalization constraints (7–9), the total num-

ber of free parameters in either representation equals

∑

uv∈E

rurv −
∑

v∈V

(degv − 1)rv − 1 (10)

In the framework of graphical models, trees stand out by their spe-

cial computational advantages (presented in detail in [Meilă-Predoviciu, 1999]).

Inference and sampling from a tree are linear in the number of vari-

ables n. Finding the Maximum Likelihood (ML) tree structure and

parameters over n discrete variables can be done in quadratic time by

an algorithm due to [Chow and Liu, 1968]. This was generalized to

Maximum A-Posteriori (MAP) estimation in [Meilă-Predoviciu, 1999,

Heckerman et al., 1995]. In the following sections we present another

remarkable property of tree graphical models: the fact that, under

standard assumptions, computing the exact posterior and averaging

under it (something we will call Bayesian learning in the forthcoming)

is tractable.
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3 The Bayesian learning problem

We now turn to the problem of learning trees in the Bayesian frame-

work. In this framework, one assumes a prior P0(T ) over the set TV

of all tree distributions defined on the domain V . Learning from a

dataset of complete and independently generated observations D =

{x1, x2, . . . xN} means finding the posterior distribution P (T |D) over

the set of models TV . The solution to this problem is given by the well

known Bayes’ formula

P (T |D) =
P0(T )

∏N
t=1 T (xt)

P (D)
(11)

Practically however, Bayesian leaning poses a number of significant

challenges. First, one needs to define a distribution over the space

of all models to play the role of the prior. Such a distribution is

composed of a discrete distribution over the set of tree structures P0(E)

and a probability density over the continuous set of tree parameters.

For instance, for the undirected parametrization θE , the prior can be

written as

P0(T ) = P0(E)P0(θE |E) (12)

Since for each tree structure E there are several equivalent parametriza-

tions, we must define a prior that changes consistently from one set

of parameters to another. Moreover, the second factor in the above

formula requires us to define a prior distribution for the tree parame-

ters for each possible structure E. The discrete space of all spanning

tree structures over V has a super-exponential number of trees (nn−2)

[West, 1996] which makes defining a distribution over it a non-trivial

task. Thus, the first practical requirement is to have a tractable rep-

resentation for the prior.

Second, even with a tractable representation, the explicit compu-

tation of the posterior P (T |D) is usually intractable due to the dif-
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ficulty of computing the normalization constant P (D) in (11). This

is shown, for instance, in HGC, where in some cases the prior can be

tractably represented but the normalization constant of the posterior

is intractable. Common practices in Bayesian learning are Maximum

A-Posteriori (MAP) estimation [Meilă and Jordan, 2000], approxima-

tions of the posterior around its peaks [Cheeseman and Stutz, 1995,

Heckerman et al., 1995, Madigan and Raftery, 1994] or Markov Chain

Monte Carlo [Dellaportas and Forster, 1999, Giudici and Green, 1999].

An exception from this is taken by the so-called conjugate priors. If

a given (graphical) model has a family of conjugate priors P then for

P0 ∈ P the posterior is also in P . The property of having conju-

gate priors is characteristic of the exponential family of distributions

[DeGroot, 1975]. In this paper we set out to find the conjugate prior

for the family of spanning tree models TV .

According to (12), to define a prior over TV one needs to define a

prior for tree structures and a prior for parameters, given the struc-

ture. While it is not hard to see that for a fixed structure E a tree

distribution over discrete variables is an exponential model and thus

has conjugate priors [Dawid and Lauritzen, 1993], realizing the same

fact when E also varies is by far less obvious and constitutes the main

contribution of this paper. In the next section we establish the core

theorem that allows us to do so.

4 Decomposable distributions over tree struc-

tures

A decomposable distribution P over spanning tree structures E can be

defined by a set of hyper-parameters βuv = βvu ≥ 0; βvv = 0, u, v ∈ V
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by

P (E) =
1

Z

∏

uv∈E

βuv. (13)

In the above, Z is the normalization constant

Z =
∑

E

∏

uv∈E

βuv. (14)

Note that in the distribution (14), each hyper-parameter βuv can be

interpreted as the weight of edge uv, and the probability of a structure

E is the product of the weights of all edges in E.

Although this distribution is expressible in a product form, it does

not imply that the edges’ occurrences in E are independent, since

the set E as a whole is constrained to be a tree structure. To see

this, take for example the domain V = {a, b, c, d} with βuv = 1 for

all u, v ∈ V, u 6= v. Clearly, if ac, bc ∈ E then ab 6∈ E therefore

P (ab | ac, bc) = 0. However, P (ab) > 0 as there obviously are possible

tree structures that contain edge ab. Thus, the probability of any edge

ab is dependent on knowledge about the presence of other edges; this

is due to the constraint that the set of edges represented by E contains

no cycles. Compare also with the Dirichlet distribution (defined in the

next section): under the Dirichlet distribution the variables are not

independent although the distribution has a product form

This prior is simple and compactly parametrized, but to be com-

pletely defined one needs to evaluate the normalization constant Z.

Computing Z the direct way by using formula (14) is intractable, since

one needs to sum over nn−2 terms. However, the following theorem

shows a practical and exact method for doing so.

Let us start by introducing a simplifying notation to refer to a set

of real values each corresponding to a pair of variables in V

a = {auv, u, v ∈ V, u 6= v} (15)

13



In addition, a ≥ 0 will mean that auv ≥ 0, auv ∈ a; the product ab

will denote {auvbuv, u, v ∈ V, u 6= v} for a, b defined as above. With

the new notation, we can say that a decomposable distribution P (E)

is defined by a set of hyper-parameters β.

Theorem 1 Let P (E) be a distribution over spanning tree structures

defined by (13,14). Then the normalization constant Z is equal to the

determinant |Q(β)|, with Q(β) representing the first (n − 1) rows and

columns of the matrix Q(β) given by:

Quv(β) = Qvu(β) =







−βuv 1 ≤ u < v ≤ n
∑n

v′=1 βv′v 1 ≤ u = v ≤ n
(16)

This shows that summing over the distribution of all trees, when

this distribution factors according to the trees’ edges, can be done in

closed form by computing the value of an order n−1 determinant. This

takes O(n3) operations. The theorem is a generalization to real-valued

weights of a remarkable result in graph theory called the matrix tree

theorem [West, 1996]. The matrix tree theorem, the proof of theorem

1 as well as the other proofs appear in the appendix.

In the following it will be useful to think of Q(β) and Q(β) as

functions mapping a set of parameters β each corresponding to a pair

of variables in V to a matrix in the ways described by theorem 1. Note

also that |Q(β)| = 0 as the rows (columns) of matrix Q(β) sum to 0.

Examples. The uniform distribution given by βuv = 1 is decom-

posable. Its normalization constant is Z = nn−2. Hence P (E) = 1
nn−2

for all spanning tree structures E.

Another example is the distribution given by

βuv =







1 uv ∈ E∗

β < 1 otherwise
(17)

The probability of a tree structure under this distribution is given by

P (E) ∝ β|E\E∗|. We can interpret this as penalizing a tree by a factor
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β for each edge that is not contained in some desired set of edges E∗.

In particular, if E∗ itself is a spanning tree, then the probability of a

tree structure E decays exponentially with the number of differences

from the “gold standard” E∗. This prior was suggested in HGC in the

context of learning of directed graphical models.

The support graph. The factored form of the decomposable

distribution makes it easy to test whether a given structure has non-

zero probability. If all the β hyper-parameters are strictly positive,

then every tree structure is possible. Otherwise, the structures that

will never appear are the structures containing one or more zero-weight

edges. We denote by Esup the set of edges uv for which βuv > 0.

The graph Gsup = (V, Esup) is called the support graph of P (E). If

enough edges have zero weights, then Gsup may be disconnected. In

the following we shall assume that the support graph is connected,

leaving the discussion of the general case for section 7.1.

In the remainder of this section we develop a number of conse-

quences of theorem 1.

Computing averages under a decomposable distribution A

decomposable distribution is a (curved) exponential model [Murray and Rice, 1993]

and lnZ represents its cumulant generating function or partition func-

tion. Many quantities of interest, like averages under P (E) can be

expressed as derivatives of the partition function. The next series of

results exemplifies these possibilities. We assume that Gsup is con-

nected.

Lemma 2 Let Z be given by equation (14) with β ≥ 0 and Gsup con-

nected. Then the partial derivative of Z with respect to βuv is

∂Z

∂βuv

= Muv(β)|Q(β)|. (18)

where Q(β) is given by theorem 1, Q−1 is the inverse of Q and M(β)
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is a symmetric matrix with 0 diagonal defined by

Muv = (Q−1)uu + (Q−1)vv − 2(Q−1)uv, u, v < n

Mnv = Mvn = (Q−1)vv, v < n (19)

Mvv = 0

We shall denote by < f >P the average of a function f under a distri-

bution P . The following lemma states a useful fact about averages of

additive functions. An additive function f(E) satisfies

f(E) =
∑

uv∈E

fuv (20)

for any spanning tree structure E.

Lemma 3 Let P (E), Q and M be given by (13), theorem 1 and (19)

respectively and f be an additive function of the structure E. Then the

average of f under P is

< f(E) >P =
∑

E

f(E)P (E) (21)

=
∑

u<v

fuvβuvMuv(β) (22)

= trace [ Q(βf)Q−1(β) ] (23)

In (23), f is an overloaded notation representing the set {fuv, u, v ∈

V } in the sense of (15). A similar but more obvious result holds for

functions g(E) that are multiplicative, i.e. g(E) =
∏

uv∈E guv. For

such functions we obtain

< g(E) >P =
|Q(βg)|

|Q(β)|
= |Q(βg)Q−1(β)| (24)

Note that the likelihood T (x) is a multiplicative function and its loga-

rithm is therefore additive. Hence the above lemmas can be applied to

compute partial derivatives of the likelihood w.r.t model parameters

for instance. We will make use of equation 24 in section 6.
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5 Decomposable priors over tree parame-

ters

5.1 Assumptions

Now we examine priors over tree parameters, with the goal of finding

conditions under which the priors can be tractably represented. These

conditions will take the form of a series of restrictive assumptions about

the prior.

First let us keep the distribution T fixed. As shown in section 2

this distribution can be represented either by (1) or by (2), the latter

representation having a distinct form for each possible choice of the

root(s). These representations however will assign exactly the same

probability T (x) to an observation x, so there is no way to distinguish

between them from the point of view of the data. Thus we shall re-

quire that the corresponding parameter sets are also the same from the

point of view of the prior. This leads to the assumption of Likelihood

equivalence:

Assumption 1 (Likelihood equivalence) Let T be a tree distribu-

tion having structure E, E a directed tree structure obtained from E

and θE , θ
E

the respective parameters of T . Denote by abs
∣
∣
∣
∂θ

E

∂θE

∣
∣
∣ the

magnitude of the Jacobian of the transformation θE → θ
E
. Then

P0(θE
(θE)|E) abs

∣
∣
∣
∣

∂θ
E

∂θE

∣
∣
∣
∣
= P0(θE |E) (25)

This assumption states that in all possible parametrizations consistent

with a given structure E the prior will assign the same probability

mass to any given (measurable) subset in parameter space. Thus, the

prior treats likelihood equivalent parametrizations as indistinguishable.

Assumption 1 also allows us to use in the future whichever of P0(θE |E)
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and P0(θE
|E) is most convenient, since we can always obtain one from

the other via equation (25).

A simple example will help illustrate this assumption. Let us

consider the “tree” over two variables V = {u, v}, E = {uv}. The

undirected parametrization of this tree is given by

θE = {θuv(00), θuv(01), θuv(10)}

The directed parametrization corresponding to E = {uv} is

θ
E

= {θu(0), θv|u(0|0), θv|u(0|1)}

In the above equation we have included in θE and θ
E

only the free

parameters, in order to ensure that the Jacobian matrix is square and

non-singular. The mapping between the two sets of parameters is:

θu(0) = θuv(00) + θuv(01) (26)

θv|u(0|0) =
θuv(00)

θuv(00) + θuv(01)
(27)

θv|u(0|1) =
θuv(10)

1 − θuv(00) − θuv(01)
(28)

From the mapping we can compute the Jacobian

∣
∣
∣
∣

∂θ
E

∂θE

∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣

∂θu(0)
∂θuv(00)

∂θu(0)
∂θuv(01)

∂θu(0)
∂θuv(10)

∂θv|u(0|0)

∂θuv(00)

∂θv|u(0|0)

∂θuv(01)

∂θv|u(0|0)

∂θuv(10)

∂θv|u(0|1)

∂θuv(00)

∂θv|u(0|1)

∂θuv(01)

∂θv|u(0|1)

∂θuv(10)

∣
∣
∣
∣
∣
∣
∣
∣
∣

After performing the calculations, the Jacobian becomes
∣
∣
∣
∣

∂θ
E

∂θE

∣
∣
∣
∣

=
1

(θuv(00) + θuv(01))(1 − θuv(00) − θuv(01))
= −

1

θu(0)θu(1)
(29)

Note that in this case the Jacobian is negative, therefore using its

absolute value in equation (25) is necessary.

If we denote by E
′
= {vu} the opposite orientation, then by sym-

metry we have
∣
∣
∣
∣

∂θ
E

∂θE

∣
∣
∣
∣

= −
1

θv(0)θv(1)
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Note also that

∫

P0(θE)dθE =

∫

P0(θE
)dθ

E
=

∫

P0(θE
′)dθ

E
′ = 1

Thus, by assuming likelihood equivalence, we effectively recognize that

each tree distribution is an equivalence class containing all its different

parametrizations.

Likelihood equivalence has the effect of compressing the space that

we have to define P0 on, but it still leaves us with the task of assigning

a separate prior for the parameters of each (undirected) tree structure.

We now transform this problem into one of assigning a prior for each of

the possible tree edges by making the following additional assumptions:

Assumption 2 (Parameter independence) For any structure E

and any vu ∈ E, j, j′ = 1, . . . rv, j′ 6= j the parameter vectors θu|v(.|j)

and θu|v(.|j
′) are independent under P0. The parameters θu|v(.|j) are

also independent under P0 of the parameter sets θu′|v′(.|j′)corresponding

to any other edge in E.

Assumption 3 (Parameter modularity) The prior P0(θu|v|E) is

the same for all structures E that contain the edge vu.

In other words, parameter independence states that the prior over

parameters factors into a product over the edges.

P0(θE
|E) =

∏

v∈V

rpa(v)
∏

j=1

P0(θv|pa(v)(.|j) |E) (30)

By stating in addition that the prior for an edge is the same for all

tree structures that contain that edge, we have effectively removed the

dependence on E (or E) from the parameters prior. Therefore, instead

of having to define a separate prior P0(θE
|E) for each possible tree

structure E, with the previous three assumptions we need only define

the pairwise priors P0(θuv(., .)) for u, v in V in order to have priors
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for all possible sets of parameters θ
E

. From now on, we will write

P0(θE), P0(θE
) instead of P0(θE |E) and P0(θE

|E) respectively. It is

convenient to define the prior in terms of the undirected parameters

θuv, u, v ∈ V . From it we can obtain the prior P0(θE
|E) for any

directed set of parameters θ
E

via equation (25).

We shall call a prior P0 satisfying assumptions 1, 2 and 3 a de-

composable prior for tree parameters. If both P0(E) and P0(θE) are

decomposable, the resulting prior over tree distribution is also called

decomposable. For now we also assume that Gsup is connected.

Assumption 4 (Connectivity) The support graph of P0(E) is con-

nected.

5.2 The Dirichlet prior

As we shall see now, the assumptions we made also constrain the func-

tional form the prior can have.

Theorem 4 Let P (T ) = P (E)P (θE) be a decomposable distribution

over tree parameters, for which the support graph of P (E) is connected

and P (θE) > 0 for θE > 0. Then for any tree T in any directed

representation E, θ
E
:

P (θ
E
|E) =

∏

v∈V

P (θv|pa(v)) (31)

P (θv|u) =

ru∏

i=1

D(θv|u(.|i) ; N ′
vu(.i)) (32)

where D is the Dirichlet distribution and N ′
vu(ij) > 0 are its hyper-

parameters. The numbers N ′
uv(ij) = N ′

vu(ji) are defined for all edges

uv with βuv > 0 and satisfy

ru∑

i=1

N ′
uv(ij) = N ′

v(j) (33)
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rv∑

j=1

N ′
v(j) = N ′ (34)

The Dirichlet distribution [DeGroot, 1975] is defined over the {θ1, . . . θr, |
∑

j θj =

1, θj > 0, j = 1, . . . r} by

D(θ1, . . . θr; N
′
1, . . .N

′
r) =

1

ZD

r∏

j=1

θ
N ′

j−1

j (35)

The numbers N ′
1, . . . N

′
r > 0 are the hyper-parameters of the Dirichlet

prior; their sum is denoted by N ′. The normalization constant ZD has

the form

ZD =

∏r

j=1 Γ(N ′
j)

Γ(N ′)

with Γ denoting the Euler function Γ(p) =
∫∞

0
xp−1e−xdx.

For the previous two variables example and E = {uv} as before,

we have

P0(θE
) =

= D(θu(0), θu(1) ; N ′
u(0), N ′

u(1)) · D(θv|u(0|0), θv|u(1|0) ; N ′
uv(00), N ′

uv(10))

·D(θv|u(0|1), θv|u(1|1) ; N ′
uv(01), N ′

uv(11))

=
Γ(N ′)

Γ[N ′
u(0)]Γ[N ′

u(1)]
θu(0)N ′

u(0)−1θu(1)N ′
u(1)−1

·
Γ[N ′

u(0)]

Γ[N ′
uv(00)]Γ[N ′

uv(01)]
θv|u(0|0)N ′

uv(00)−1θv|u(1|0)N ′
uv(01)−1

·
Γ[N ′

u(1)]

Γ[N ′
uv(10)]Γ[N ′

uv(11)]
θv|u(0|1)N ′

uv(10)−1θv|u(1|1)N ′
uv(11)−1

Replacing now the parameters θ
E

by their expressions in equations

(26–28) and performing the calculations we obtain

P0(θE
) = θu(0)θu(1)

︸ ︷︷ ︸
∣
∣
∣

∂θ
E

∂θE

∣
∣
∣

−1

= ·
Γ(N ′)θuv(00)N ′

uv(00)−1θuv(01)N ′
uv(01)−1θuv(10)N ′

uv(10)−1θuv(11)N ′
uv(11)−1

Γ[N ′
uv(10)]Γ[N ′

uv(11)]Γ[N ′
uv(00)]Γ[N ′

uv(01)]
︸ ︷︷ ︸

D(θuv(00),θuv(01),θuv(10),θuv(11) ; N ′
uv(00),N ′

uv(01),N ′
uv(10),N ′

uv(11)
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This equation agrees with the likelihood equivalence assumption and

confirms that if the prior for a directed representation is Dirichlet, then

the prior for the undirected representation is also Dirichlet.

5.3 Discussion

The above line of reasoning parallels the one in HGC, where the Dirich-

let prior for general Bayes nets was derived from assumptions similar

to 1–3. But, unlike the case of general Bayes nets, where the prior is

specified by an exponential number of hyper-parameters, in the case

of tree graphical models the prior can be described by a set of only

O(n2r2
MAX) “pairwise marginal counts” N ′

uv(ij). This is possible be-

cause in the space of tree structures the likelihood equivalence classes

can be explicitly represented 4 and the number of possible parents for

a variable is no larger than one. Therefore, not only the tree belief

net itself, but also any decomposable distribution over trees can be

completely defined in terms of pairwise interactions.

Another technical difference is that, in HGC, one key part of the

framework is the complete model represented by the graph with no

missing edges. The complete graph being obviously not in TV , this

paper reconstructs the framework without recourse to it.

For each fixed tree structure, our prior is strongly hyper-Markov

[Dawid and Lauritzen, 1993] (in fact it is a hyper-Dirichlet prior). The

decomposable prior over structure and parameters is what [Dawid and Lauritzen, 1993]

calls a compatible family of hyper-Markov priors, one for each model

structure. In the approach of [Dawid and Lauritzen, 1993] as well as

in HGC and [Meilă and Jordan, 2000] conjugate priors are used to en-

able one to compare between different structures. In contrast, our goal

is to instead average under the prior.

We have replaced a fourth assumption made by HGC, namely the
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requirement that every graph structure is possibile, with the weaker

assumption 4 that Gsup is connected. Even this weaker form is not es-

sential for our results. In section 7.1 we shall give a general formulation

of the above theorem that dispenses altogether with the connectivity

assumption.

To summarize, starting with the assumptions 1–3 and aiming mainly

at obtaining a tractable and consistent prior representation, we have

arrived at the conclusion that the prior has to be a product of Dirichlet

distributions. This demonstrates that our initial requirement is essen-

tially a drastic one; the restrictions on the prior should be understood

as restrictions on the type of prior information about the model we are

allowed to have. In the remainder of this section, we discuss the kind

of restriction implied by assumptions 1–3. But before embarking onto

this, let us note that from the computational perspective, the advan-

tage is enormous: first, a decomposable prior is defined by order n2

hyper-parameters only; second, the decomposable prior is a conjugate

prior and its hyper-parameters can be updated efficiently; third, and

most important, computing the normalization constant of a decompos-

able prior is tractable. So are related operations like averaging under

the prior. The next section will present the latter issues in detail.

The parameter means under a Dirichlet distribution are [DeGroot, 1975]

< θj >D(.|N ′
j
,j=1,...r) =

N ′
j

∑

j N ′
j

(36)

Hence a Dirichlet prior expresses knowledge about the values of the pa-

rameters’ means with a certain “confidence” N ′ =
∑

j N ′
j which is the

same for all parameters. For instance, the Dirichlet prior introduced

here will be inadequate if we have two sources of prior knowledge, in-

volving disjoint subsets of parameters, and having different associated

confidences.

The parameter independence assumption corresponds to prior knowl-
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edge equivalent to having seen only complete observations of x. Obser-

vations with missing data introduce dependencies among the parame-

ters and thus violate this assumption.

HGC also point out that the likelihood equivalence assumption

characterizes knowledge equivalent to having seen only data obtained

by passive observation. If one’s prior knowledge is obtained for in-

stance by experiments, or from a study with randomized subjects,

then this assumption may not hold. For a detailed explanation of this

phenomenon, the reader is asked to consult HGC.

6 Bayesian learning with decomposable pri-

ors

6.1 Computing the posterior

Here we address the problem formulated in section 3, of computing the

exact form of the posterior P (T |D) given by (11) and reproduced here

P (T |D) =
P0(T )

∏N

t=1 T (xt)

P (D)

From equations (1) and (2) we know that the likelihood can be written

as a product over tree edges. Theorem 4 proves the same about the

decomposable prior. It follows then that the posterior P (T |D) in equa-

tion (11) can also be factored over the edges of T . We shall see that

in addition P (T |D) is decomposable and the normalization constant

P (D) = ZD can be computed tractably.

We shall use the following important property of a Dirichlet dis-

tribution: Assume a discrete variable z that takes values 1 . . . r with

probabilities θ = (θ1, . . . θr), a prior for θ that is Dirichlet with hyper-

parameters N ′(1), . . .N ′(r) and a set Dz of N independent observa-

tions for z, such that the value j appears N(j) times in Dz . Then,
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the posterior of the parameters θ is (see e.g. [DeGroot, 1975]) is also

a Dirichlet distribution with hyper-parameters N ′(j) + N(j).

P (θ|Dz) = D(θ ; N ′(.) + N(.)) (37)

This result applies immediately to the posterior of a tree. Let us

denote by Nuv(ij) and Nv(j) the sufficient statistics of the sample D,

i.e. the number of times u = i, v = j and respectively v = j in D. For

the sake of simplicity, we denote the posterior counts with a double ’,

i.e

N ′′ = N ′ + N

N ′′
v (j) = N ′

v(j) + Nv(j)

N ′′
uv(ij) = N ′

uv(ij) + Nuv(ij)

Then, from (37) and theorem 4 we obtain

P (T |D)=
1

ZDZβ

(
∏

uv∈E

βuv

)
∏

v∈V

rpa(v)
∏

i=1

Zv(i)D(θv|pa(v)(.|i); N
′′
v,pa(v)(i .)) (38)

The constants Zv(i), v ∈ V, i = 1, . . . rpa(v) represent the ratios of

Gamma functions below

Zv(i) =
Γ(N ′

pa(v)(i))
∏rv

j=1 Γ(N ′′
v,pa(v)(ji))

Γ(N ′′
pa(v)(i))

∏rv

j=1 Γ(N ′
v,pa(v)(ji))

and Zβ = |Q(β)| is the normalization constant of the structure prior

defined by equations (13) and (14). Hence, P (T |D) is also decompos-

able, and its hyper-parameters are available directly from the hyper-

parameters of the prior and the sufficient statistics of the sample.

It remains to find the value of the normalization constant ZD. As

a first step, we will keep the structure E fixed and integrate over the

parameters θ
E

in some directed structure E obtained from E. Since

the parameters’ posterior in (38) is already in the form of a normal-

ized distribution, which consequently integrates to 1, we obtain after
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a simple calculation:

∫

P (T |D)dθ
E

=
1

ZD

1

Zβ

Γ(N ′)

Γ(N ′′)




∏

v∈V

rv∏

j=1

Γ(N ′′
v (j))

Γ(N ′
v(j))



 (39)

·
∏

uv∈E



βuv

ru∏

i=1

Γ(N ′
u(i))

Γ(N ′′
u (i))

rv∏

j=1

Γ(N ′
v(j))

Γ(N ′′
v (j))

ru∏

i=1

rv∏

j=1

Γ(N ′′
uv(ij))

Γ(N ′
uv(ij))





This quantity represents the marginal posterior P (E|D); as required

by likelihood equivalence, this is the same no matter how E is obtained

from E. Note also that P (E|D) decomposes into a product over the

edges in E preceded by factors independent of E. We define the edge

weights Wuv and the node weights Wv as

Wv =

rv∏

j=1

Γ(N ′′
v (j))

Γ(N ′
v(j))

Wuv =
1

WuWv

ru∏

i=1

rv∏

j=1

Γ(N ′′
uv(ij))

Γ(N ′
uv(ij))

With these definitions, equation (39) can be written as

P (E | D) =
1

ZD

1

Zβ

Γ(N ′)

Γ(N ′′)

∏

v∈V

Wv ·
∏

uv∈E

(βuvWuv) (40)

Now, to get ZD, we sum over all structures by applying theorem 1 with

weights βW .

1 =
∑

E

P (E|D) =
1

ZD

1

Zβ

Γ(N ′)

Γ(N ′′)

∏

v∈V

Wv · |Q(βW )| (41)

Therefore

ZD =
|Q(βW )|

|Q(β)|

Γ(N ′)

Γ(N ′′)

∏

v∈V

rv∏

j=1

Γ(N ′′
v (j))

Γ(N ′
v(j))

(42)

Replacing ZD in (40) we get

P (E | D) =
1

|Q(βW )|

∏

uv∈E

βuvWuv (43)
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which is the same as (13) with β → βW . Now we have completely

defined the posterior distribution P (T |D). The posterior probability

of any tree distribution T can be computed analytically based on equa-

tions (38) and (42) while (43) gives the posterior of any tree structure

E. Note that the weights Wuv are never 0, so that the support graph

of the posterior distribution coincides with the Gsup of the prior.

To compute the posterior representation from the data set we need

O(n2r2
MAXN) operations to obtain the sufficient statistics, O(n2r2

MAX)

to evaluate the edge weights Wuv and an additional O(n3) to evaluate

the normalization constant ZD for a total of O(n2r2
MAXN + n3) op-

erations. After obtaining these, computing the posterior of a tree by

(38) is O(nrMAX) and computing the posterior of a tree structure by

(43) is O(n).

6.2 Bayesian model averaging

To perform model averaging in computing the probability of a new

data point x one has to evaluate

P (x|D) =
∑

E

[∫

T (x; θ
E

)P (θ
E
|D)dθ

E

]

P (E|D) (44)

where E represents any orientation of the tree structure E. Just as

before, we can first integrate the above expression over the parameters

for a fixed E and then perform a summation over structures. The

former step yields

∫

T (x; θ
E

)P (θ
E
|D)dθ

E
=

∫
∏

v∈V

Tv|pa(v)(xv|xpa(v))
∏

v∈V

rpa(v)
∏

i=1

D(θv|pa(v)(.|i) ; N ′′
vpa(v)(.i))

=
∏

v∈V

N ′′
v,pa(v)(xvxpa(v))

N ′′
pa(v)(xpa(v))

=
1

N ′′

∏

v∈V

N ′′
v (xv)

︸ ︷︷ ︸

w0(x)

·
∏

uv∈E

N ′′
uv(xvxu)

N ′′
u (xu)N ′′

v (xv)
︸ ︷︷ ︸

wuv(x)
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Again, we note that the result includes a structure independent fac-

tor w0(x) and a product of factors corresponding to the tree edges

wuv(x). The final result is invariant to the particular orientation E of

E. Summing over tree structures is a mere exercise now; we have

P (x|D) =
∑

E

w0(x)

|Q(βW )|

∏

uv∈E

βuvWuwwuv(x) (45)

=
w0(x)|Q(βWw(x))|

|Q(βW )|
(46)

The averaging requires computing the edge weights w(x) and evalu-

ating a determinant, so that the total computation is O(n3). This is

a relatively large value compared to the O(n) operations necessary to

compute the likelihood of x under the ML or MAP tree.

The result generalizes readily to several independent observations.

7 Extensions

7.1 Disconnected support graph

Here we generalize the previous results to the case when the support

graph Gsup is disconnected. In other words, we discuss the case when

the prior P (E) enforces probabilistic independence between the edges

and parameters in different connected components.

The intuition behind the following results stems from the fact that,

for a disconnected support graph, the domain V is effectively parti-

tioned into K subsets of variables V k, k = 1, . . .K each corresponding

to a connected component of Gsup. We denote these components by

Gk = (V k, Ek), k = 1, . . .K. We also introduce a notation similar to

(15), to denote a set of values corresponding to pairs of variables in a

subset U of V .

aU = {auv, u 6= v, u, v ∈ U ⊆ V }
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As we shall see, the subsets V k behave as separate and independent

domains from all points of view.

Because there can be no edges between the subsets, it is easy to see

that

β =

K⋃

k=1

βV k (47)

This holds in general for a function f defined over Esup.

A disconnected graph will have no spanning tree (hence the value

returned by the Matrix Tree theorem will be 0) but it will have maximal

trees5, i.e. trees having a maximal number of edges. A maximal tree

is composed of spanning trees corresponding to each Gk (and has a

total number of n−K edges). Hence, the number of distinct maximal

trees in Gsup is the product of the numbers of spanning trees in its

connected components:

# maximal trees(Gsup) =
K∏

k=1

# spanning trees(Gk) (48)

The above remarks allow us to prove a generalization of theorem 1.

Theorem 5 Let P (E) be a distribution over maximal tree structures

defined by (13,14) with β ≥ 0. Then the normalization constant Z is

equal to

Z =

K∏

k=1

|Q(βV k)| (49)

The proof of this theorem is an easy consequence of theorem 1 and of

the previous remarks and therefore it is omitted.

Intuitively, one can imagine redefining Q(β) as a block diagonal

matrix of dimension n − K consisting of blocks Q(βV k), k = 1, . . .K.

Then, one can rewrite (49) so as to obtain a form identical with the

one in theorem 1

Z = |Q(β)| (50)
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If one defines M(βV k) to correspond to each Q(βV k) in a way similar

to equation (19), then one has

∂

∂βuv

|Q(βV k)| = Muv(βV k)|Q(βV k)| for u, v ∈ V k

Now assembling M(βV k) for k = 1, . . .K in a block diagonal matrix

M(β) with

Muv(β) =







Muv(βV k), for u, v ∈ V k

0, otherwise
(51)

one can formally recover equation (18):

∂Z

∂βuv

= Muv(β)

K∏

k=1

|Q(βV k)| = Muv(β)|Q(β)|. (52)

It is also worth making the following point: M(βV k) (or M(β) in the

case of a connected Gsup) are defined only when |Q(βV k)| is non-zero.

However, the derivative of |Q(βV k)| exists in all cases and is defined

in terms of the minor determinants of the elements of Q(βV k). The

minor A∗
uv of a square matrix A is obtained by deleting row u and

column v from A and computing the determinant of the remaining

matrix. Assume that to obtain Q(βV k) from Q(βV k) we delete row

and column nk. Then, for every u, v ∈ V k we have

∂

∂βuv

|Q(βV k)| =







Q∗
uu(βV k) + Q∗

vv(βV k) − 2Q∗
uv(βV k), if u, v 6= nk

Q∗
vv(βV k), if v 6= nk, u = nk

Q∗
uu(βV k), if u 6= nk, v = nk

(53)

Similarly to (21), for the average of an additive function f we obtain

< f(E) >P =

K∑

k=1

∑

u,v∈V k,u<v

fuvβuvMuv(βV k) =
∑

u<v

fuvβuvMuv(β)

(54)

Finally, if g is multiplicative, equation (24) becomes

< g(E) >P =

∏K

k=1 |Q(βV kgV k)|
∏K

k=1 |Q(βV k)|
=

|Q(βg)|

|Q(β)|
(55)
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7.2 Trees with fewer than n − 1 edges

In the present paper we focus on tree graphical models whose structure

is a connected graph6. Now we briefly discuss a slightly more general

case, in which the structure of the graphical model is a set of edges E

containing no cycles. Such a graphical model is called by extension a

tree graphical model. In this section, we will apply the term general

when we talk about tree structures and graphical models with |E| ≤

n − 1 and spanning when |E| = n − 1.

It is easy to see that equations (1) and (2) defining the tree dis-

tribution apply to general tree graphical models. The decomposable

prior over structures and parameters can be extended to general trees

in a straightforward manner. So are Assumptions 1-4. For more de-

tails, the reader should consult [Meilă and Jordan, 2000]. However, for

general trees we do not know of a graph theoretical result analog to

the Matrix Tree theorem. Therefore, exact Bayesian model averaging

over the family of general tree distributions is not possible (to date, at

least).

7.3 Ensembles of trees

In this section we consider a new probability model, called ensembles of

trees that naturally extends the tree graphical model. To best describe

this model, imagine that a tree distribution is defined in two steps:

first a set of parameters θ and second the structure E. Because E is

not known at the time when we choose θ, we need to specify a param-

eter set that is sufficiently large, so that for any E we can afterwards

extract from θ the actual set of parameters θE . This can be done easily

following the same idea that allowed us to define a decomposable prior
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in section 5. We choose

θ = {θuv(ij), u, v ∈ V, i = 1, . . . ru, j = 1, . . . rv}

∪ {θv(j), v ∈ V, j = 1, . . . rv} (56)

such that
ru∑

i=1

θuv(ij) = θv(j) ∀u ∈ V (57)

rv∑

j=1

θv(j) = 1 ∀v ∈ V

Now, changing the notation of equation (1) to emphasize the depen-

dence on θ and E, we write the tree distribution as

T (x|θ, E) =
∏

uv∈E

θuv(xu, xv)

θu(xu)θv(xv)

∏

v∈V

θv(xv) (58)

The ensemble of trees R(x) is a weighted average of all the possible tree

distributions sharing the same parameters θ. To ensure tractability, the

weights P (E) will represent a decomposable distribution over spanning

tree structures as in (13).

R(x) =
∑

E

P (E)T (x|θ, E) (59)

If we use the notations

ωuv(x) =
θuv(xu, xv)

θu(xu)θv(xv)
(60)

ω0(x) =
∏

v∈V

θv(xv) (61)

for the edge dependent and respectively edge independent factors in

(58) then, by theorem 1, R(x) has an alternative, tractable form

R(x) = ω0(x)
|Q(ω(x)β)|

|Q(β)|

The ensemble of trees can be seen as a mixture model whose compo-

nents are the trees over V parametrized by θ. The weighted averag-

ing corresponds then to the presence of a hidden variable z taking as
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many values as there are structures, each with probability Pr[z = E] =

P (E). Therefore, the (generalized) EM algorithm [Dempster et al., 1977]

can be considered as a possibility for learning the parameters. We shall

not pursue this issue in detail, but we will mention the following: the

E step of the algorithm is tractable and straightforward given equation

(59); the M-step however cannot be performed exactly and it is not

known if the expression to be maximized has a unique local maximum.

But if we assume a set of complete observations D as before, the

likelihood of this data set, denoted by R(D), can be optimized w.r.t.

the parameters θ and β by gradient ascent. We shall denote by Muv(β)

and Muv(βω(xt)) respectively the values in equation (19) that corre-

spond to Q(β) and Q(βω(xt)). Using lemma 2 we obtain

∂ log R(D)

∂βuv

=
N∑

t=1

ωuv(x
t)Muv(xt)

|Q(βω(xt))|
− NMuv(β) (62)

∂ log R(D)

∂θuv(ij)
=

βuv

θu(i)θv(j)

∑

t:xt
u=i,xt

v=j

Muv(x
t) (63)

∂ log R(D)

∂θv(j)
=

1

θv(j)

∑

t:xt
v=j

[1 −
∑

v′∈V

ωvv′(x)Mvv′ (xt)] (64)

Note that the parameters θ need to satisfy (57) and therefore we will

need to perform a constrained maximization of R(D) using e.g. La-

grange multipliers; this method will converge to a local optimum of

the log-likelihood.

8 Discussion

This paper has focused on decomposable priors for tree distributions.

A decomposable prior is expressed as a product of factors, each cor-

responding to an edge of the tree. The same edge contributes the

same amount in every tree structure that includes it. This property
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allows representing the prior of any tree distribution T by order n2

hyper-parameters.

Decomposable priors have been considered before, typically in the

context of general Bayes nets, of which tree distributions are a subset.

However, for general Bayes nets, (1) the prior cannot be expressed

with a tractable number of parameters except in special cases; and (2)

the normalization constant of the prior cannot be computed. For the

family of trees, taken separately, both of the above negatives become

affirmatives.

Our paper’s main contribution is to show (2), i.e that for a decom-

posable prior over TV the normalization constant Z can be expressed

analytically in closed form and computed tractably. This is something

new and unique, since, to our knowledge, there has not been any other

result of this kind in graphical models.

It is well known that, for Bayes nets where (a) each node has no

more than k parents, (b) the variable ordering is given and (c) each

structure has the same prior, computing Z and other averaging opera-

tions are O(nk+1). However, the total number of models in this family

is O(nk+1) hence polynomial, while the family TV is superexponential.

From this result it follows that other ”Bayesian learning” opera-

tions are tractable, including: updating the normalization constant of

the posterior, computing the marginal P (E) of a particular structure,

model averaging for the marginal probability P (x) of the next observa-

tion. We also give analytic expressions for the derivatives of Z w.r.t the

edge weights and for averages of additive and multiplicative functions

under factored priors. They pave the way toward a much larger range

of averaging operations than the few enumerated in this paper.

A second contribution is to examine the decomposable prior re-

stricted to the family of trees. By this we wanted to ensure that one
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can define the prior in a consistent and generally ”well-behaved” way.

We showed that any hyper-parameter set with β ≥ 0 and N ′
uv(., .)

satisfying (33,34) represents a well-defined and consistent prior.

We also showed that the decomposable prior for trees can be derived

from a set of standard assumptions and we proved the unicity of the

Dirichlet prior in this case. It is remarkable that, for trees, these

standard assumptions, which parallel those of HGC, are sufficient to

ensure tractability. In fact, these assumptions are no stronger than the

assumptions of functional independence implicit in the original Chow

and Liu algorithm [Chow and Liu, 1968, Meilă-Predoviciu, 1999].

Is worth highlighting again that these assumptions are restrictive,

in the sense of drastically limiting the type of prior knowledge that can

be used efficiently in the Bayesian learning of trees. Prior knowledge

that cannot be expressed as a factored prior is e.g. knowledge that two

edges are more likely to appear simultaneously than separately in a tree

structure, or knowledge that two edges have the same parameters. This

problem is not specific to trees, but to Bayes nets in general. Therefore,

a worthwhile area of future research is discovering tractable methods

to deal with such type of knowledge in the case of tree structures or in

the case of general Bayes nets.

One should also be cautioned that not all model averaging opera-

tions are tractable under the decomposable prior. For example, while

computing the marginal of a complete observation P (x) was shown to

be tractable, computing the marginal of an arbitrary subset of vari-

ables U ⊆ V is generally intractable. This is due to the fact that

marginalizing out the variables in V \U amounts to another averaging

operation. It is known [Meilă and Jordan, 2000] that the average of

several tree graphical models is not a graphical model. Consequently,

the efficient methods of conditioning and marginalizing in a tree (or
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more general graphical model) do not apply to this situation.

Finally, we have also introduced ensembles of trees as a tractable

extension to the tree model. Ensembles of trees can be learned in the

ML framework. Exploring the properties of the new model and of the

learning algorithm itself are areas of continuing research.
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Appendix

Proof of Theorem 1 First we state the matrix tree theorem, on

which our proof is based. The theorem is due originally to Kirchhoff,

who published it as part of his work on electrical circuits.

A multigraph G = (V, E) is a graph where E may contain more

than one edge between the same two vertices (i.e E is a multiset of

unordered pairs from V × V ).

Theorem 6 (Matrix Tree Theorem) [West, 1996] Let G = (V, E)

be a multigraph and denote by auv = avu the number of undirected

edges between vertices u and v. Then the number of all spanning trees

of G is given by |Auv|(−1)u+v the value of the determinant obtained
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from the following matrix by removing row u and column v.

A =

















deg v1 −a12 −a13 . . . −a1,n

−a21 deg v2 −a23 . . . −a2,n

. . . . . . . . . . . . . . .

−an,1 −an,2 −an,3 . . . deg vn

















Our result is the generalization of the matrix tree theorem for a

real-valued (and renamed to β). We shall prove it first for positive

integer values of β, then for positive rational values. Then, because

the determinant is a continuous function it will follow that the theorem

is true for any real, positive values β.

Assume β are integers. Then βuv can represent the number of

edges between u and v of a multigraph over V . The degree of node

v equals the number of edges incident to v; this number is
∑

u6=v βuv.

Thus, by theorem 6, the total number of spanning trees in this graph

is Z1 = |Q(β)|. We now show that Z1 = Z (where Z is defined by

(14)).

Z1 =
∑

E

# distinct trees having structure E (65)

=
∑

E

∏

uv∈E

βuv

= Z

Assume now that β are all rational. Let m be the common denominator

of β, such that βuv = auv/m with auv integer. Then Q(a) = mQ(β) is

a matrix of integers and by virtue of (65) we have that

|Q(a)| =
∑

E

∏

uv∈E

auv (66)
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But |mQ(β)| = mn−1|Q(β)| and therefore

|Q(β)| =
1

mn−1

∑

E

∏

uv∈E

auv

=
∑

E

∏

uv∈E

auv

m

=
∑

E

∏

uv∈E

βuv

= Z

Proof of lemma 2 The proof uses the fact that, for any nonsin-

gular matrix with elements Aij

∂|A|

∂Aij

= |A|(A−1)ij (67)

Then, for u, v < n, taking into account that the only elements of Q(β)

that depend on βuv are Quu, Qvv, Quv and Qvu we have successively:

∂Z

∂βuv

=
∂|Q(β)|

∂βuv

=
∑

i,j∈V

∂|Q(β)|

∂Qij

∂Qij

∂βuv

= |Q(β)|[(Q−1)uu+(Q−1)vv−2(Q−1)uv]

(68)

Similarly, if u = n, v < n, then βvn appears only in Qvv. Hence

∂Z

∂βuv

= |Q(β)|(Q−1)vv (69)

Proof of lemma 3 We first introduce the following lemma:

Lemma 7 If P (E) is given by equation (13) and f is an additive

function of E then

< f(E) >P =
1

Z

∂|Q(βeαf )|

∂α

∣
∣
∣
∣
α=0

(70)
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This lemma can be easily proved by equating Q(βeαf ) with its defini-

tion (16) and then taking derivatives of both sides.

Then, to obtain equation (22) we use (67) again, conveniently

grouping the terms involving fuv afterwards. To derive to compact

form (23) we notice that (22) represents the sum of element-wise prod-

ucts of Q(fβ) and Q−1(β) and use the well-known matrix identity:

∑

ij

AijBij = traceABT

Proof of theorem 4 Begin by fixing two variables u, v ∈ V such

that βuv > 0 and a structure E containing edge uv. Denote by E
1

and

E
2

the orientations of E where u and respectively v are root. Thus

E
1

and E
2

differ only in the orientation of edge uv. Let θ1 and θ2 be

two parametrizations corresponding to E
1

and E
2

respectively, such

that θ1 and θ2 produce the same distribution T . For every θ1 there

will be a unique θ2 (obtained by applying (1) and (2)) satisfying this

condition. Moreover,

θ1
w|pa(w) = θ2

w|pa(w) for all w 6= u, v. (71)

The prior distribution of θ1 is

P 1
0 (θ1) = P 1

0 (θ1
u)P 1

0 (θ1
v|u)

∏

w 6=u,v

P 1
0 (θ1

w|pa(w)) (72)

Similarly, for θ2 we have

P 2
0 (θ2) = P 2

0 (θ2
v)P 2

0 (θ2
u|v)

∏

w 6=u,v

P 2
0 (θ2

w|pa(w)) (73)

The likelihood equivalence assumption, together with the change of

variable formula, imply

P 1
0 (θ1) = P 2

0 (θ2(θ1))
∣
∣
∣

∂θ2

∂θ1

∣
∣
∣ (74)
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In the above, |∂θ2

∂θ1 | denotes the Jacobian of the transformation θ1 → θ2.

Due to the equality (71) this Jacobian has the following structure:

|∂θ2

∂θ1 | =
∂θ2

v

∂θ1
u

∂θ2
u|v

∂θ1
u

0 0 . . . 0 =
∂θ2

v

∂θ1
u

∂θ2
u|v

∂θ1
u

∂θ2
v

∂θ1
v|u

∂θ2
u|v

∂θ1
v|u

0 0 . . . 0
∂θ2

v

∂θ1
v|u

∂θ2
u|v

∂θ1
v|u

0 0 1 0 . . . 0

0 0 0 1 . . . 0

. . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 1

Let us denote the resulting determinant by

∣
∣
∣
∣

∂(θ2
v,θ2

u|v)

∂(θ1
u,θ1

v|u
)

∣
∣
∣
∣
. The above

equality together with (72–74) implies

P 1
0 (θ1

u, θ1
v|u) = P 2

0 (θ2
v(θ

1
u, θ1

v|u), θ2
u|v(θ1

u, θ1
v|u))

∣
∣
∣
∣

∂(θ2
v,θ2

u|v)

∂(θ1
u,θ1

v|u
)

∣
∣
∣
∣

(75)

Now we have reached our first partial goal, because by theorem 7 in

HGC equation (75) implies that P0(θuv) as well as P 1
0 (θ1

u, θ1
v|u) and

P 2
0 (θ2

v, θ
2
u|v) are Dirichlet. Let us denote by N ′

uv(ij), i = 1, . . . ru, j =

1, . . . rv the hyper-parameters of P (θuv) and by N ′
u(i) and N ′

v(j) their

sums over j and i respectively. It is now easy to show that

P 1
0 (θ1

u) = D(θ1
u(.) ; N ′

u(.)) (76)

P 1
0 (θ1

v|u) =

ru∏

i=1

D(θ1
v|u(.|i) ; N ′

uv(i.)) (77)

P 2
0 (θ2

v) = D(θ2
v(.) ; N ′

v(.)) (78)

P 2
0 (θ2

u|v) =

rv∏

j=1

D(θ2
u|v(.|j) ; N ′

uv(.j)) (79)

By parameter modularity, these identities are true for any tree struc-

ture containing an edge between u and v. Therefore, all that remains

to be shown is that N ′ =
∑

j∈Ωv
N ′

v(j) has the same value for all

v ∈ V .

40



Let u 6= v be variables in V . We shall prove that

∑

i∈Ωu

N ′
u(i) =

∑

j∈Ωv

N ′
v(j) (80)

We distinguish two cases: βuv > 0 and βuv = 0. The former is already

solved, by virtue of the first part of the proof. It remains to show that

(80) holds when βuv = 0 and no tree structure will contain edge uv.

Indeed, because Gsup is connected, there will exist at least a path

between u and v in Gsup. Now we can easily show (80) by induction

over the length of the path.

This theorem and its proof are easily extended to multiply con-

nected Gsup. In that case, each component of the graph will have its

own equivalent sample size N ′k.
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Notes

1University of Washington, Department of Statistics, mmp@stat.washington.edu

2Massachusetts Institute of Technology, Computer Science

and Artificial Intelligence Laboratory, tommi@csail.mit.edu

3This means that the size of the family, as a function of the

number of variables n, grows faster than any polynomial in n.

4Each undirected E is one equivalence class.

5Maximal trees are called maximal forests in [West, 1996].

6We assume that Gsup is connected. The generalization to a

disconnected Gsup is immediate, cf section 7.1.
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