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(Bayesian) Statistics with Rankings
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Permutations (rankings) data represents preferences

Burger preferences n = 6 Presidential Election Ireland, 2000 n =5
options, N = 600 “voters” candidates, N = 1100 voters

Roch Scal McAl Bano Nall

Scal McAl Nall Bano Roch

Roch McAl

med-rare med rare ...
done med-done med ...

med-rare rare med ...

College programs admissions, Ireland n = 533 degree programs, N = 53737 high-school
graduates, t = 10

DC116 DC114 DC111 DC148 DB512 DNO21 LM054 WD048 LM020 LMO50

WwD028

DNO0O8 TRO71 DNO12 DNO52

FT491 FT353 FT471 FT541 FT402 FT404 TROO4 FT351 FT110 FT352

Sushi preferences n = 112, N = 5000
sake |ebi |ika |uni [tamago |kappa-maki |tekka-maki |anago [toro |maguro
ebi |kappa-maki [tamago |ika |toro |maguro |tekka-maki |anago |sake |uni
toro |ebi [maguro |ika [tekka-maki |uni [sake |anago |kappa-maki [tamago
tekka-maki [tamago |sake |ebi |ika |kappa-maki [maguro |toro |uni |anago
uni [toro |ebi |anago |maguro |tekka-maki |ika |sake |kappa-maki [tamago
Ranking data

> discrete

» many valued

> combinatorial structure



An optimization problem: Consensus Ranking

Given a set of rankings {71, m2,...7mn} C S, find the consensus ranking (or central
ranking) mo that best agrees with the data

Columbia University 4/11/16

Presidential Election Ireland, 2000 n = 5, N = 1100
Roch Scal McAl Bano Nall

Scal McAl Nall Bano Roch

Roch McAl

Consensus = [ Roch Scal McAl Bano Nall ] 7
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The Consensus Ranking problem

Problem (also called Preference Aggregation, Kemeny Ranking)
Given a set of rankings {m1,m2,...7n} C S, find the consensus ranking (or central
ranking) mo such that

Columbia University 4/11/16

N
T = argmin E d(mi, mo)
Sn

i=1

for d = inversion distance / Kendall 7-distance / “bubble sort” distance
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Consensus ranking problem

N
mo = argmin Zd(m,wo)
Sn

i=1

This talk
Will generalize the problem
> from finding 7o
to estimating statistical model (based on inversions)
Max Likelihood or Bayesian framework
Will generalize the data
> from complete, finite permutations to
top-t rankings [MBao08]
countably many items (n — co) [MBao08]
recursive inversion models[MeekM14]
signed permutations [MAroral3]



Outline

Permutations and their representations
Statistical models for permutations and the dependence of ranks
Codes, inversion distance and the precedence matrix
Mallows models over permutations
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Some notation

Base set { a, b, ¢, d } contains n items (or alternatives)
E.g { rare, med-rare, med, med-done, ...}

S, = the symmetric group = the set of all permutations over n items

Columbia University 4/11/16

m = [cabd] €S, a permutation/ranking

3

= [ca] a top-t ranking (is a partial order)

t = |m| < n the length of 7

We observe
data my, m2, ..., my ~ sampled independently from distribution P over S,
(where P is unknown)
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Representations for permutations

reference permutation id=[abcd]
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m =[cabd] ranked list
(231) cycle representation

a b c d i
(231 4 ] function on {a, b, c, d}
0(1]0]0
n= 0jo0j1jo permutation matrix
1/{0|0]|O0
0(0]0]1
— 111011
‘:% Q= (1) I 0 1 precedence matrix, Q; = 1ifi < j,
E 0|0} 0] —
:
% (Vl, V2, VB) = (17 170) code
2 (s1,%2,83) = (2,0,0)




Representations for permutations

reference permutation id=[abcd]

m=[cabd] ranked list
(231) cycle representation
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a b c d . .
[ 2 31 4 ] function on {a, b, c,d}
0{0]|1]0
n= 1/0]0]0 permutation matrix
0[{1]0]|0
0/0|0|1
—-|110]1
é” Q = ;) I 0 i precedence matrix, Q; =1ifi <.
: 0 0 -
2
(Vi, Vo, V5) = (1,1,0) code
E (51752753) - (27070)
é




Statistical models for permutations and the dependence of ranks

Several “natural” parametric distributions on S, exist. Most suffer from dependencies
between parameters.

> item j has utility p; Thurstone
sample u; = u; + ¢€;, j = 1 : n independently
sort (uj)j=1n = 7

Columbia University 4/11/16

> item j has weight w; > 0 Plackett-Luce
sample ranks 1, 2, ... sequentially o< remaining w;'s
Wa Wp
P([a, b, ...])
S Wir Yo Wi — Wa
> inversion between i and j has cost o Bradley-Terry

P(r) o< exp (— Xe; 0 Qs(m))
interesting subclasses of the Bradley-Terry

(Generalized) Mallows models (coming next)

> are a subclass of Bradley-Terry models
> do not suffer from these dependencies
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GM B-T P-L  Thurstone
Discrete parameter yes no no no
Tractable Z yes no no no
“Easy” ™ parameter yes no no Gauss
estimation
Tractable marginals yes no no Gauss™™
Params “interpretable”  yes no no Gauss

* Refers to continuous parameters

** for top ranks

GM model

» computationally very appealing

» advantage comes from the code: the codes (V}),(S;)

> discrete parameter makes for challenging statistics
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The precedence matrix @

7 =[cabd]
a b ¢ d
-1 0 1]a
Q(r)={0 — 0 1|b
1 1 — 11|c¢
0 0 0 —|d

Qij(m) = 1iff i before j in 7

Qi = 1-Qj

reference permutation id=[abcd]: determines the order of rows, columns in @
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The number of inversions of 7 and Q()

7 = [cabd]
a b ¢ d
- 1 0 1| a
Qir)=|0 — 0 1|5
1 1 - 1 |c
0 0 0 —|d

define L(Q) = sum( lower triangle (Q))
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The number of inversions of 7 and Q()

7 = [cabd]
a b ¢ d
- 1 0 1| a
Qir)=|0 — 0 1|5
1 1 - 1 |c
0O 0 0 —-|d

define L(Q) = sum( lower triangle (Q)) then
#inversions () = L(Q) = d(m,id)



The inversion distance and @

£ To obtain d(r,mo) m = [cabd], mo=[badc]
z 1. Construct Q(m) b a2 d c
% 2. Sort rows and columns by g - 0 1 07]hb
3 . . 1 — 1 0]a
o 3. Sum elements in lower triangle 0 0 — o0ld
1 1 1 —|c
d(m,m) = 4
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The inversion distance and @

g To obtain d(m, m) m = [cabd], m =[badc]
Z 1. Construct Q(m) b a2 d c
% 2. Sort rows and columns by mp - 0 1 01]6b
3 . . 1 — 1 0]a
o 3. Sum elements in lower triangle 0 0 — o0ld
1 1 1 —]c
d(m,m) = 4

To obtain d(m1,mo) + d(m2,m0) + .. .
1. Construct Q(m1), Q(m2),...
Q = Q(m) + Q(m2) + ...
2. Sort rows and columns of Q by g

3. Sum elements in lower triangle of Q

°
=
g
S
4
=
=
H
?
&
2
=
=
s
2
7]
=
8
@
g
>
3
Q




The code of a permutation

Example 7 = [cabd], m = [badc]

Columbia University 4/11/16

a b c d
S | — 1 0 1 a
S3 0 — 0 1 b
S 1 1 1 - 1 C
Sy 0 0 — | d
Vi|Vol| V3| Wy

(V1, V2, V3) = (1, 1,0)
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The code of a permutation

Example 7 = [cabd], m = [badc]

Columbia University 4/11/16

a b c d
S | — 1 0 1 a
S3 0 — 0 1 b
S 1 1 1 - 1 C
Sy 0 0 0 — | d
Vi|Vol| V3| Wy
code

(V1, V2, V3) = (1, 1,0)
(51,52,83) =(2,0,0)

d(m,id) = 2
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The code of a permutation

Example 7 = [cabd], m = [badc]
Codes are defined w.r.t any g

Columbia University 4/11/16

a b c d b a d c
S — 1 0 1 a S3 — 0 1 0 b
S3 0 — 0 1 b S, 1 — 1 0 a
S1 1 1 — 1 c Sy 0 0 — 0 d
Sy 0 0 0 — d S 1 1 1 — c
Vi| Vo | V3| Vg ilwl|Ww]|V
code code Vj(r|mg), Sj(m|mo)
(V17V27V3) = (17 170) (V17V2»V3) = (29 17 1)

(51,52,53) = (2,0,0)

d(m,id) = 2

°
=
g
S
4
=
=
H
?
g
2
B
=
s
2
w
=
5
@
g
>
g
Q




The code of a permutation

Example 7 = [cabd], m = [badc]
Codes are defined w.r.t any g

Columbia University 4/11/16

a b c d b a d c
S | — 1 0 1 ]a S3 | — 0 1 0 |b
S3 0 — 0 1 b S, 1 — 1 0 a
S1 1 1 — 1 c Sy 0 0 — 0 d
Sy 10 0 0 — | d S1 1 1 1 — | c
Vi| Vo | V3| Vg ilwl|Ww]|V
code code Vj(r|mg), Sj(m|mo)
(V17V27V3) = (17 170) (V17V2»V3) = (29 17 1)
or or
(51,%2,53) = (2,0,0) (S1,%2,53) = (3,1,0)
d(m,id) = 2 d(m,m) = 4
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The code of a permutation

Example 7 = [cabd], m = [badc]
Codes are defined w.r.t any g

Columbia University 4/11/16

a b c d b a d c
S| - 1 0 1 a S3 | — 0 1 0| b
S3 0 — 0 1 b S, 1 — 1 0 a
S1 1 1 — 1 c Sy 0 0 — 0 d
Sy 0 0 0 — | d S1 1 1 1 — | c
Vi| Vo | V3| Vs Vil Vol V3| Vs
code code Vj(r|mg), Sj(m|mo)
(V17V27V3) = (17 170) (V17V2»V3) = (29 1, 1)
or or
(51,%2,53) = (2,0,0) (51,%52,53) = (3,1,0)
d(m,id) = 2 d(m,m) = 4
» For any m, the code (Vi(w|mo) ... Va—1(w|mo)) defines m uniquely
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The Generalized Mallows (GM) Model [Fligner, Verducci 86]

Generalized Mallows(GM) model

Columbia University 4/11/16

P s(m) = Z(le)Hp [OVi(alm)]  with  Z(d) = _f[z,-(ej)
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The Generalized Mallows (GM) Model [Fligner, Verducci 86]

Generalized Mallows(GM) model

Columbia University 4/11/16

P s(m) = Z(le)Hp [OVi(alm)]  with  Z(d) = _f[z,-(ej)

» 7 is the central permutation

> mo mode of Pr, g, unique if 6 >0
> 0; > 0 are dispersion parameters

> for =0, Pr, 0 is uniform over S,

> Z;(6;) is tractable
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The Generalized Mallows (GM) Model [Fligner, Verducci 86]

Generalized Mallows(GM) model

Columbia University 4/11/16

P s(m) = Z(le)Hp [OVi(alm)]  with  Z(d) = _f[zj(ej)

» 7 is the central permutation

> mo mode of Pr, g, unique if 6 >0
> 0; > 0 are dispersion parameters

> for =0, Pr, 0 is uniform over S,

> Z;(6;) is tractable
Cost interpretation of the GM model
» GMY: Cost = >0,V
pay price ¢; for every inversion w.r.t item j

> Assume stepwise construction of m: 6; represents importance of step j
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Outline

Columbia University 4/11/16

Complete rankings and Maximum Likelihood estimation
GM as exponential family
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ML Estimation of mg: costs and main results

Model Data Log-likelihood
n—1 _

Mallows  complete rankings > Vi(mo) [M&al07] 7oM: estimated
J'le exactly by B&B search.
n— —

GMV [QJVJ(‘/\'O) +in ZJ(GJ)] B&B=Branch-and-Bound
j=1

Vi(m)=% > Vj(x|mo)
7 Edata




Columbia University 4/11/16

°
=
g
S
4
=
=
H
?
g
2
B
=
s
2
w
=
5
@
g
>
g
Q

ML Estimation of mg: costs and main results

Model Data Log-likelihood
n—1 _

Mallows  complete rankings > Vi(mo) [M&al07] 7oM: estimated
J'le exactly by B&B search.
n— —

GMV [QJVJ(‘/\'O) +in ZJ(GJ)] B&B=Branch-and-Bound
j=1

Vi(m)=% > Vj(x|mo)
7 Edata

complete rankings
GM> e
top-t rankings [Qij(ﬂ'o) +In zj(ej)]
j=1
top-t rankings, n = oo

Si(m)=4 X sj(m|mo)
7 Edata

[MBao08] Local max for

0, g by alternate
maximization and B&B
search.



Sufficient statistics [M&al07]

> Define @ = Q(min) = %Zf\lzl Q(mi)

» Sufficient statistics are sum of preference matrices for data

Columbia University 4/11/16

Q for large samples from Mallows models

Q(n) 0=1 0=03 0 =0.03
— | 0 1 0 i
1| - 1 0 6
OO0 0 8
1 1 _ 10
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Sufficient statistics [M&al07]

> Define @ = Q(min) = %vazl Q(mi)

» Sufficient statistics are sum of preference matrices for data

Columbia University 4/11/16

Q for large samples from Mallows models

Q(m) =1 0 =03 0 =0.03
—To0J1]0 ;
1| —-11 0 6
OO0 0 8
1 1 — 10
12|
14
5 10 15
Consensus ranking = argminWOL(HOTQHO) = argmin, L., (Q)

= argmin lower triangle of Q over all row and column
permutations o
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Search Algorithm Idea

Wanted: argminmL(HoTQHo) = argmin, L, (Q) = argmin lower triangle of @ over
all row and column permutations

Columbia University 4/11/16
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Search Algorithm Idea

Wanted: argminmL(HoTQHg) = argmin, L, (Q) = argmin lower triangle of @ over
all row and column permutations

Columbia University 4/11/16
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Search Algorithm Idea

Wanted: argminmL(HoTQHg) = argmin, L, (Q) = argmin lower triangle of @ over
all row and column permutations

Columbia University 4/11/16
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Search Algorithm Idea

Wanted: argminmL(HoTQHg) = argmin, L, (Q) = argmin lower triangle of @ over
all row and column permutations

Columbia University 4/11/16
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Search Algorithm Idea

Wanted: argminmL(HoTQHg) = argmin, L, (Q) = argmin lower triangle of @ over
all row and column permutations

Columbia University 4/11/16
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Parameter spaces and sufficient statistics spaces

Parameters
» GM model is curved exponential family
> n — 1 discrete and n — 1 continuous parameters

Columbia University 4/11/16

> Full exponential family = inversions (Bradley-Terry) model

P(7) x exp (— Z Qjj Q,-,-(ﬂ))

i<j

> not tractable [Diaconis87]
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Parameter spaces and sufficient statistics spaces

Parameters
» GM model is curved exponential family
> n — 1 discrete and n — 1 continuous parameters

Columbia University 4/11/16

> Full exponential family = inversions (Bradley-Terry) model
P(m) o< exp <— ZO‘UQU(W)>
i<j
> not tractable [Diaconis87]

Sufficient statistics

> space of “skew-symmetric” matrices with [0, 1] elements

A= {Q| Qi+ Qu =1, Qx >0}
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Parameter spaces and sufficient statistics spaces

Parameters

» GM model is curved exponential family
> n — 1 discrete and n — 1 continuous parameters

Columbia University 4/11/16

> Full exponential family = inversions (Bradley-Terry) model

P(7) x exp <— Z Qjj Q,-,-(ﬂ))

i<j

> not tractable [Diaconis87]

Sufficient statistics

> space of “skew-symmetric” matrices with [0, 1] elements
A= {Q|Q«+ Qu=1, Qi >0}
» space of sufficient statis-
tics = linear orderings polytope (difficult to describe [SturmfelsWelkerl1,Grdtschel85])
Q={Q= 4> )}
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Parameter spaces and sufficient statistics spaces

Parameters

» GM model is curved exponential family
> n — 1 discrete and n — 1 continuous parameters

Columbia University 4/11/16

> Full exponential family = inversions (Bradley-Terry) model

P(7) x exp <— Z Qjj Q,-,-(ﬂ))

i<j

> not tractable [Diaconis87]

Sufficient statistics

> space of “skew-symmetric” matrices with [0, 1] elements
A= {Q|Q«+ Qu=1, Qi >0}
» space of sufficient statis-
tics = linear orderings polytope (difficult to describe [SturmfelsWelkerl1,Grdtschel85])

Q ={Q = § XL ()}
> space of means of GM model M = {Eﬂoﬁ[Q]}

> not a polytope
> characterized algorithmically by [Mallows 57] for Mallows, [M&al07] for GMM
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Consistency and rates of ML estimates

> Qj/N — Plitemi <, item;] as N — oo [FlignerVerduccig6]
> Therefore
> for any 7 fixed, OML is consistent [FlignerVerduccig6]
> the discrete parameter moML consistent when 0; non-increasing [FlignerVerducci86,
M-—in prep]

> is it “unbiased”?

Columbia University 4/11/16

Theorem 1[M-in prep] For any N finite

E[6M] > ¢

and the order of magnitude of ML — 9 is = w.h.p.

VN
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N =200
4
N = 2000

0; estimates for j

elay}

The Bias of Mt
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Outline
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Top-t rankings, infinite permutations, and Bayesian estimation
Top-t rankings and infinite permutations
Conjugate prior, Dirichlet process mixtures
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Top-t rankings and very many items

2000 Presidential Elections Ireland,n =5, N = 1100
Roch Scal McAl Bano Nall

Scal McAl Nall Bano Roch

Roch McAl

Columbia University 4/11/16

College programs n =533, N = 53737,t = 10

DC116 DC114 DC111 DC148 DB512 DNO21 LMO54 WD048 LM020 LMO50
WD028

DNOO8 TRO71 DNO12 DNO52

FT491 FT353 FT471 FT541 FT402 FT404 TR0O0O4 FT351 FT110 FT352

Google search: |Columbia Statistics
stat.columbia.edu

gsas.columbia.edu
colleges.niche.com/columbia-university/statistics
www.gocolumbialions.com/SportSelect.db. .
grad-schools.usnews.rankingsandreviews.com
www.stat.sc.edu

> searches in data bases of biological sequences (by e.g Blast, Sequest, etc)
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» open-choice polling, " grassroots elections”, college program applications




Models for Infinite permutations

» Domain is countable, i.e n — oo

> Observe the top t ranks of an infinite permutation

Columbia University 4/11/16
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Models for Infinite permutations

» Domain is countable, i.e n — oo

> Observe the top t ranks of an infinite permutation

College programs n =533, N =53737,¢t = 10

DC116 DC114 DC111 DC148 DB512 DNO21 LMO54 WD048 LM020 LMO50
WD028

DNOO8 TRO71 DNO12 DNO52

FT491 FT353 FT471 FT541 FT402 FT404 TROO4 FT351 FT110 FT352

» Mathematically more natural

> for large n, models should not depend on n
> models can be simpler, more elegant than for finite n
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Top-t rankings: GM®, GM" are not equivalent

m = [abcd]

7 = [ca]
TI'(].):C 51 =2
7r(2):a S5 =0
7(3) =7 S3 =7

—0:S;
Proi(m) = Il ™

sufficient statistics

m(l)=a Vi=1
7To(2) =b V2 2 1
7T0(3) =c V3 =0

n—1 e_evj
Pro.o(m) = Hj:l {

)
Pg (V>

no sufficient statistics

Example: m =[ca]

a b c d
S | — 1 0 1 a
0| —10 7?1 b
S| 1 1 — 1 lc
0 ? 0| —1|d
V1 V2 V3 \/4

mo(j)E™
vi), mo(j)Em



The Infinite (Generalized) Mallows model (IGM)

t
P (™) = exp [=> (6;S(r | m0) — InZ(6)),
=1

Columbia University 4/11/16

> 7 is observed top-t ranking

> 7o is central permutation of {1,2,3,...}
discrete infinite “location” parameter

» 01.. > 0 dispersion parameter
> dimension equal to t

» all S; have same range {0, 1, 2, ...}
» Normalization constant Z(6;) = 1/(1 —e %)

» P () is well defined marginal over the coset defined by
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Sufficient statistics for top-t permutations [M,Bao 10]

Sufficient statistics are t n X n precedence matrices Ri, ... R;

R;(m)

()

N=2t=5 N =100, t = 5
0.5

Si(rlm0) = Ley(R())[M.Bao 10]
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50

40

30

20



Infinite GMM: ML estimation

Theorem [M,Bao 10]

> Sufficient statistics
n # distinct items observed in data
N; # total permutations with length > j

RU) = [Rg)] frequency of rank(k) = j, rank(/) > j in data

Columbia University 4/11/16

> log-likelihood /(mo, ) = Sum( Lower triangle(3_; 0;RU)) permuted by 7o ) + constant
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Infinite GMM: ML estimation
Theorem [M,Bao 10]

> Sufficient statistics
n # distinct items observed in data
N; # total permutations with length > j

RU) = [Rg)] frequency of rank(k) = j, rank(/) > j in data

Columbia University 4/11/16

> log-likelihood /(mo, ) = Sum( Lower triangle(3_; 0;RU)) permuted by 7o ) + constant
> given 7,
oM = log (1 + Nj/LTro(RU)))
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Infinite GMM: ML estimation
Theorem [M,Bao 10]

> Sufficient statistics
n # distinct items observed in data
N; # total permutations with length > j

RU) = [Rg)] frequency of rank(k) = j, rank(/) > j in data

Columbia University 4/11/16

> log-likelihood /(mo, ) = Sum( Lower triangle(3_; 0;RU)) permuted by 7o ) + constant
> given 7,

oM = log (1 + Nj/LTro(RU)))
M

> given 61.;, mo™t can be found exactly by a B&B algorithm searching on matrix Zj OjR(j).
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ML Estimation: Remarks

» sufficient statistics Ry finite for finite sample size N
but don't compress the data
> data determine only a finite set of parameters

> 7o restricted to the observed items
> @ restricted to the observed ranks
N =200

Columbia University 4/11/16
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GM are exponential family models

GM for complete rankings
GM?® for top-t rankings, n finite or co

» have finite sufficient statistics

Columbia University 4/11/16

» are exponential family models in 7o, g
» have conjugate priors
Hyperparameters
» N > 0 equivalent sample size
» R} € R™" equivalent sufficient statistics

> informative prior for mg, 6
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Bayesian Inference: What operations are tractable?

Conjugate prior

Columbia University 4/11/16

J

Py (70, ) o exp [Z(ej(/\/or,) + NoIn Z(6))

Posterior

J

P(0,0) o exp [Z(ej(/vorj + NL(R))) + (No + N)In Z(6;))

» computing unnormalized prior, posterior v

» normalization constant, model averaging under prior, posterior X
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Bayesian Inference: What operations are tractable?

Conjugate prior

J

Columbia University 4/11/16

Py (70, ) o exp [Z(ej(/\/or,) + NoIn Z(6))

Posterior

P(0,0) o exp {Z(e,(/vorj + NL(R))) + (No + N)In Z(6;))

J

» computing unnormalized prior, posterior v

» normalization constant, model averaging under prior, posterior X

> “Toolbox" of tractable Bayesian operations [M,Chen 10,16]

> integrating out gparameters
> sampling 6 | 7, 7o | 6 from posterior
> closed form posterior for N = 1
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Bayesian Inference: What operations are tractable?

Conjugate prior

J

Columbia University 4/11/16

Py (70, ) o exp [Z(ej(/\/or,) + NoIn Z(6))

Posterior

J

P(0,0) o exp {Z(e,(/vorj + NL(R))) + (No + N)In Z(6;))

» computing unnormalized prior, posterior v

» normalization constant, model averaging under prior, posterior X

> “Toolbox" of tractable Bayesian operations [M,Chen 10,16]
Lemma 1[M,Bao 10] Posterior of 7g and 6;|mg
P(e_(’j\ﬂo, No, rym.n) = Beta(e_gi i Norj + Sj, No + N + 1)
t

P(mo|No, r,m1:n) o H Beta(Norj + Sj, No + N + 1)
j=1
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Bayesian Inference: What operations are tractable?

Conjugate prior

Columbia University 4/11/16

Py (70, ) o exp [Z(ej(/\/orj) + NoIn Z(6))

j

Posterior

P(0,0) o exp {Z(e,(/vorj + NL(R))) + (No + N)In Z(6;))

j

» computing unnormalized prior, posterior v

» normalization constant, model averaging under prior, posterior X

> “Toolbox" of tractable Bayesian operations [M,Chen 10,16]
Lemma 2[M, Chen 10, 16] Bayesian averaging over 0

t

H Beta(Sj(m|mo) + Norj + Sj, No + N + 2)
Beta(Ngrj + Sj, No + N + 1)

P(r|mo, No, r, m1:n)
Jj=
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Bayesian Inference: What operations are tractable?

Conjugate prior

J

Columbia University 4/11/16

Py (70, ) o exp [Z(ej(/\/or,) + NoIn Z(6))

Posterior

P(0,0) o exp {Z(e,(/vorj + NL(R))) + (No + N)In Z(6;))

J

» computing unnormalized prior, posterior v

» normalization constant, model averaging under prior, posterior X

> “Toolbox" of tractable Bayesian operations [M,Chen 10,16]
Lemma 3[M, Chen 10, 16] Normalized posterior for N =1

—_ )
z - (n—1t)!
n!
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» for N = 1 sample, the posterior dispersion does not depend on the sample
> allows assigning to/sampling from the singleton clusters




Bayesian Inference: What operations are tractable?

Conjugate prior

J

Columbia University 4/11/16

Py (70, ) o exp [Z(ej(/\/orj) + NoIn Z(6))

Posterior

P(0,0) o exp {Z(e,(/vorj + NL(R))) + (No + N)In Z(6;))

J

» computing unnormalized prior, posterior v

» normalization constant, model averaging under prior, posterior X

> “Toolbox" of tractable Bayesian operations [M,Chen 10,16]

Lemma 4 [M, Chen 10, 16] Exact sampling of 7 | 0 from the posterior possible by
stagewise sampling.
Vj(mo)

—
P(old, No, ry ) o e~ 5% Lo (Rs)
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Bayesian Inference: What operations are tractable?

Conjugate prior

Po(0,0) o exp [Z(e,-(/vor,-) + Noln Z(6)))

Posterior

P(m0,0) o exp {Z(%(Norj + NLz(R;)) + (No + N) In 2(91))]

i
» computing unnormalized prior, posterior v
» normalization constant, model averaging under prior, posterior X

> “Toolbox" of tractable Bayesian operations [M,Chen 10,16]
Lemma 5 [M, Chen 10, 16]

P(m | olobs, T1:n) = H Beta(Sj(w|mo0) + Norj + Sj, No + N + 2)
Jim(j)€obs
I[I Beta(tj + Norj + S, No + N)

Jjim(j)€obs

t
/] 1 Beta(Norj + Sj, No + N + 1)
j=0
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Bayesian Inference: What operations are tractable?
Conjugate prior

J

Py (70, ) o exp [Z(ej(/\/orj) + NoIn Z(6))

Posterior

J

P(0,0) o exp {Z(e,(/vorj + NL(R))) + (No + N)In Z(6;))

» computing unnormalized prior, posterior v

» normalization constant, model averaging under prior, posterior X

> “Toolbox" of tractable Bayesian operations [M,Chen 10,16]

> exploited properties of sufficient statistics

> power series manipulation

> careful programming

> approximating finite n with n = oo speeds up computation
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Clustering with Dirichlet mixtures via MCMC

General DPMM estimation algorithm [[Escobar,West95, Neal03]]
MCMC estimation for Dirichlet mixture

InPUt @, 80, 57 {f}v D
State cluster assignments c(i), i=1:n,
parameters 6 for all distinct k
terate 1. for i =1 : n(reassign data to clusters)
1.1 if n.jy = 1 delete this cluster and its ;)
1.2 resample (i) by

s n—1 .
c(i) = { existingk w.p o< KL f(x, 0k)

new cluster  w.p ;=% [ f(xi,0)go(0)d0
1.3 if ¢(i) is new label, sample a new ;) from go

2. (resample cluster parameters)
for k € {c(1:n)}

2.1 sample 6 from posterior gx(6) x go(6, B) Hieck f(xi, 0)
gk can be computed in closed form if gy is conjugate prior

Output]| a state with high posterior

(&)
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College program admissions, Ireland

n = 533 programs, N = 53737 candidates, t = 10 options

DC116 DC114 DC111 DC148
wD028

DNOO8 TRO71 DNO12 DNO52
FT491 FT353 FT471 FT541

Students pay
price of exam
suceess as
points jump

DB512 DNO21 LM0O54 WD048 LM020 LMO50

FT402 FT404 TR004 FT351 FT110 FT352

Hioh floare Masterclass
High flyers’

hopesdashed students set
as points hit

ecord highs

» Data = all candidates’ rankings for college programs in 2000
from [GormleyMurphy03] (they used EM for Mixture of Plackett-Luce models)

> [M, Chen 10, Ali, Murphy, M, Chen 10] used DPMM (parameters adjusted to get approx

20 clusters)



College program rankings: are there clusters?

Columbia University 4/11/16

4 » 33 clusters cover 99% of the
) 3 data
X —
& 2 > 0. parameters large — cluster
1 are concentrated
0 » number of significant ranks in
cluster Oc, B¢ vary by cluster
"
10
&
o 2
5 10 1
@
3
[E]
1OU L L L I I
0 5 10 15 20 25 30 35

cluster
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College program rankings: are the clusters meaningful?

Columbia University 4/11/16

Cluster  Size Description  Male (%) Points avg(std)
1 4536 CS & Engineering 77.2 369 (41)

2 4340 Applied Business 48.5 366 (40)

3 4077 Arts & Social Science 13.1 384 (42)

4 3898 Engineering (Ex-Dublin) 85.2 374 (39)

5 3814 Business (Ex-Dublin) 41.8 394 (32)

6 3106 Cork Based 48.9 397 (33)

33 9  Teaching (Home Economics) 0.0 417 (4)

» Cluster differentiate by subject area
> ... also by geography

> ... show gender difference in preferences
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College program rankings: the “prestige” question

» Question: are choices motivated by “prestige”
(i.e high entrance points scores)?

» If yes, then PR should be decreasing along the rankings

points overall (quantiles)

points

= \
—_—
£ 400 __\& ] ¥
g N g
——
—

350 ) \

1 2 3 4 5 6 7 8 9 10 15 20 25
rank cluster

» Unclustered data: PR decreases monotonically with rankings
> Clustered data: PR not always monotonic
> Simpson’s paradox!

points for each cluster and rank

30



Outline

Columbia University 4/11/16

Recursive inversion models and finding common structure in preferences
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Recursive Inversion Models (RIM)
[Meek, M 14]
0.1

s
VRN /N

apple banana cherry durian

Columbia University 4/11/16

T = tree structure
mo(7) = induced central ranking
01.n—1 = parameters at nodes

°
=
g
S
4
=
=
H
?
g
2
B
=
s
2
7]
=
5
@
g
>
g
Q




Recursive Inversion Models (RIM)
[Meek, M 14]
0.1

s
VRN /N

apple banana cherry durian

Columbia University 4/11/16

T = tree structure

mo(7) = induced central ranking

01.n—1 = parameters at nodes

Inversions are penalized by ; parameters
Example: 6 = (0.1, 1.2, 0.4)

Cost(alblc|d) = O
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Recursive Inversion Models (RIM)
[Meek, M 14]
0.1

s
VRN /N

apple banana cherry durian

Columbia University 4/11/16

T = tree structure

mo(7) = induced central ranking

01.n—1 = parameters at nodes

Inversions are penalized by ; parameters
Example: 6 = (0.1, 1.2, 0.4)

Cost(alblc|d) = O
Cost(blalc|d) = 1.2
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Recursive Inversion Models (RIM)

[Meek, M 14]
0.1

s
VRN /N

apple banana cherry durian

Columbia University 4/11/16

T = tree structure

mo(7) = induced central ranking

01.n—1 = parameters at nodes

Inversions are penalized by ; parameters
Example: 6 = (0.1, 1.2, 0.4)

Cost(alblc|d) = O
Cost(blalc|d) = 1.2
Cost(c|blald) = 1.2+
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Recursive Inversion Models (RIM)

[Meek, M 14]
0.1

s
VRN /N

apple banana cherry durian

Columbia University 4/11/16

T = tree structure

mo(7) = induced central ranking

01.n—1 = parameters at nodes

Inversions are penalized by ; parameters
Example: 6 = (0.1, 1.2, 0.4)

Cost(alblc|d) = O
Cost(blalc|d) = 1.2
Cost(c|blald) = 1.2+
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Recursive Inversion Models (RIM)

[Meek, M 14]
0.1

s
VRN /N

apple banana cherry durian

Columbia University 4/11/16

T = tree structure

mo(7) = induced central ranking
01.,—1 = parameters at nodes RIM distribution P_,_ 1
Inversions are penalized by ; parameters ’

" Let v; = number of inversions of 7 at node i
Example: 6 = (0.1, 1.2, 0.4)

Cost(alblcld) = 0 P, 5(m) o [T exp(-0iv)
i€nodes

Cost(blalc|d) = 1.2

Cost(c|blald) = 1.2+

P(alblcld) o €°
P(blalcld) o« e 1?2
P(c|blald) o« e 12T
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Recursive Inversion Models (RIM)

[Meek, M 14]
0.1

s
VRN /N

apple banana cherry durian

T = tree structure
mo(7) = induced central ranking o
01.n—1 = parameters at nodes RIM distribution P—z—.§
Inversions are penalized by ; parameters )
Example: 6 = (0.1, 1.2, 0.4)
Cost(alblc|ld) = 0 P gm o JT exp(=0iv)
i€nodes
Cost(blalc|d) = 1.2
Cost(c|blald) = 1.2+

Let v; = number of inversions of 7 at node i

Normalization constant

Z(r,0) = []G(Li,Ri,exp(—67))
i€nodes

P(alblcld) o €° )

P(blalcld) o« e 1?2 with G(L,R,q) = (( ))’?"; (q)n = H(l O

P(c|blald) o« e 12T i=1
Structure 7 known as Riffle Independence model [Huang,Guestrin 12]



The RIM is a general flexible model
0.1

I
/N /N

apple banana cherry durian

Columbia University 4/11/16

> any tree structure
> any parameters (but 6; > 0 suffices)
» includes the Mallows and Generalized Mallows models

/\
apple -
/N

banana 0.4

/N

cherry durian
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Max Likelihood Estimation for RIM
[M,Meek 14]

> Problem Given permutations 71, ... 7wy, infer 7,60

Columbia University 4/11/16
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Max Likelihood Estimation for RIM
[M,Meek 14]

> Problem Given permutations 71, ... 7wy, infer 7,60
» Identifiability and estimation of

Columbia University 4/11/16

> reorder to obtain cannonical representation, with 6; > 0 for all i € nodes
> given 7, 0; can be estimated by convex univariate minimization

0.1\04
/N

apple banana cherry durian
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Max Likelihood Estimation for RIM
[M,Meek 14]

> Problem Given permutations 71, ... 7wy, infer 7,60
» Identifiability and estimation of

> reorder to obtain cannonical representation, with 6; > 0 for all i € nodes
> given 7, 0; can be estimated by convex univariate minimization

0.1\04
/N

apple banana cherry durian

Columbia University 4/11/16

» ldentifiability of 7
Theorem[M, Meek 14] A model 7,0 is identifiable iff

1. 0; > 0 for all i € nodes
2. 0; # Opy(;) for all i € nodes (pa(i) is the parent of node i in 7)
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Max Likelihood Estimation for RIM
[M,Meek 14]

> Problem Given permutations 71, ... 7wy, infer 7,60
» Identifiability and estimation of

> reorder to obtain cannonical representation, with 6; > 0 for all i € nodes
> given 7, 0; can be estimated by convex univariate minimization

0.1\04
/N

apple banana cherry durian

Columbia University 4/11/16

» ldentifiability of 7
Theorem[M, Meek 14] A model 7,0 is identifiable iff

1. 0; > 0 for all i € nodes
2. 0; # Opy(;) for all i € nodes (pa(i) is the parent of node i in 7)

» Hardness of 7 estimation

> Estimating 7o is NP-hard [Duchi, Mackey, Jordan 13]
> Estimating 7 structure given 7 is tractable
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Sufficient statistics

\
/\

apple banana cherry durian

Q(d|alblc) =

a b ¢ d

— 1 0 0|a
0 — 1 01»b
0 0 — 0]c
1 1 1 —|d




Sufficient statistics

Columbia University 4/11/16

0.1
\ a b ¢ d
- 1 1 0]a
R Q(d|alblc) =] 0 — 1 0 |b
: 0 0|— 0]c
apple banana cherry durian 1 1011 — |4

Cost(d|alblc) = 0.1 x 24+1.2x 0+4+0.4 x 1
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Max leellhood Fstlmatlon algorithm(s)

\
/\

apple banana cherry durian

Columbia University 4/11/16

» Estimating 7 given mq is tractable
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Max leellhood Fstlmatlon algorithm(s)

\
/\

apple banana cherry durian

Columbia University 4/11/16

» Estimating 7 given mq is tractable
> by Dynamic Programming (DP) algorithm, similar to Matrix Chain Multiplication,
Inside(-Outside) algorithm O(n*)
> contains 6; estimation at each DP “partial solution”

» Estimating 7o: Stochastic local search over 7 space, similar to Simulated
Annealing
1. Sample 7y from proposal distribution current P, g
2. Given mp™", find 7°Pt §°Pt by Dynamic Programming
3. Bring to cannonical form = 7" "W > (Q
4. Compute log-likelihood score, accept/reject like in Metropolis-Hastings, return to
step 1

°
=
g
S
[:3
=
=
H
?
g
2
B
]
s
2
w
=
5
@
g
>
g
Q




Experiments - Sushi preferences data

©
-
~
-
bl
=
<
>
=
15
<]
=
<
=
i
=
o
o

Data Test set log-likelihood w.r.t SA
M N = 5000 permutations of n = 10 items ‘ : —
& . $ 0 —_ =
&= Compared with: H = ‘
M alph o fixed, 7, 0|mo optimize £ ‘
H kS
£ GM fixed T, optimize o, 0 E !
E HG fixed 7 from [Huang,Guestrin,12], optimize 6 245 T
.’5 SA Simulated Annealing % 2 L |
:E;‘ He al;:h aMM

Ntest = 300, Nyain = 4700, 30
replicates




Beyond sufficient statistics — handling partial rankings

“Sushi preference” data n = 12
types of sushi

Columbia University 4/11/16

“My top 3 preferences are ika,
maguro, tekka, in this order”
“l like uni least of all”

“| prefer fish to non-fish”

Three good things about the RIM
> RIM is a general model (includes Mallows, generalized Mallows)

> likelihood P(|7(f)) factors according to tree (and partition function Z tractable)
» RIM has sufficient statistics
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Beyond sufficient statistics — handling partial rankings

“Sushi preference” data n = 12
types of sushi
ika|maguro|tekkal{all other types}
{all but ebi}|ebi

{sake,anago,. .. } | {tamago,ika,...}

Columbia University 4/11/16

Ey Ey
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Beyond sufficient statistics — handling partial rankings

“Sushi preference” data n = 12
types of sushi

ika|maguro|tekkal{all other types}
{all but ebi}|ebi

{sake,anago,. .. } | {tamago,ika,...}

Partial ranking o [Huang & al, 10]
o= (E1|E2| . |EK) with

Columbia University 4/11/16

» EiUE U. .. Ex = set
of items

E, E.
' ’ » shape (m,...nk),

ne = ‘Ek|, an =n
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Beyond sufficient statistics — handling partial rankings

“Sushi preference” data n = 12
types of sushi
ika|maguro|tekkal{all other types}
{all but ebi}|ebi

{sake,anago,. .. } | {tamago,ika,...}

Partial ranking o [Huang & al, 10]
o= (E1|E2| . |EK) with

Columbia University 4/11/16

» EiUE U. .. Ex = set
of items

E, E.
' ’ » shape (m,...nk),

ne = ‘Ek|, an =n
Three good things about the RIM

» RIM is a general model (includes Mallows, generalized Mallows)

» likelihood P(7|7(f)) factors according to tree ? YES [Huang et al, 10]
> RIM has sufficient statistics 7 NO
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Inferences with partial rankings in the RIM. Are they tractable?

The meaning of “tractable”
» Estimation of 7 for RIM is intractable in the worst case

> We define tractable as O(N poly(n))x time (memory) for complete data

Columbia University 4/11/16
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Inferences with partial rankings in the RIM. Are they tractable?

The meaning of “tractable”
» Estimation of 7 for RIM is intractable in the worst case

> We define tractable as O(N poly(n))x time (memory) for complete data

Columbia University 4/11/16

Main technical difficulty

» marginal probability of a partial ranking o

U|T(9 Z P( 7T|T

T~

where linear extension {m ~ o} of o can have exponential size
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Contributions

1. for marginal probability P(co|7(0))
> exact formula and polynomial algorithm
> proved algorithm no more than 2Nn more costly than for complete permutations
(and sometimes much faster)

—

2. for pairwise marginals E[Q.s] = Pr[aprecedes b| o, 7(6)]

> exact recursive (polynomial) algorithm
> proved algorithm no more costly than for complete permutations

3. for parameter  estimation (Maximum Likelihood)

> convex univariate minimization algorithm for each 6/
> proved algorithm is O(Nn) more costly than for complete permutations
4. for structure search (Maximum Likelihood)

previous work

> complete data: local (simulated annealing) search algorithm with exact, tractable
steps [Meek M 14]

> partial rankings: EM algorithm with approximate (or exponential) E step [Huang &
al 10]
our contributions

> new “E step” based on completing the pairwise marginals E[Qp]

> algorithms above can use the completed pairwise marginals as if they were complete
data



—

Computing the marginal probability P(o|r,0)
0.1

s s
Jat /\

apple banana cherry durian

Columbia University 4/11/16

RIM probability for complete data P(x|r, 5)

P(alblc|d) o €° (with v; = number of inversions of 7y at node i)
P(blalc|d) o« e '? —o;
P(c|blald) o e ?" Pom)= 1l e— v
i€nodes GL oRi (eXp( 9 ))
q)L+R
with G gr(q) = % H(l -q).

RIM probability for partial ranking o
[M, Meek in prep]
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PTﬁ(g) = H (factor at node /)

i€nodes
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Marginal P(7|7,6) for partial ranking o
0.1

s s
Jat /\

apple banana cherry durian

Columbia University 4/11/16

Sufficient to consider root node
Complete ranking m = (c|a|b|d) Partial ranking o = (¢|{a, b, d})

—20 factor — e_29G071(e_8)G2,1(e_9)

e
factor = ———+
G22(e7?) G22(e7?)
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Marginal P(7|7,6) for partial ranking o
0.1

s s
Jat /\

apple banana cherry durian

Columbia University 4/11/16

Sufficient to consider root node

Complete ranking m = (c|a|b|d) Partial ranking o = (¢|{a, b, d})
—20 —20 -0 —0
e e Goil(e )GQ 1(6 )
factor = ———~ factor = : :
Goo(e7?) Go2(e7?)

In general, at some internal node where
> set L is merged with set R

> partial ranking o restricted to LUR is E1|E;|...|Ex with Ex = L U Ry,
LeCL, nnCR

=

» factor of P(o|7(0)) at this node is
970VG’lvfl(eie)Glz-fz(eig) s G/KJK(eig)
IR C)!

where v = # inversions in ¢ at node < # inversions in T ~ o

glhk,nk,0) =
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Marginal P(7|7,6) — how much extra computation?

How many additional factors?
em 1 G(),r = G/70 =1

Columbia University 4/11/16
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Marginal P(7|7,6) — how much extra computation?

How many additional factors?
em 1 GO,r = G/70 =1

em 2 at each node, at least one of Ly, R« decreases (and their initial sum is n)

Columbia University 4/11/16

> Hence, no more than n — 1 extra factors (but sometimes much fewer)
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Marginal P(7|7,6) — how much extra computation?

How many additional factors?
em 1 GO,r = G/70 =1

em 2 at each node, at least one of Ly, R« decreases (and their initial sum is n)

Columbia University 4/11/16

> Hence, no more than n — 1 extra factors (but sometimes much fewer)

—

» Example top-t rankings o = (ika|maguro|sake|{everything else}) P(c|,6) has at
most t — 1 non-trivial factors
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Marginal P(7|7,6) — how much extra computation?

How many additional factors?
em 1 GO,r = G/70 =1

em 2 at each node, at least one of Ly, R« decreases (and their initial sum is n)

Columbia University 4/11/16

> Hence, no more than n — 1 extra factors (but sometimes much fewer)

—

» Example top-t rankings o = (ika|maguro|sake|{everything else}) P(c|,6) has at
most t — 1 non-trivial factors
How much additional computation?
> Gy R is computed recursively over | =0,...L, r=1,...R
> Hence, all G;,(#) in numerator are cached while computing the denominator
» Overhead for whole sample of size N is no more than n/N lookups+multiplications
» For comparison, for a complete whole sample
> computation of sufficient statistics is O(n?N)
> computation of Z given 6 is O(n?log n)

°
=
g
S
[:3
=
=
H
?
g
2
B
]
s
2
w
=
5
@
g
>
g
Q




Independence properties

/0.1

apple

Columbia University 4/11/16

/\ b 0.4
VoA /N

apple banana cherry durian cherry durian

» define Q., = 1 iff a precedes b
» Q. L Qcg whenever path(a, b) N path(c,d) =0

°
=
g
S
4
=
=
H
?
g
2
B
=
s
2
w
=
8
@
g
>
g
Q




Independence properties

/0.1

apple

Columbia University 4/11/16

/\ b 0.4
VoA /N

apple banana cherry durian cherry durian
» define Q., = 1 iff a precedes b
» Q. L Qcg whenever path(a, b) N path(c,d) =0
>

Indepence checking can reveal the “branching structure” (but not mg)

> In progress: combine independence tests with local search to estimate 7
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Conclusion: No need to compromise!

Goals of inference in models on permutations
> Flexible w.r.t observation model (i.e. input data)
> partial rankings, pairwise observations
> Flexible w.r.t generative model
> RIMs are a class of flexible, identifyable, intepretable models

Columbia University 4/11/16

» Exact and tractable algorithms, closed form expression
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Outline

Columbia University 4/11/16

[Signed permutations and the reversal median problem]
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Signed permutations in genetics

» DNA = ordered lists of genes
> Reversals (rearrangements) = a contiguous segment of the DNA is reversed in
place, direction of the genes changes

Columbia University 4/11/16
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Signed permutations in genetics

» DNA = ordered lists of genes
> Reversals (rearrangements) = a contiguous segment of the DNA is reversed in
place, direction of the genes changes

Transforming Human into Mouse From P. Pevzner “Computational Molecular Biology”

6 reversals that involve 8 linkage

Limkoge Sized
Genes  group  groaps
1

a4 L
o .

AR v groups

ACASZ

GATAL

T ARAF

CYBB
| oMo

g
PDHAL

AMG

Figure 1.5: “Transformation” of 2 human X chromosome into a mouse X chromosome.

» These transfomations define W, the hyperoctahedral group on{1:n}
> The elements of W, are called signed permutations



Signed permutations. Three representations

> Signed permutation m = [4213] Group theory

» Reflected representation of 7: hyperoctaedral group W, = group of signed

Columbia University 4/11/16

e = [4213 131 24] permutations of order n
» Precedence matrix C() Generators {71, 72, ... Tn—1, Wn} with
CGir = 1igi w, = sign change at rank n

ell 2 3 4[4 3 2 1 7; = elementary transposition of ranks j
I[-100[1010 and j+1
210 - 0 0|1 000 letZ=[1,2,....,nn...2 1]
3/1 1 - 0|1 1 00 n'¢f = permutation of Z such that eref: m; and
411 1 1 -|1 1 1 1 ﬂ_jrifn: i fOI’j < n.
410 0 0 0|-— 0 0 O L ref
= E.g. identity gives id™ =[1...nn... 1
30110 0[1 - 0 0 & e [ -1
21 11 0|1 1 - 1
11 1 1 0|1 1 0
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Inversion distance — algorithmic view

» Inversion distance d(m, 7o) = # steps to bubble sort 7 into 7o

> cj(m|mo) = #steps to bring item i=mo(j) to j'th position in 7"

Columbia University 4/11/16

d(m,m) = ci(m|mo) + e (m|mo) + ... + ca(7w|mo)

» Code of m w.r.t mo c(m|mo) = (¢j(m|mo))j=1:n

Example 7 = [4213], mp = [3124]

Jj  mo() | action current e G
4213 1 3124]
1 3 move 3 left 3 steps, delete 3 421 1 124] 3
2 1 move 1 left 3 steps, delete 1 42 1 24] 3
3 2 move 2 left 1 step, delete 2 4 4] 1
4 4 4 already in place, delete 4 ] 0
7 =d(r, mp)

Algorithm DISTANCE(T, 7o)
Represent 7 in reflected form 7"
For j =1 : nranks in 7

f

1. let i = (mo); the rank j element of o

ref

2. move i left in 7™ to rank j by adjacent transpositions

3. delete i from the list
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Ouput: d(m, mo)=the total number of adjacent transpositions




Consensus ranking for signed permutations [M,Arora 12]

» one can formulate consensus ranking
w.r.t inversion distance on W,

©
-
~
-
bl
=~
<
>
=
15
<]
=
<
=]
i
=
©°
o

» one can define Mallows, GM models,
conjugate priors on W,

» sufficient statistics are (subtriangle) of
precedence matrix

» estimation/consensus ranking by B&B

algorithm

W [~ [3 1 2 4]4 2 1 3
H 1 - T o001 T o0 1
B 2 0 - 001111
M 3 |11 - 01111
B 4 (1101 -1 1011
(i {000 0[-000
B | 3 (000 0|1 -0 0
& | 2 |1 1001 1 -1
Bl 1 o1 00/1 10
g

=

g




A surrogate for the reversal median

> Reversal distance r(m, 7o) = # reversals to turn 7 into 7o

(one reversal = several inversions)

Columbia University 4/11/16

» Reversal median problem: find 79 minimizing

R(mo) = min > r(mk, mo) 2)

» Relevant in biology, known NP-hard, no practical algorithms in use

> Idea: Approximate reversal median by inversion median (a.k.a. consensus ranking)
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When is this approximation good?

Assumptions

Al 7 generated by r random reversals from g
A2 sample size N — oo (asymptotic regime)
A3 each reversal independent of previous ones

A4 “number inversions/reversal not too large”

Theorem[M,in preparation] Under Al-4, we can show numerically that argminy, E[d(
argming; E[r(m, m0)]

Intuition
C matrices generated by random reversals
1 reversal 2 reversals 3 reversals 10 reversals

“ | |
I I
E 5|
o

Rl Bl E
16 12 18 20 18 12 6 - 16 12 18 24 18 12 6 -1 e 2 1 2 a8 2 6

Kl
16 12 18 20 18 12 6 -1



Does it work? Synthetic data

Sample size N = 50, ...2000 from W,, generated by r = 1,2, 3 random reversals;
results are averages over 10 runs.

Columbia University 4/11/16

n=24

r N Objective D(#y) Distance d(#g, 7€)

ASTAR GREEDY RAND | ASTAR GREEDY RAND
1 50 125.0 125.6 370 0 1.2 135
1 100 120.8 129.0 370 0 16.5 134.7
1 | 1000 125.5 125.5 365 0 0 140.7
1 | 2000 119.1 129.9 362 0 25.2 136.9
2 50 168.8 170.1 338 0 4.4 139.3
2 100 175.4 186.1 336 0 433 153.4
2 | 1000 174.5 175.0 337 0 15 146.4
2 | 2000 171.4 182.5 340 9 47.3 149.4
3 50 | 203.0 205.6 325 0 15.3 143.2
3 100 198.1 206.4 330 21.1 57.1 135.7
3 | 1000 | 202.9 205.3 326 0 14.3 125.5
3 | 2000 | 201.1 210.7 324 49.4 94.5 132.6
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g n =50
} ASTAR  GREEDY RAND | ASTAR GREEDY RAND
T 50| 3724 3835 16843 0 71 612
5 1 100 | 363.4 4140 1668.8 0 77.1 636
3 1 | 1000 | 370.3 370.3 1674.3 0 0 627
2 1 | 2000 | 382.8 455.1 1699.8 0 116.7 622
© 2 50 | 6015 619.6 1565.4 0 39.5 619
2 100 | 613.0 676.3 1555.7 0 147.2 623
2 | 1000 | 601.5 6135 1557.8 0 27 596
2 | 2000 | 595.0 666.6 1536.4 0 164 619
3 50 | 746.6 772.8 1480.8 0 76.6 608
3 100 | 739.5 798.8 1485.9 0 209.4 624
3 | 1000 | 748.2 768.8 1474.7 0 64.3 633
3 | 2000 | 7442 806.1 1480.1 0 224.1 585
Median of (runtime ASTAR /runtime GREEDY) over 10 runs
N 100 | 1000 | 100 | 1000 | 100 | 1000
1 1 2 2 3 3

n =50 3.5 3.5 3.4 3.4 3.4 3.4
n=24 | 2.25 3 3 3 5 3
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ReSu'tS on Metazoan mtDNA data [Bourque & Pevzner 2002]

tree built using B&B

[Bourque & Pevzner 2002] binary tree
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Conclusions

Why models based on inversions?

» Recongnized as good/useful in applications
» Complementarity:
> Utility based ranking models (Thurstone)
> Stagewise ranking models (GM) — combinatorial
> Nice computational properties/Analyzable statistically
» The code grants GM its tractability
> representation with independent parameters

The bigger picture
> Ranked data have rich structure
> computationally incompletely exploited
> structure of preferences incompletely modeled
> Statistical analysis of rankings combines
> combinatorics, algebra
> algorithms
> statistical theory
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» Modeling aspects

>
>
>
>

>
>

infinite number of items [MBao 08, 10]

top-t and other partial observations [MBao 08,MChen 10,MMeek—in prep]
flexible structure (RIM) [MeekM 14]

other finite groups (signed permutations/hyperoctahedral group) [MArora 13]

consistency, rates [MBa0 10]
conjugate prior [MBao |

> Algorithmic aspects

>

>

Maximum likelihood estimation algorithms and sufficient statistics
[MPhadnisPattersonBilmes 04, 05, MandhaniM 08, MAli 10]
Bayesian inference and sampling [MChen 10, MChen 16]



Thank you
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