A tutorial on Manifold Learning for real data
The Fields Institute Workshop on Manifold and Graph-based learning

Marina Meilă

Department of Statistics
University of Washington

19-20 May, 2022
Outline

1. What is manifold learning good for?

2. Manifolds, Coordinate Charts and Smooth Embeddings

3. Non-linear dimension reduction algorithms
 - Local PCA
 - PCA, Kernel PCA, MDS recap
 - Principal Curves and Surfaces (PCS)
 - Embedding algorithms
 - Heuristic algorithms

4. Metric preserving manifold learning – Riemannian manifolds basics
 - Embedding algorithms introduce distortions
 - Metric Manifold Learning – Intuition
 - Estimating the Riemannian metric

5. Neighborhood radius and other choices
 - What graph? Radius-neighbors vs. k nearest-neighbors
 - What neighborhood radius/kernel bandwidth?
Outline

1 What is manifold learning good for?

2 Manifolds, Coordinate Charts and Smooth Embeddings

3 Non-linear dimension reduction algorithms
 - Local PCA
 - PCA, Kernel PCA, MDS recap
 - Principal Curves and Surfaces (PCS)
 - Embedding algorithms
 - Heuristic algorithms

4 Metric preserving manifold learning – Riemannian manifolds basics
 - Embedding algorithms introduce distortions
 - Metric Manifold Learning – Intuition
 - Estimating the Riemannian metric

5 Neighborhood radius and other choices
 - What graph? Radius-neighbors vs. k nearest-neighbors
 - What neighborhood radius/kernel bandwidth?
What is manifold learning good for?

- Principal Component Analysis (PCA). What is it good for?
 - High \rightarrow low dim (save space, reduction processing time).
 - Understand \rightarrow more "relevant" features.
What is manifold learning good for?

Spectra of galaxies measured by the Sloan Digital Sky Survey (SDSS)

- Preprocessed by Jacob VanderPlas and Grace Telford
- $n = 675,000$ spectra $\times D = 3750$ dimensions

embedding by James McQueen
What is manifold learning good for?

Molecular configurations

- Data from Molecular Dynamics (MD) simulations of small molecules by [Chmiela et al. 2016]
- \(n \approx 200,000\) configurations \(\times D \sim 20 - 60\) dimensions
What is manifold learning good for?

When to do (non-linear) dimension reduction

- $n = 698$ gray images of faces in
 $D = 64 \times 64$ dimensions
- head moves up/down and right/left
- With only two degrees of freedom, the faces define a 2D manifold in the space of all 64×64 gray images
Outline

1. What is manifold learning good for?

2. Manifolds, Coordinate Charts and Smooth Embeddings

3. Non-linear dimension reduction algorithms
 - Local PCA
 - PCA, Kernel PCA, MDS recap
 - Principal Curves and Surfaces (PCS)
 - Embedding algorithms
 - Heuristic algorithms

4. Metric preserving manifold learning – Riemannian manifolds basics
 - Embedding algorithms introduce distortions
 - Metric Manifold Learning – Intuition
 - Estimating the Riemannian metric

5. Neighborhood radius and other choices
 - What graph? Radius-neighbors vs. k nearest-neighbors
 - What neighborhood radius/kernel bandwidth?
Manifold. Basic definitions

- **manifold**
 \[\mathcal{M} = \text{set that can locally be } \cong \mathbb{R}^d \]
 \[\mathcal{M} \xrightarrow{\text{chart}} V \subset \mathbb{R}^d \]

- **chart**
 \[U \xrightarrow{x} V \subset \mathbb{R}^d \]

- **atlas**
 \[\{ \text{all charts } x \} \]

- **d** is called intrinsic dimension of \(\mathcal{M} \)

- If the original data \(p \in \mathbb{R}^D \), call \(D \) the ambient dimension.

- \(x(p) \in \mathbb{R}^d \)
- \(x^{-1} \) exists, differentiable
Intrinsic dimension. Tangent subspace

For $p \in \mathcal{M}$,

$T_p \mathcal{M} \cong \mathbb{R}^d$ vector space

$T\mathcal{M} = \bigcup T_p \mathcal{M}$, $p \in \mathcal{M}$

$tangent$ $bundle$

$T_p \mathcal{M} = \{ tangents \ to \ curves \ in \ \mathcal{M} \}$

$\left\{ \frac{\partial \mathbf{x}}{\partial u}(p), \frac{\partial \mathbf{x}}{\partial v}(p) \right\} \in T_p \mathcal{M}$

basis

$x(p) \in \mathbb{R}^d$

$x = \begin{bmatrix} u \\ v \end{bmatrix}$
Embeddings

- One can circumvent using multiple charts by mapping the data into \(m > d \) dimensions.
- Let \(\phi : \mathcal{M} \rightarrow \mathbb{R}^m \) be a smooth function, and let \(\mathcal{N} = \phi(\mathcal{M}) \).
- \(\phi \) is an embedding if the inverse \(\phi^{-1} : \mathcal{N} \rightarrow \mathcal{M} \) exists and is differentiable (a diffeomorphism).

\[
\text{data } \mathbb{R}^d \xrightarrow{\phi} \mathbb{R}^m
\]

- Whitney’s Embedding Theorem (?) states that any \(d \)-dimensional smooth manifold can be embedded into \(\mathbb{R}^{2d} \).
- Hence, if \(d \ll D \), very significant dimension reductions can be achieved with a single map \(\phi : \mathcal{M} \rightarrow \mathbb{R}^m \).
- Manifold learning algorithms aim to construct maps \(\phi \) like the above from finite data sampled from \(\mathcal{M} \).
Examples of manifolds and coordinate charts

- \mathbb{R}^d: $\dim \mathbb{R}^d = d$
- S^1: $\dim S^1 = 1$
- S^d: sphere of $\dim = d$
- S^d embedded in \mathbb{R}^{d+1}, $m \geq d+1$
- T^2: torus
- $\dim T^2 = d$
- $m = d+1$
- generated by 2 circles
- subset of \mathbb{R}^d mapped in \mathbb{R}^d
Examples of manifolds and coordinate charts

\[\xi \in \mathbb{R}^d \quad S^d = \{ \xi \in \mathbb{R}^d : \|\xi\| = 1 \} \]
Examples of manifolds and coordinate charts

Not manifolds
- dimension not constant
- unions of manifolds that intersect
- sharp corners (non-smooth)
- many/most neural network embeddings
- manifolds can have border
Outline

1. What is manifold learning good for?

2. Manifolds, Coordinate Charts and Smooth Embeddings

3. Non-linear dimension reduction algorithms
 - Local PCA
 - PCA, Kernel PCA, MDS recap
 - Principal Curves and Surfaces (PCS)
 - Embedding algorithms
 - Heuristic algorithms

4. Metric preserving manifold learning – Riemannian manifolds basics
 - Embedding algorithms introduce distortions
 - Metric Manifold Learning – Intuition
 - Estimating the Riemannian metric

5. Neighborhood radius and other choices
 - What graph? Radius-neighbors vs. k nearest-neighbors
 - What neighborhood radius/kernel bandwidth?
Non-linear dimension reduction: Three principles

Algorithm given \(D = \{ \xi_1, \ldots, \xi_n \} \) from \(M \subset \mathbb{R}^D \), map them by Algorithm \(f \) to \(\{ y_1, \ldots, y_n \} \subset \mathbb{R}^m \).

Assumption if points from \(M \), \(n \to \infty \), \(f \) is embedding of \(M \) (\(f \) “recovers” \(M \) of arbitrary shape).

1. Local (weighted) PCA (lPCA)
2. Principal Curves and Surfaces (PCS)
3. Embedding algorithms (Diffusion Maps/Laplacian Eigenmaps, Isomap, LTSA, MVU, Hessian Eigenmaps,...)
4. [Other, heuristic] t-SNE, UMAP, LLE

What makes the problem hard?

- Intrinsic dimension \(d \)
 - must be estimated (we assume we know it)
 - sample complexity is exponential in \(d \) – NONPARAMETRIC

- non-uniform sampling
- volume of \(M \) (we assume volume finite; larger volume requires more samples)
- injectivity radius/reach of \(M \)
- curvature

- ESSENTIAL smoothness parameter: the neighborhood radius
Non-linear dimension reduction: Three principles

Algorithm given \(D = \{ \xi_1, \ldots, \xi_n \} \) from \(\mathcal{M} \subset \mathbb{R}^D \), map them by Algorithm \(f \) to \(\{ y_1, \ldots, y_n \} \subset \mathbb{R}^m \).

Assumption if points from \(\mathcal{M} \), \(n \to \infty \), \(f \) is embedding of \(\mathcal{M} \) (\(f \) “recovers” \(\mathcal{M} \) of arbitrary shape).

1. Local (weighted) PCA (LPCA)
2. Principal Curves and Surfaces (PCS)
3. Embedding algorithms (Diffusion Maps/Laplacian Eigenmaps, Isomap, LTSA, MVU, Hessian Eigenmaps, . . .)
4. [Other, heuristic] t-SNE, UMAP, LLE

What makes the problem hard?

- Intrinsic dimension \(d \)
 - must be estimated (we assume we know it)
 - sample complexity is exponential in \(d \) – **NONPARAMETRIC**

- **non-uniform sampling**
 - volume of \(\mathcal{M} \) (we assume volume finite; larger volume requires more samples)
 - injectivity radius/reach of \(\mathcal{M} = 2 \)
 - curvature

- **ESSENTIAL** smoothness parameter: the **neighborhood radius**

Sampling distribution \(p(\cdot) \)
Parametric vs. non-parametric

An example of density estimation with data $x_{1:n} \in \mathbb{R}$.

1. **Gaussian $N(\mu, \sigma^2)$ parametric.**
 - $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$, $\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \hat{\mu})^2$
 - Error $\mu - \hat{\mu}$ has mean 0 and standard deviation $\sigma_{\hat{\mu}} = \frac{\sigma}{\sqrt{n}} \propto n^{-1/2}$
 - To increase accuracy $\times 10$, n must increase $\times 10^2 = 100$

2. **Kernel density estimation (KDE), non-parametric**
 \[
p_h(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} \kappa \left(\frac{x_i - x}{h} \right)
 \]
 - $\kappa = N(0, 1)$ the kernel, $h > 0$ is the kernel width
 - Accuracy for KDE $\propto n^{-2/5}$
 - To increase accuracy $\times 10$, n must increase $\times 10^{5/2} \approx 316$

<table>
<thead>
<tr>
<th>Model</th>
<th>e.g.</th>
<th>distribution shape</th>
<th>error rate</th>
<th>to decrease err. by 10 we need samples \times</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parametric</td>
<td>$N(\mu, \sigma^2)$</td>
<td>fixed</td>
<td>$n^{-1/2}$</td>
<td>$n \times 10^2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Non-parametric</td>
<td>KDE in \mathbb{R}</td>
<td>any</td>
<td>$n^{-2/5}$</td>
<td>$n \times 10^{5/2}$</td>
</tr>
<tr>
<td></td>
<td>KDE in \mathbb{R}^d</td>
<td>any</td>
<td>$n^{-2/(d+4)}$</td>
<td>$n \times 10^{(d+4)/2}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1000 $(d = 2)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3163 $(d = 3)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10,000 $(d = 4)$</td>
</tr>
</tbody>
</table>
Neighborhood graphs

- All ML algorithms start with a **neighborhood graph** over the data points
 - neigh_i denotes the neighbors of ξ_i, and $k_i = |\text{neigh}_i|$.
 - $\Xi_i = [\xi_{i' j}]_{i' \in \text{neigh}_i} \in \mathbb{R}^{D \times k_i}$ contains the coordinates of ξ_i’s neighbors
- In the **radius-neighbor** graph, the neighbors of ξ_i are the points within distance r from ξ_i, i.e. in the ball $B_r(\xi_i)$.
- In the **k-nearest-neighbor (k-nn)** graph, they are the k nearest-neighbors of ξ_i.

k-nn graph has many computational advantages
- constant degree k (or $k - 1$)
- connected for any $k > 1$
- more software available

- but much more difficult to use for consistent estimation of manifolds (see later, and)

Data $\xi_1, \ldots, \xi_n \subset \mathbb{R}^D$

neighborhood graph

A (sparse) matrix of distances between neighbors