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Unsupervised learning for the sciences – how do we know machine learning
is right?

▶ Success of modern AI:
▶ driven by predicting and acting
▶ clear error measure
▶ validation “easy” (e.g. speech recognition)
▶ many local optima

▶ Unsupervised learning: clustering, dimension reduction
▶ finding [geometric, causal] structure of data
▶ formulating “error measure” is part of the problem
▶ validation can be EXPENSIVE
▶ uniqueness of solution matters

▶ Big scientific data
▶ Allows us to ask more detailed questions (e.g “personalized medicine”)
▶ Big data contains more complex patterns
▶ Machine Learning discovers patterns fast

▶ Often Hypotheses are cheap, experiments are expensive
▶ Validation is the bottleneck



Stability guarantees for clustering [M NeurIPS 2018], [Wan, M NIPS 2016],[M

ICML 2006] [M, Zhang 2021], [M, Zhang 2023]

provable “correctness” for the practitioner

Manifold coordinates with physical meaning [M,Koelle,Zhang arXiv:1811.11891]

Interpretability in the language of the domain
Explainable or data driven coordinates?
The ManifoldLasso algorithm
Theoretical and experimental recovery results
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For the practitioner of clustering

▶ Clustering algorithm e.g. K-means, Spectral clustering produces clustering
C with K clusters

▶ IDEALLY WANTED: guarantee that C is correct/optimal

▶ WHAT WE CAN DO: guarantee that C is approximately correct/optimal

▶ WHEN C is good and stable

Good, stable Bad Unstable

SS output: OI=1e−4 no guarantee no guarantee
OI = Optimality Interval



What is an Optimality Interval (OI)?

OI(C) = ϵ is a certificate that

all good clusterings, including the optimal clustering, are contained in the
Ball(C, ϵ)
Good, stable Bad Unstable

SS output: OI=1e−4 no guarantee no guarantee



What is an Optimality Interval (OI)?

OI(C) = ϵ: all good clusterings are contained in the Ball(C, ϵ)

▶ C′ is good if
Loss(C′) ≤ Loss(C)+α.

▶ ϵ is OI: for all good C′,
dEM(C′, C) ≤ ϵ
in particular, dEM(Copt, C) ≤ ϵ

▶ If OI exists, we say C is stable

▶ OI must be tractably computable
in practice



The Sublevel Set (SS) method

Given

▶ clustering problem defined by Loss ,
convex relaxation of Loss with space X

▶ data and clustering C of data

Question Is C good & stable? Wanted: OI for C

Step 1 Use convex relaxation to define Sublevel Set problem

SS δ = max
X ′∈X

∥X (C)− X ′∥F , s.t. Loss(X ′) ≤ Loss(C).

Step 2 Prove that ∥X (C)−X (C)′∥F ≤ δ ⇒ dEM(C, C′) ≤ ϵ E.g. by [M, MLJ 2012]

Done: ϵ is a Optimality Interval (OI) for C.



Two technical bits

1. SS is convex only if ||X ′ − X (C)|| concave
▶ Use || ||F Frobenius norm. ||X (C)||2F = K for any clustering.

2. Relating ∥ ∥F to distance between clusterings.

∥X (C)− X (C)′∥2F ≤ δ ⇒ dEM(C, C′) ≤ ϵ
distance between matrices “misclassification error” metric

between clusterings

▶ Theorem proved in [M, MLJ, 2012] with ϵ = 2δpmax.
▶ The tightest result known. Upper/lower bounds between dEM , ∥ ∥F and

Rand

▶ Proofs use geometry of convex sets + refined analysis for small distances
▶ Example from [Wan,M NIPS16] OI by existing results [Rohe et al, 2014] OI

by our method



Summary of SS method

1. Cluster data

2. Set up and solve SS problem

3. If solution δ small enough, we have guarantee ϵ that C is approximately optimal

and all other good clusterings are near it

▶ without any model assumptions, practically applicable

▶ not all C can have guarantees



Results for K-means clusterings

K = 4 equal Gaussian clusters, n = 1024, ||µk − µl || = 4
√
2 ≈ 5.67

data for σ = 0.9 Values of ϵ vs cluster spread σ

Spectral=[M ICML06], SDP=[M NeurIPS 2018]

Aspirin (C9O4H8) molecular simulation data [Chmiela et al. 2017]

K = 2
pmin = .26
pmax = .74

n = 2118 ε = 0.065 fast ADMM algorithm by Gang Cheng https://github.com/mathcg/admm_ss_sdp/

https://github.com/mathcg/admm_ss_sdp/


For what clustering paradigms can we obtain OI’s?

“All” ways to map C to a matrix
space matrix definition size
X X (C) Xij = 1/nk iff i , j ∈ Ck n × n, block-diagonal

X̃ X̃ (C) X̃ij = 1 iff i , j ∈ Ck n × n, block-diagonal
Z Z(C) Zik = 1/

√
nk iff i ∈ Ck n × K , orthogonal

Theorem
[M NeurIPS 2018] If Loss has a convex relaxation involving one of X , X̃ ,Z , then

(1) There exists a convex SS problem

(SS) δ = min
X ′∈X≤c

⟨X (C),X ′⟩ (similarly for X̃ ,Z).

(2) From optimal δ an OI ε can be obtained, valid when ε ≤ pmin.

X : Xij = 1/nk iff i , j ∈ Ck ε = (K − δ)pmax

X̃ : X̃ij = 1 iff i , j ∈ Ck ε =
∑

k∈[K ] n
2
k+(n−K+1)2+(K−1)−2δ

2pmin

Z : Zik = 1/
√
nk iff i ∈ Ck ε = (K − δ2/2)pmax

Existence of guarantee depends only on space of convex relaxation.



Relation with other work

▶ Previous ideas on OI
▶ Spectral bounds for Spectral Clustering [M,Shortreed,Xu AISTATS05]
▶ Spectral bounds for K-means, NCut and other quadratic costs [M, ICML06

and JMVA 2018]
▶ Spectral bounds for networks model based clustering: Stochastic Block

Model and Preference Frame Model [Wan,M NIPS16] and comparisons [M,
Wan, ISAIM16]

▶ Previous work we build on
▶ Convex relaxations for clustering (MANY!) here we use SDP for K-means

[Peng, Wei 2007]
▶ Transforming bound on ||X − X ′||F into bound on dEM [M MLJ 2012]

▶ Contrast with work on Clusterability and resilience, e.g. [Ben-David,
2015],[Bilu,Linial 2009]
▶ clusterable data, resilient clustering ≈ stable C
▶ Assume ∃ stable C, prove it can be found efficiently
▶ Our work: given C, prove it is stable



Stability and the selection of K [Cheng,M,Harchaoui (in prep)]
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Recap: generic stability guarantees

for any C′ ∈ M, if fit(C′,Q) ≤ fit(C,Q) + γ then d(C, C′) ≤ δ(C, γ)

paradigm fit(C,Q) d(C, C′) Ref
K-means dataset K-means loss Earthmover’s distance [Zhang, M 2017]

Spectral dataset NCut Earthmover’s distance [Zhang, M 2017]

. . . dataset Loss Earthmover’s distance [Zhang, M 2017]

Network dataset Difference in Earthmover’s distance [Wan, M 2016]

clustering graph Laplacian
Gaussian distribution Q TV (P,Q) dparam [Zhang, M 2023]

mixture

1 2

1H.Zhang and M. Meila, Distribution free optimality intervals for clustering, arXiv 2107.14442
2Y.Wan and M.Meila, Graph clustering: block-models and model free result, NeuRIPS 2016



Previous results for Gaussian mixtures

▶ Recovery guarantees under model assumptions [Vempala Wang 2004,

Dasgupta Shulman 2007]

▶ Parametric stability
▶ For e.g. Gaussian mixtures
▶ If P,P′ are close as distributions

. . .P,P′ have similar parameters
▶ [Liu, Moitra, 2021] ”Settling the robust learnability of mixtures of Gaussians”

▶ Any hope to do something that can inform practice?

▶ Yes, partway



Parametric stability with computable bounds [Zhang, M 2023]

▶ MK ,wmin,c = Spherical Gaussian mixtures with

fixed K number of components

fixed minimal/maximal component weight wmin,wmax

minimal separation c = mini,j∈[K ], i ̸=j
∥µi−µj∥
σi+σj

≥ c

P =
K∑
i=1

wiN(µi , σ
2
i I )

▶ W.r.t. population goodness-of-fit TV (Q,P)

▶ Guarantees for distances in parameter space

dparam(P,P ′) = min
τ∈ΠK

max
i∈[K ]

|wi − wτ(i)|︸ ︷︷ ︸
Difference in w

+
∥µi − µ′

τ(i)∥
max(σi , σ′

τ(i))︸ ︷︷ ︸
Difference in µ

+

∣∣∣∣∣max

{
σi

σ′
τ(i)

,
σ′
τ(i)

σi

}
− 1

∣∣∣∣∣︸ ︷︷ ︸
Difference in σ

▶ Results also for Mwmin , Mwmin,wmax,c (K not fixed), MK ,wmin,c (K fixed)





Summary + What next?

▶ Stability guarantees/Optimality Intervals (OI) for any Loss-based
clustering paradigm that admits convex relaxation [M, NIPS 2017]

▶ Guarantees are distribution free, computable, informative

▶ “Testing” data distribution clusterable [M, Zhang, arXiv:2107.14442]

▶ Parametric stability for Gaussian Mixtures (in population) [Zhang, M,

arXiv:2302.00242] (population version)

▶ Model selection heuristic [Cheng, M, Harchaoui, Zhang, in preparation]

▶ Finite sample bounds for mixture models

▶ How sharp are the OIs (Optimality Intervals) ? Agnostic vs model based
bounds

▶ Validation for other problems with discrete hidden variables
▶ sparse linear regression
▶ hierarchical clustering
▶ . . . topic models, graphical models, . . .
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Spectra of galaxies measured by the Sloan Digital Sky Survey (SDSS)

www.sdss.org

www.sdss.org

▶ Preprocessed by Jacob VanderPlas and Grace Telford

▶ n = 675, 000 spectra ×D = 3750 dimensions

embedding by James McQueen megaman.github.io [McQueen, M, VanderPlas, Zhang JMLR 2016]



Molecular configurations

ethanol molecule

▶ Data from Molecular Dynamics (MD)
simulations of small molecules by [Chmiela

et al. 2016]

▶ n ≈ 200, 000 configurations ×D ∼ 12
dimensions



Embedding in 2 dimensions by different manifold learning algorithms
Original data
(Swiss Roll with hole)

Galaxy spectrum

Hessian Eigenmaps
(HE)X

Diffusion Maps (DM)X?

Local Linear Embedding
(LLE)X

Isomap✓

Local Tangent Space
Alignment (LTSA)✓



Manifold learning: beyond the embedding algorithm



Coordinates with scientific meaning

[Cavalli-Sforza, Menozzi, Piazza, “The

history and geography of human genes”,

1996]



Motivation – understanding data from a Molecular Dynamics simulation

original after ML
ethanol data torsion 1

preprocessed torsion 2

▶ 2 rotation angles (torsions) describe this manifold

▶ Can we discover these features automatically? Can we select these angles
from a larger set of features with physical meaning?



Explaining a manifold with domain specific coordinates

data driven scientific interpretable
coordinates language coordinates

(e.g. DiffMaps) (torsions)

+ =
ϕξ1 , ϕξ2 , . . . ϕξn F = {f1, f2 . . . fp} subset fj1 , . . . fjd ⊂ F

▶ Explanation = finding manifold coordinates from among scientific
variables of interest

• Manifold learning algorithm outputs a data embedding ϕ,
• + Scientist proposes a dictionary F with all variables of interest,

• ManifoldLasso finds new coordinates in F which are “equivalent” with ϕ



Solution by sparse regression in function space

Wanted: Change of variable
↓

ϕ = h ◦ fS
data driven selected functions from G
coordinates (collective coordinates)

Challenges

▶ sparse, non-linear regression problem

▶ coordinates ϕ depend on data,
algorithm parameters

▶ hence, h cannot take parametric form

▶ we cannot choose a basis for h

▶ cannot assume ϕk depends on single fj

▶ cannot assume ϕ isometric

Idea: Chain Rule

Dϕ = DhDgS

▶ sparse linear regression
problem

▶ yi = Xiβi for every data i
▶ y i = gradϕ(ξi ),
▶ Xi = grad f1:p(ξ)
▶ βij =

∂h
∂fj

(ξi )

▶ Constraint: subset S is same
for all i

Solution by Group Lasso

▶ optimize

min
β

Jλ(β) = 1
2

n∑
i=1

||yi − X iβ i ||
2
2 + λ

∑
j

||βj ||, (ManifoldLasso)

▶ support S of β selects fj1,...js from F



ManifoldLassoin matrix form

yik = ∇ϕk(ξi ) X i = ∇f1:p(ξ) βijk =
∂hk

∂fj
(ξi )

Jλ(β) = 1
2

n∑
i=1

||yi − X iβ i ||
2
2 + λ

p∑
j=1

||βj ||

βj = vec(βijk , i = 1 : n, k = 1 : m) ∈ Rmn, βik = vec(βijk , j = 1 : p) ∈ Rp .



Gradients in manifold setting

▶ gradients ∇ → manifold gradients grad in tangents subspace to M
▶ grad fj is in TξiM (ambient space RD)

▶ ∇fj known analytically

▶ gradϕk is in Tϕ(ξi )ϕ(M) (embedding space Rm)
1. must estimate tangent subspace Tϕ(ξi )

ϕ(M)

2. must estimate gradϕk (ϕ(ξi )) in tangent subspace Tϕ(ξi )
M

3. must pull-back gradϕk (ϕ(ξi )) to TξiM



Second Idea: pulling back the ϕ gradients

Wanted Y i = gradT M ϕ(ξi ) ∈ Rm×d

Estimate tangent subspace at ξi by (weighted) PCA
1. Estimate tangent subspace at ϕ(ξi ) Tϕ(ξi )ϕ(M) by SVD of push-forward

Riemannian metric G
Vi ,Λi = SVD(Gi , d)

2. in Tϕ(ξi )ϕ(M), gradϕk(ξi ) = ViV
T
i ek

3. Create neighbor matrices for ξi and ϕ(ξi ).

Ai =
[
ProjTiM(ξi′ − ξi )

]
i′∈Ni

Bi =
[
ProjTiϕ(M)(ϕ(ξi′)− ϕ(ξi ))

]
i′∈Ni

,

Solve linear system ⟨Ai , Y i ⟩ ≈ ⟨Bi , ViV
T
i I ⟩ [Luo,Safa,Wang2009]



ManifoldLasso Algorithm

Given Data ξ1:n, intrinsic dimension d , embedding ϕ(ξ1:n)

dictionary F = {f1:p}
1. Estimate tangent subspace at ξi by (weighted) PCA

2. Project dictionary functions gradients ∇fj on tangent subspace, obtain
X1:n ∈ Rd×p

3. Estimate gradients of ϕ1:k , obtain y1:n ∈ Rd×m

by pull-back from embedding space ϕ

4. Solve GroupLasso(y1:n,X1:n, d), obtain support S

min
β

Jλ(β) = 1
2

n∑
i=1

||yi − X iβ i ||22 + λ
∑
j

||βj ||, (ManifoldLasso)

Output S



Ethanol MD simulation

regularization paths β1:p vs λ



Theory

[Koelle et al., arXiv:1811.11891, JMLR 2022, AISTATS 2024]

▶ When is S unique? / When can M be uniquely parametrized by F?
Functional independence conditions on dictionary F and subset fj1,...js

▶ Basic result

fS = h ◦ fS′ on U iff

rank

(
DfS
DfS′

)
= rankDfS′ on U

▶ When can Group Lasso recover S ?
(Simple) Incoherence Conditions

µ = max
i=1:n,j∈S,j′ ̸∈S

|XT
ji Xj′ i |

∥Xji∥∥Xj′ i∥
ν =

1

mini=1:n ||XT
iSXiS ||2

ndσ2 =
∑
i,k

ϵ2ik

Theorem If, ∥X1:p∥ = 1, µν
√
d + σ

√
nd

λ
< 1 then βj = 0 for j ̸∈ S .



Recovery for ManifoldLasso



TangentSpaceLasso: ManifoldLasso without embedding

Simplification regress basis of TξM on gradients of fj



Experiments

Dataset n Na D d ϵN m n′ p

SwissRoll 10K NA 51 2 .18 2 100 51 synthetic
RigidEth 10K 9 50 2 3.5 3 100 12

Ethanol 50K 9 50 2 3.5 3 100 12 skeleton F
Malonald 50K 9 50 2 3.5 3 100 12
Toluene 50K 16 50 1 1.9 2 100 30

Ethanol 50K 9 50 2 3.5 3 100 756 exhaustive F
Malonald 50K 9 50 2 3.5 3 100 756

ϕ MLasso |G|
p = dictionary size, m = embedding dimension, n = sample size for

manifold estimation, n′ = sample size for ManifoldLasso



Understanding latent space representation of cryoEM images

Simulator
θθ

Prior

ϴ

φ

Approximate Posterior

 ϴ

Latent
mapping Flow

Latent representation

▶ Estimating conformation of Hemagluttinin molecules from cryoEM images

▶ Neural network trained on simulated images [Dingeldein et. al. biorXiv:2024]

▶ Unsupervised study of hidden layer representation: low dimensional!

conformation θ SNR

with Luke Evans, Vlad Murad, Lars Dingeldein, Pilar Cossio, Roberto Covino
[submitted NeurIPS 2024 MLSB Workshop]



Summary of ManifoldLasso
▶ non-linear sparse regression in function spaces ⇒ linear sparse regression

(Group Lasso)
▶ ManifoldLasso= coordinate change from data driven coordinates ϕ1:m

to collective coordinates F = {f1:p}

scientific data driven interpretable
language coordinates coordinates

+ =
▶ explains large scale structure with domain-relevant functions
▶ transmissible knowledge, compare embeddings from different experiments
▶ non-linear, non-parametric, basis-free, not symbolic regression [Brunton et

al. 2016, Rudy et al. 2019] [Udrescu, Tegmark 2020]

▶ No manifold necessary immediate extensions to Principal Components,
autoencoders (low dimensional!), sparse functional regression

Applications
▶ set of f’s that covary (e.g. small protein folding), level sets (in progress)
▶ simultaneous explanation of multiple systems
▶ dynamical systems (future)



Summary: Towards knowledge that is transferable

Cluster validation without model assumptions [M NeurIPS 2018]

▶ A general method that can be applied to any clustering cost that has a
convex relaxation / mixtures of gaussians

▶ A general framework for validation without model assumptions

Manifold coordinates with pysical meaning [arXiv:1811.11891]

▶ Interpretation in the language of the domain

▶ From non-parametric to parametric

Learning vector fields on manifolds [arXiv:2103.07626]

Python package github.com/mmp2/megaman

▶ tractable for millions of points

▶ manifold learning and clustering

▶ incorporates state of the art results



Towards unsupervised validation for unsupervised learning

▶ In Machine Learning: Unsupervised Learning is the next big challenge

▶ In the sciences: Unsupervised Learning is about explanation and
understanding

▶ Automated discoveries require automated validation

▶ Combine data driven/machine learning methods with domain
knowledge/concepts

▶ On purely mathematical/statistical grounds

▶ Remove algorithmic artefacts

▶ Quantitative measures of “correctness” / robustness / uncertainty

▶ Is explanation unique?

▶ Statistical guarantees – with minimum od untestable assumptions

▶ Good community practices – all machine learning algorithms should come
with validation procedures



Hanyu Zhang, Samson Koelle, Vlad Murad, Yu-Chia Chen, Weicheng Wu
Ioannis Kevrekidis (JHU)

Alexandre Tkatchenko (Luxembourg), Stefan Chmiela (TU Berlin)
Pilar Cossio (Flatiron), Luke Evans (Flatiron)

Lars Dingeldein (Frankfurt), Roberto Covino (Frankfurt)

Thank you







Learning with flows and vector fields [Yu-chia Chen]
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“Testing” population stability (K-means loss)

A1. D = {x1, · · · , xn} is sampled i.i.d. from P, supported on a subset of Rd .
P is absolutely continuous with respect to the Lebesgue measure on Rd .
A2. [Uniform Convergence of LossKm] There exists a function Ψ(n, δ) such
that, for any n sufficiently large and δ ∈ (0, 1], with probability 1− δ

sup
C∈CK (D)

| LossKm(P; C)− LossKm(D, C)| ≤ Ψ(n, δ)

Theorem
Suppose P satisfies Assumptions 1 and 2, and let δ ∈ (0, 1]. If any optimal
clustering Copt on P is (α, ε) unstable for some α > 0, then with probability

1− δ over samples D, with |D| = n, any optimal clustering Ĉ
opt

of D is
(α+ 2Ψ(n, δ/2), ε/2−

√
log(4/δ)/2n) unstable.







K-means Sublevel Set problem

Loss(C) = ⟨D,X (C)⟩, D = squared distance matrix ∈ Rn×n

(SSKm) δ = min
X ′∈X

⟨X (C),X ′⟩ s.t.⟨D,X ′⟩ ≤ Loss(C)

a Semi-Definite Program (SDP).

Algorithm

Input Matrix of squared distances D, clustering C
1. Solve (SSKm), get optimal value δ.

2. If ϵ = (K − δ)pmax ≤ pmin then C is stable

else no guarantee.



Experiments with K-means clusterings

K = 4 equal Gaussian clusters, n = 1024, ||µk − µl || = 4
√
2 ≈ 5.67

data for σ = 0.9 Values of ϵ vs cluster spread σ

Spectral=[M ICML06], SDP=[M NeurIPS 2018]



Separation statistics

distance to own center over min center
separation, colored by σ.

distance to second closest center over
distance to own center, versus σ



Results for unequal clusters

K=4 Unequal normal clusters Unequal non-normal clusters
σ n = 200 n = 400 n = 800 n = 200 n = 400 n = 800
0.6 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.001(0.001) 0.001(0.000) 0.002(0.007)
0.8 0.01(0.01) 0.01(0.01) 0.01(0.01) 0.006(0.004) 0.004(0.002) 0.007(0.003)
1.0 0.09 (0.05) 0.06 (0.01) 0.07 (0.02) 0.04 (0.02) 0.03 (0.01) 0.03 (0.01)
1.2 0.28 (0.08) 0.21 (0.05) 0.21 (0.03) 0.16 (0.06) 0.14 (0.03) 0.13 (0.03)

K = 6 normal non-normal
σ n = 525 n = 525
0.06 0.00(0.00) 0.005(0.001)
0.08 0.01(0.00) 0.006(0.001)
0.1 0.01(0.00) 0.009(0.003)

Outlier removal: before clustering, 0.2–0.5% fraction of points i with largest
∑

j Dij

were removed; j ranges over pmin/2 nearest neighbors of i .



Aspirin (C9O4H8) molecular simulation data [Chmiela et al. 2017]

K = 2
pmin = .26
pmax = .74

all data n = 2118 ε = 0.065 computing time 17h
1271 inliers removed n = 847 ε = 0.047 computing time 42min
b



Results for Spectral Clustering by Normalized Cut
Spectral=[M AISTATS05], SDP=[M NeurIPS 2018]

Synthetic S , n = 100 Chemical reaction data, n ≈ 1000



Brief intro to manifold learning algorithms

ALL ML Algorithms

▶ Input Data p1, . . . pn, embedding dimension m, neighborhood scale
parameter ϵ

▶ Construct neighborhood graph p, p′ neighbors iff ||p − p′||2 ≤
√
ϵ

▶ Construct a n × n sparse distance matrix

D = [||p − p′||]p,p′neighbors

p1, . . . pn ⊂ RD



Isomap ML algorithm

Isomap [Tennenbaum, deSilva & Langford 00]

1. Find all shortest path distances in neighborhood graph

2. Construct matrix of distances

M = [distance2pp′ ]

3. use M and Multi-Dimensional Scaling (MDS) to obtain d dimensional
coordinates for p ∈ D



Diffusion Maps Algorithm

Input coordinates U ∈ Rn×D , bandwidth
√
ϵ, embedding dimension s

1. Compute Laplacian L ∈ Rn×n

2. Compute eigenvectors of L for smallest s + 1 eigenvalues
[ϕ0 ϕ1 . . . ϕs ] ∈ Rn×s

▶ ϕ0 is constant and not informative
▶ These are the slow modes of the system

The embedding coordinates of pi : are (ϕi1, . . . ϕis)

▶ Embedding dimension s = number of eigenvectors

▶ Intrinsic dimension d ≤ s effective number of degrees of freedeom



UMAP: Uniform Manifold Approximation and Projection [McInnes, Healy,

Melville,2018]

Input k number nearest neighbors, d ,

1. Find k-nearest neighbors

2. Construct (asymmetric) similarities wij , so that
∑

j wij = log2 k.
W = [wij ].

3. Symmetrize S = W +W T −W . ∗W T is similarity matrix.

4. Initialize embedding ϕ by LaplacianEigenmaps.

5. Optimize embedding.

Iteratively for niter steps
5.1 Sample an edge ij with probability ∝ exp−dij
5.2 Move ϕi towards ϕj

5.3 Sample a random j ′ uniformly
5.4 Move ϕi away from ϕj′

Stochastic approximate logistic regression of ||ϕi − ϕj || on dij .

Output ϕ



The Laplacian

Laplacian

Input coordinates U ∈ Rn×D , bandwidth
√
ϵ

1. Compute similarity matrix Sij = exp
[
− ||Ui :−Uj :||2

ϵ

]
2. First normalization di =

∑n
j=1 Sij , L̃ij = Lij/didj

3. Second normalization d ′
i =

∑n
j=1 L̃ij , Lij = L̃ij/d

′
i

removes the biases due to sampling density

4. Output L, d ′
i

▶ Laplacian L central to understanding the manifold geometry

▶ limn→∞ L = ∆M [Coifman,Lafon 2006]

▶
√
ϵ represents the scale of the local neighborhood
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