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Unsupervised learning for the sciences — how do we know machine learning
is right?
» Success of modern Al:
» driven by predicting and acting
» clear error measure
> validation “easy” (e.g. speech recognition)
» many local optima
» Unsupervised learning: clustering, dimension reduction
> finding [geometric, causal] structure of data
» formulating “error measure” is part of the problem
» validation can be EXPENSIVE
» uniqueness of solution matters
» Big scientific data
» Allows us to ask more detailed questions (e.g “personalized medicine”)
> Big data contains more complex patterns
» Machine Learning discovers patterns fast

» Often Hypotheses are cheap, experiments are expensive
» Validation is the bottleneck

Black Holes of Known Mass



Stability guarantees for clustering [M NeurlPS 2018], [Wan, M NIPS 2016],[M
ICML 2006] [M, Zhang 2021], [M, Zhang 2023]
provable “correctness” for the practitioner

Manifold coordinates with physical meaning [M,Koelle,Zhang arXiv:1811.11891]
Interpretability in the language of the domain
Explainable or data driven coordinates?
The MANIFOLDLASSO algorithm
Theoretical and experimental recovery results



Outline

Stability guarantees for clustering [M NeurIPS 2018], [Wan, M NIPS 2016],[M
ICML 2006] [M, Zhang 2021], [M, Zhang 2023]



For the practitioner of clustering

» Clustering algorithm e.g. K-means, Spectral clustering produces clustering
C with K clusters

> IDEALLY WANTED: guarantee that C is correct/optimal
» WHAT WE CAN DO: guarantee that C is approximately correct/optimal
» WHEN C is good and stable

Good, stable Bad Unstable

SS output: Ol=1le™* no guarantee no guarantee
Ol = Optimality Interval



What is an Optimality Interval (OI)?

OI(C) = €| is a certificate that

all good clusterings, including the optimal clustering, are contained in the
Ball(C, ¢)

Good, stable Bad Unstable

SS output: Ol=1le * no guarantee no guarantee



What is an Optimality Interval (OI)?

OI(C) = e: all good clusterings are contained in the Ball(C, ¢)

» (C'is good if
Loss(C’) < Loss(C)+a.

A
g * . e > ¢ is Ol: for all good C’,
., . d™M(c',C) < e
- + in particular, dEM(CoPt C) < ¢
Loss(C ) * :’
+
’ ks > If Ol exists, we say C is stable
c

» Ol must be tractably computable
in practice



The Sublevel Set (SS) method

Given

» clustering problem defined by Loss ,
convex relaxation of Loss with space X

» data and clustering C of data
Question Is C good & stable? Wanted: Ol for C

Step 1 Use convex relaxation to define Sublevel Set problem

SS § = )r(na§||X(C)—X'HF, s.t. Loss(X') < Loss(C).
=

Step 2 Prove that || X(C) — X(C)'||r <8 = dM(C,C") < e E.g. by [M, MLJ 2012]
Done: € is a Optimality Interval (Ol) for C.

Loss

Loss(C )




Two technical bits

1. SS is convex only if || X’ — X(C)|| concave
> Use || ||¢ Frobenius norm. ||X(C)||2 = K for any clustering.

2. Relating || ||F to distance between clusterings.

[X(C)-X(EC)lt <6 = dEM(c,C') < e
distance between matrices “misclassification error” metric
between clusterings

» Theorem proved in [M, MLJ, 2012] with € = 20 pmax.
> The tightest result known. Upper/lower bounds between dM || ||z and
Rand

» Proofs use geometry of convex sets + refined analysis for small distances
» Example from [Wan,M NIPS16] Ol by existing results [Rohe et al, 2014] Ol
by our method



Summary of SS method

1. Cluster data

N

Set up and solve SS problem

w

If solution § small enough, we have guarantee ¢ that C is approximately optimal
and all other good clusterings are near it

without any model assumptions, practically applicable

vy

not all C can have guarantees

+ + +
+

Loss

Loss(C ) *




Results for K-means clusterings

K = 4 equal Gaussian clusters, n = 1024, ||ux — || = 4v2 ~ 5.67

data for 0 = 0.9 Values of ¢ vs cluster spread o
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Spectral=[M ICMLO06], SDP=[M NeurIPS 2018]

Aspirin (CoOsHg) molecular simulation data [Chmiela et al. 2017]

i

N K=2
Pmin = .26
Pmax = .74

n=2118 £=20.0656 fast ADMM algorithm by Gang Cheng https://github.


https://github.com/mathcg/admm_ss_sdp/

For what clustering paradigms can we obtain Ol's?

ways to map C to a matrix
space  matrix definition size

X X(C)  Xij=1/nkiffi,j € G nx n, block-diagonal

X X(C) Xj = 1iffi,j € G n x n, block-diagonal

Z Z(C) Zx=1/\/nciffi € Gc nx K, orthogonal
Theorem B
[M NeurlPS 2018] If Loss has a convex relaxation involving one of X, X, Z, then
(1) There exists a convex SS problem

(SS) 6= X@QC(X(C),X Y (similarly for X, Z).

(2) From optimal § an Ol € can be obtained, valid when & < pmin.
X: Xij=1/nciffi,j € G €= (K —6)Pmax
~ ~ 2 —_ 2 — —
X X = 1iffi,j € G c— 2kelK] "k+(n2pK#.>1) +(K—1)—25
Z:Zy=1/nciffi € G &= (K — 6*/2)Ppmax

Existence of guarantee



Relation with other work

» Previous ideas on Ol
» Spectral bounds for Spectral Clustering [M,Shortreed,Xu AISTATS05]
» Spectral bounds for K-means, NCut and other quadratic costs [M, ICML06
and JMVA 2018]
> Spectral bounds for networks model based clustering: Stochastic Block
Model and Preference Frame Model [Wan,M NIPS16] and comparisons [M,
Wan, ISAIM16]

» Previous work we build on
» Convex relaxations for clustering (MANY!) here we use SDP for K-means
[Peng, Wei 2007]
» Transforming bound on ||X — X’||¢ into bound on d&¥ [M MLJ 2012]
» Contrast with work on Clusterability and resilience, e.g. [Ben-David,
2015], [Bilu, Linial 2009]
» clusterable data, resilient clustering & stable C
» Assume J stable C, prove it can be found efficiently
» Our work: given C, prove it is stable



Stability and the selection of K [Cheng,M,Harchaoui (in prep)]




Recap: generic stability guarantees

for any C' € M, if fit(C', Q) < fit(C, Q)+~ then d(C,C’) <4&(C,v)
paradigm fit(C, Q) d(c,C’) Ref
K-means dataset K-means loss Earthmover's distance  [Zhang, M 2017]
Spectral dataset NCut Earthmover’s distance  [Zhang, M 2017]
e dataset Loss Earthmover's distance  [Zhang, M 2017]
Network dataset Difference in Earthmover’s distance ~ [Wan, M 2016]
clustering graph Laplacian
Gaussian  distribution Q TV(P, Q) dparam [Zhang, M 2023]
mixture
12

1H.Zhang and M. Meila, Distribution free optimality intervals for clustering, arXiv 2107.14442
2Y_ Wan and M.Meila, Graph clustering: block-models and model free result, NeuRIPS 2016



» Recovery guarantees under model assumptions [Vempala Wang 2004,

Dasgupta Shulman 2007]
» Parametric stability
» For e.g. Gaussian mixtures

Previous results for Gaussian mixtures

» If P, P’ are close as distributions
. P, P’ have similar parameters
» [Liu, Moitra, 2021] "Settling the robust learnability of mixtures of Gaussians”

Theorem4.1. Lete’ bea parameter that is sufficiently small in terms
of k. There is a sufficiently small function f (k) and a sufficiently large
function F(k) such that if

M=wiN(uy, I +310) + -+ weN (g, T+ 2g)

is a mixture of Gaussians with
o llpillz, 1% ”z < A foralli

o i = wll, + 112 = 551, 2 ¢ foralti #
Wiy Wk 2 Wi

for p Wmin, ¢ = €F®) and A < &) and we are given
estimates hi(X) for the Hermite polynomials for all i < F(k) such
that

o) - mooy|| < e
where hy are the Hermite polynomials for the true mixture M, then
there is an algorithm that returns poly(1/¢")1 %) candidate mix-
tures, at least one of which satisfies
liwi = Will + W = illy + |24 = Zill, < €7 ®
foralli.

» Any hope to do something that can inform practice?

» Yes, partway



Parametric stability with computable bounds [Zhang, M 2023]

» MK wyi,,c = Spherical Gaussian mixtures with
fixed K number of components

fixed minimal/maximal component weight Wmin, Wmax
i —will > ¢

minimal separation ¢ = min; je(k], iz —5 1o =
iToj

K
P = Z W,-N(u,-,a,?l)

i=1
» W.r.t. population goodness-of-fit TV(Q, P)

» Guarantees for distances in parameter space

! !
/ . llpi — /LT(;)H g 0r(i)
dparam(P, P") = min max|w; — w, ;)| + ———— + |[max ¢ ——, -1
€Nk i€[K] max(oj, UT(,.)) olqy O
Difference in w Difference in p Difference in o

> Results also for M, ..., Mu,in wmax,c (K not fixed), Mk w,....c (K fixed)




K=2, myn=0.33 K=5, Myjn=0.17 K =10, myip=0.09

-6 -5 -4 -3 -2 -6 -5 -4 -3 -2 -6 -5 -4 -3 -2
K=2, Myin=0.33 K=5, Myin=0.17 K =10, Myjn=0.09

-4 =3 -4 -3 -2 —6 -5 -4
log1o(€) log1o(€) logio(€)

—— Sep = 3.00

Sep=4.00 == Sep=5.00



Summary + What next?

v

v

Stability guarantees/Optimality Intervals (Ol) for any Loss-based
clustering paradigm that admits convex relaxation [M, NIPS 2017]

Guarantees are distribution free, computable, informative
“Testing” data distribution clusterable [M, Zhang, arXiv:2107.14442]

Parametric stability for Gaussian Mixtures (in population) [Zhang, M,
arXiv:2302.00242] (population version)

Model selection heuristic [Cheng, M, Harchaoui, Zhang, in preparation]
Finite sample bounds for mixture models

How sharp are the Ols (Optimality Intervals) ? Agnostic vs model based
bounds

Validation for other problems with discrete hidden variables
» sparse linear regression
» hierarchical clustering
» . .topic models, graphical models, ...



Outline

Manifold coordinates with physical meaning [M,Koelle,Zhang arXiv:1811.11891]



Spectra of galaxies measured by the Sloan Digital Sky Survey (SDSS)

www.sdss.org

P Preprocessed by Jacob VanderPlas and Grace Telford
> n = 675,000 spectra x D = 3750 dimensions

www.sdss.org

e




Molecular configurations

ethanol molecule

» Data from Molecular Dynamics (MD)
simulations of small molecules by [Chmiela

et al. 2016]
» n ~ 200,000 configurations x D ~ 12
dimensions

aspirin33vsez . -+




Embedding in 2 dimensions by different manifold learning algorithms

Original data
(Swiss Roll with hole)

Galaxy spectrum

» Wu

Hessian Eigenmaps
(HE)X
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Manifold learning: beyond the embedding algorithm

Correct algorithm distortion

Estimate
Riemannian metric

Optimize ' jon
&'
. v
b

neighborhood size <:| '
[NIPS 2016] x

[rovpe.

Choose independent e-
vectors/Remove “horseshoes”
[NeurlPS 2019]

oy

~_— Distances, Riemannian relaxation
i angles, areas [NIPS 2015]
preserved
Vector fields
preserved
L
fic Ay = Proir(fy — &1

(]

Coordinates with physical meaning
[Arxiv 1811.11891, JMLR 2022, AISTATS 2024]



Coordinates with scientific meaning

‘ ’ [Cavalli-Sforza, Menozzi, Piazza, “The

3 . .
e history and geography of human genes",

1996]

-a ‘




Motivation — understanding data from a Molecular Dynamics simulation

original after ML
ethanol data torsion 1

é
e
preprocessed torsion 2
"s' k » 2

> 2 rotation angles (torsions) describe this manifold

» Can we discover these features automatically? Can we select these angles
from a larger set of features with physical meaning?



Explaining a manifold with domain specific coordinates

data driven scientific interpretable
coordinates language coordinates
(e.g. DiffMaps) (torsions)
*
1 f
L 2 A
4 g | i
ke + — =
beyy Peys - - Pe F={f,fh...fp} subset f,...f;,, CF

» Explanation = finding manifold coordinates from among scientific
variables of interest

e Manifold learning algorithm outputs a data embedding ¢,
e + Scientist proposes a dictionary F with all variables of interest,

e MANIFOLDLASSO finds new coordinates in F which are “equivalent” with ¢



Solution by sparse regression in function space

Wanted: Change of variable Idea: Chain Rule
J
¢ = h ofs D¢ = DhDgs
data driven selected functions from G
coordinates (collective coordinates)
Challenges > sparse linear regression
» sparse, non-linear regression problem problem ) .
] > y; = X [3; for every data i
» coordinates ¢ depend on data, >
loorith yi = grad ¢(&/)
algorithm parameters > X. = grad fi ,(€)
hence, h cannot take parametric form > B = %(&‘)

we cannot choose a basis for h ) ]
» Constraint: subset S is same

cannot assume ¢ depends on single f; .
Vi dep gle j for all i

cannot assume ¢ isometric
olution by Group Lasso

WY VvV VY

> optimize
min Jy(9) = IZHy, Xﬂ|\2+)\2||ﬁ,\| (MANIFOLDLASSO)

> support S of (3 selects f;,.. ;. from F



MANIFOLDLASSOIn matrix form

Yik =Vou(&) Xi=Vhp(§) Bk = %hfjk(fl)

n P
W(B) = 3D llvi—=XiBil+ 2D 1Bl
i=1 j=1

| Bik

Q

Bj = vec(Bjjk, i=1:nk=1:m) e R™, By =vec(Bi, j=1:p) € RP.



Gradients in manifold setting

» gradients V — manifold gradients grad in tangents subspace to M
» grad f; is in T¢; M (ambient space R”)

> Vf; known analytically
» grad ¢ is in Ty (¢, #(M) (embedding space R™)

1. must estimate tangent subspace T ¢,)¢ (M)

2. must estimate grad ¢, (¢(&;)) in tangent subspace T )M
3. must pull-back grad ¢, (¢(&;)) to T¢, M

RP R™
> ey =V

Embedding )¢
e1= Vo

Toend(M)

loge, &) ~ PTUJ'T{.M(E; —&)

Pullback grade




Second ldea: pulling back the ¢ gradients
RP R™

Embedding D¢
=V

o(&) Toer?M)
@ = Projr, a1
¢(5.—)’%

Pullback grad¢g

TeM

loge, (€)) ~ Projy, r(€f — &)

Afi/

Wanted Y; = grad,, ¢(&) € R™

Estimate tangent subspace at &; by (weighted) PCA

1. Estimate tangent subspace at (&) To(e;)@(M) by SVD of push-forward
Riemannian metric G

Vi, Ai = SVD(G:, d)

2. in To(e)p(M), grad ¢u (&) = ViV e

3. Create neighbor matrices for & and ¢(&).
A = [Projr (& — &) ven, Bi = [PVOJT¢ ) (B(&ir) — (€ ))] ven,’
Solve linear system (A;, Yi) =~ (B;, V;\/,-TI> [Luo,Safa,Wang2009]



MANIFOLDLASSO Algorithm

Given Data &;.p,, intrinsic dimension d, embedding ¢ (&1:0)
dictionary F = {f1., }
1. Estimate tangent subspace at &; by (weighted) PCA

2. Project dictionary functions gradients Vf; on tangent subspace, obtain
Xl:n S Rpr

3. Estimate gradients of ¢1., obtain y1., € R?X™

by pull-back from embedding space ¢
4. Solve GROUPLASSO(y1:n, X1:n, d), obtain support S

n
m,@in B = 2D My = XiBillB+AD_1IBjll,  (MANIFOLDLASSO)
i=1 J

Output S



Ethanol MD simulation
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Theory

[Koelle et al., arXiv:1811.11891, JMLR 2022, AISTATS 2024]

» When is S unique? / When can M be uniquely parametrized by F7
Functional independence conditions on dictionary F and subset f;

J1s---Js
» Basic result
fs = hofs on U iff
Df
rank( ij ) = rank Dfs;  on U
» When can GROUP LASSO recover S ?
(Simple) Incoherence Conditions
X X1 1 2 2
= max —_— v = —————————  ndo” = €ik
T e TG T minican [IXE Xl 2.

Theorem If, || X1p|| = 1, pv/d + "Tm < 1then 3j=0forj¢S.



Recovery for MANIFOLDILLASSO

Theorem 7 (Support recovery) Assume that equation (30) holds, and that Y7 | ||zi||* = '?”3

forallj =1:p. Let Ymex = MaX;gs Vs, K5 = MAXim1in mios |||:.f;||||' Denote by B the solution of
(31) for some A> 0. If1 — (s — L)p > 0 and
B Ks ovid
—— ] <1 37
T (1 = (o= Dp minf_, mingcs g | Aw‘») : (87)

then fi; =0 forj @ S and alli=1,...n.

s

Corollary 8 Assume that equation (31) and condition (37) hold. Letx = 1—{:—1]p e g P
il jres i)

and yg = Hifg” Denote by f the solution to problem (31) for some A > 0. If (1) A= c?ﬂ‘ii‘fﬂﬁ,

c¢>1, and (2) [|8;]| > OV (Vmax + vs) + AL+ /5) for all j € S, then the support § is recovered
eractly and

s . 1++/s .
||-6) _.ﬁ_‘lH < D"/E(Tmnx +')"S)+A(1 + \/a = J‘/E'Ymax [1 +')"S}f')"ma.x + C#] fGT all 7 €8,



TANGENTSPACELASSO: MANIFOLDLASSO without embedding

Simplification regress basis of 7¢ M on gradients of f;

l’mpﬂsntmn 2 (after (2)). Let JF' f; be dictionary and dic-
tionary functions on the d ional smooth manifold
M. Assume f; € C* with ¢ > d+ 1. Suppose S C [p].
and denote by grad fs the R%** matrix of concatenated
grad f; : f € S. Then, if there is a subset S" C S such that
the following rank condition holds globally:

rank (:::sff;) = rankgrad fs: . )

Then there exists a function h which is C* almost every-
where in the image of fs (M) such that fg = ho for

Hs = sup IXT Xl &
tEM® GES,'ES {i}.e™i'he

vg = sup QT(X%’:&XS.E)_IQ'. )

geMeagRdllallz=1

Proposition 3. Assume that

1. M is d—dimensional C* compact manifold with
strictly positive reach.

2. Data £ are sampled from some density p on M with
p > 0all over M.

3. & € M°® with probability 1 under p.
Let S be the ’true’ support, S| (ﬁ) be the support selected

by TSLASSO, pus and vs be defined by (5) and (6), and
further assume

4. |8 =
5. Dfs has rank d on M°,
6. psvsd < 1.

Then if we adapt the tangent space estimation algorithm in
(?) with bandwidth choice h = O(logn/(n — 1)<, with
n > (1 — psvsd) /2vsd)¥ =1 we have

w(SB) S >1-0 ((%)ﬁ) .



M-Xylene Maldviaienyve Ethanol EeNMUA-R-H-Me  loluene

Dimethylfuran

Experiments

Dataset n Ny D d €N m n P
SwissRoll 10K NA 51 2 .18 2 100 51
RigidEth 10K 9 50 2 3.5 3 100 12
Ethanol 50K 9 50 2 35 3 100 12
Malonald 50K 9 50 2 35 3 100 12
Toluene 50K 16 50 1 19 2 100 30
Ethanol 50K 9 50 2 35 3 100 756
Malonald 50K 9 50 2 35 3 100 756

b MLASSO 1G]

p = dictionary size, m = embedding dimension, n = sample size for

manifold estimation, n

/

= sample size for MANIFOLDLASSO




Understanding latent space representation of cryoEM images

Latent representation
Prior Simulator
)
) u
] .

» Estimating conformation of Hemagluttinin molecules from cryoEM images

Approximate Posterior

Latent

mapping Flow

Tevve

» Neural network trained on simulated images [Dingeldein et. al. biorXiv:2024]

» Unsupervised study of hidden layer representation: low dimensional!
conformation 0 SNR

with Luke Evans, Vlad Murad, Lars Dingeldein, Pilar Cossio, Roberto Covino
[submitted NeurlPS 2024 MLSB Workshop]



Summary of MANIFOLDLASSO
» non-linear sparse regression in function spaces = linear sparse regression
(Group Lasso)

» MANIFOLDLASSO= coordinate change from data driven coordinates ¢1.p,
to collective coordinates F = {fi.p}

scientific data driven interpretable
language coordinates coordinates
o *
. 4
v f L > ¢
+ & S = &

» explains large scale structure with domain-relevant functions

» transmissible knowledge, compare embeddings from different experiments

» non-linear, non-parametric, basis-free, not symbolic regression [Brunton et
al. 2016, Rudy et al. 2019] [Udrescu, Tegmark 2020]

» No manifold necessary immediate extensions to Principal Components,
autoencoders (low dimensional!), sparse functional regression

Applications

> set of f's that covary (e.g. small protein folding), level sets (in progress)

» simultaneous explanation of multiple systems

» dynamical systems (future)



Summary: Towards knowledge that is transferable

Cluster validation without model assumptions [M NeurlPS 2018]

» A general method that can be applied to any clustering cost that has a
convex relaxation / mixtures of gaussians

» A general framework for validation without model assumptions

Manifold coordinates with pysical meaning [arXiv:1811.11891]
» Interpretation in the language of the domain

» From non-parametric to parametric

Learning vector fields on manifolds [arXiv:2103.07626]
Python package github.com/mmp2/megaman

» tractable for millions of points
» manifold learning and clustering

» incorporates state of the art results



Towards unsupervised validation for unsupervised learning

vVvyyvyyvyy

In Machine Learning: Unsupervised Learning is the next big challenge

In the sciences: Unsupervised Learning is about explanation and
understanding

Automated discoveries require automated validation

» Combine data driven/machine learning methods with domain
knowledge/concepts
» On purely mathematical/statistical grounds

Remove algorithmic artefacts

Quantitative measures of “correctness” / robustness / uncertainty
Is explanation unique?

Statistical guarantees — with minimum od untestable assumptions

Good community practices — all machine learning algorithms should come
with validation procedures



Hanyu Zhang, Samson Koelle, Vlad Murad, Yu-Chia Chen, Weicheng Wu
loannis Kevrekidis (JHU)
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Pilar Cossio (Flatiron), Luke Evans (Flatiron)
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dimension O
reduction

Interpretable




vector fields

manifolds

172°E 152°W

[Riemannian]

metric
learning
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Learning with flows and vector fields [Yu-chia Chen]

1-Laplacian estimation
Directed graph embedding [Arxiv:2103.07626]
Manifold + vector field [NIPS 2011] I e

Independent loops
[Arxiv:2107.10970]
[NeurlPS 2021]
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“Testing" population stability (K-means loss)

Al. D= {x1, -+ ,xp} is sampled i.i.d. from P, supported on a subset of R,
P is absolutely continuous with respect to the Lebesgue measure on RY.

A2. [Uniform Convergence of Losskm] There exists a function W(n, §) such
that, for any n sufficiently large and § € (0, 1], with probability 1 — ¢

sup | Losskm(P;C) — Losskm(D,C)| < W(n,d)
CeCk(D)

Theorem

Suppose P satisfies Assumptions 1 and 2, and let § € (0,1]. If any optimal
clustering C*?* on P is (v, ) unstable for some o > 0, then with probability
1 — 6 over samples D, with |D| = n, any optimal clustering C™ of Dis

(a+2W(n,86/2),e/2 — \/log(4/8)/2n) unstable.



Theorem 4. Let P € M(K, Tmin, Tmax, ¢). Suppose P’ is any model in M(K', Tmin, Tmax, ¢) such
that TV (P, P’) < 2¢ where max{K, K’} < 1/mmin, Tmax < 1 — (min{K, K’} — 1)mp;,. Let
¢o, Mo be defined as in () and (8). Then, if ¢ > cono and Tmin > 2¢, we have K = K' and further,
there exists a permutation perm € Sk and constants c* € [0,col,n* € [1,no] satisfying (9) and (10),
such that for each i € (K],

(118 = Hperma) || < ¢ n*0; an
m8X{0%/ Cperm(iys Tperm(iy 0i} < N° (12)
75 = Tperm(iy| < 2€ + (1 = Tmin + Tmax) 8(=C(e, ¢, 7)) 13)

where C(c,c*,n*) is defined by

NS B PR Co LI CL L s
C(e,c*,n*) = \/2(7]*)2 + pYn (c— 2 )2 — 16(17°)2 g (14)



Figure 2: Sufficient minimal separation coo in Theorem \4 under different settings. Top
‘Top right, Bottom Left show the dependence of coro on K-
5,20, 35, respectively. Bottom right shows that the dependence of corl on K asympto
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K-means Sublevel Set problem

nxn

Loss(C) = (D,X(C)), D = squared distance matrix € R

(SSkm) & = min (X(C),X") s.t.(D,X") < Loss(C)
X'ex

a Semi-Definite Program (SDP).

Algorithm
Input Matrix of squared distances D, clustering C
1. Solve (SSkm), get optimal value 4.
2. If e = (K — 0)pmax < Pmin then C is stable

else no guarantee.



Experiments with K-means clusterings

K = 4 equal Gaussian clusters, n = 1024, ||ux — /|| = 4v/2 ~ 5.67

data for 0 = 0.9

0.4
0.3
0.2

0.1

. o

Spectral=[M ICMLO06], SDP=[M NeurlPS 2018]

Values of € vs cluster spread o

——SDP
Spectral +
Pmin

+
+
+
.
0.6 0.7 0.8 0.9 1.1
sigma




Separation statistics

distance to own center over min center  distance to second closest center over

separation, colored by o. distance to own center, versus o
-6 5.t
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[Py ol i H
k3 : :
350 : ; .
3 : S _;_ +
N
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2t 1
S El ==
1 T + o .
03 0.4 05 0.6 0.7 0.8 09 1 11 12 0.6 0.7 0.8 0.9 11

sigma



Results for unequal clusters

K=4 Unequal normal clusters
o n =200 n = 400 n = 800
0.6 0.00(0.00) 0.00(0.00) 0.00(0.00)
0.8 0.01(0.01) 0.01(0.01)  0.01(0.01)
1.0 0.09 (0.05) 0.06 (0.01) 0.07 (0.02)
1.2 0.28 (0.08) 0.21(0.05) 0.21 (0.03)
K=6 normal non-normal
% n =525 n =525
0.06 0.00(0.00) 0.005(0.001)
0.08 0.01(0.00) 0.006(0.001)
0.1 0.01(0.00) 0.009(0.003)

Unequal non-normal clusters

n =200 n = 400 n = 80(
0.001(0.001) 0.001(0.000) 0.002(0.0
0.006(0.004)  0.004(0.002) 0.007(0.0

0.04 (0.02) 0.03 (0.01) 0.03 (0.
0.16 (0.06) 0.14 (0.03) 0.13 (0.

Outlier removal: before clustering, 0.2-0.5% fraction of points i with largest Zj Dj;

were removed; j ranges over ppin/2 nearest neighbors of /.



Aspirin (CgO4Hsg) molecular simulation data [Chmiela et al. 2017]

K=2

Pmin = .26

Pmax = .74
all data n=2118 ¢ =0.065 computing time 17h

1271 inliers removed n = 847 e =0.047 computing time 42min
b



Results for Spectral Clustering by Normalized Cut
spectrai=[M AISTATSO05], sop=[M NeurlPS 2018]

Synthetic S, n = 100 Chemical reaction data, n =~ 1000

0.3 T 0.1
.
0.25 | |—Spectral 0.08 ——Spectral
Prmin +
0.2
0.06 *
0.15 *
0.04
=
*
0.05 %' 0.02 EI o -+ EI
= + L
0 0
02 04 08 1.2 2 6 12 32 600 900 1050 1200

sigma

temperature [Kelvin]




Brief intro to manifold learning algorithms

ALL ML Algorithms

» Input Data pa,...p,, embedding dimension m, neighborhood scale
parameter ¢

> Construct neighborhood graph p, p’ neighbors iff ||p — p/||2 < /€

» Construct a n X n sparse distance matrix

D= [||P - p,H]p,p’neighbors

pi,...pn C RP



Isomap ML algorithm

ISOMAP [Tennenbaum, deSilva & Langford 00]
1. Find all shortest path distances in neighborhood graph
2. Construct matrix of distances
. 2
M = [distance;,,]

3. use M and Multi-Dimensional Scaling (MDS) to obtain d dimensional
coordinates for p € D



Diffusion Maps Algorithm

Input coordinates U € R™*P, bandwidth /e, embedding dimension s

1. Compute Laplacian L € R"*"
2. Compute eigenvectors of L for smallest s 4 1 eigenvalues

[¢o (bl N (]55] € RM%S

» ¢ is constant and not informative
» These are the slow modes of the system

The embedding coordinates of p;. are (i1, . . . dis)

» Embedding dimension s = number of eigenvectors

» Intrinsic dimension d < s effective number of degrees of freedeom



UMAP: Uniform Manifold Approximation and Projection [McInnes, Healy,
Melville,2018]

Input k number nearest neighbors, d,

1. Find k-nearest neighbors

2. Construct (asymmetric) similarities wj;, so that 3, w; = log, k.
W = [W,'j].

3. Symmetrize S = W + WT — W.« W7 is similarity matrix.

4. Initialize embedding ¢ by LAPLACIANEIGENMAPS.

5. Optimize embedding.

Iteratively for njtr steps

5.1 Sample an edge ij with probability oc exp —dj;
5.2 Move ¢; towards ¢;
5.3 Sample a random j’ uniformly
5.4 Move ¢; away from ¢;s
Stochastic approximate logistic regression of ||¢; — ¢;|| on dj;.

Output ¢



The Laplacian

Laplacian

vy

Input coordinates U € R, bandwidth /e

PR - c || Ui —U; 1
. Compute similarity matrix S; = exp | ————

- First normalization d; = 3.7, S, Ly = Ly/did}

=1

Second normalization d = 377, L Ly =1L;/d
removes the biases due to sampling density
Output L, d/

Laplacian L central to understanding the manifold geometry
limp—oo L = Apq [Coifman,Lafon 2006]

/€ represents the scale of the local neighborhood
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