Manifold Learning in the Age of Big Data

Marina Meilă

Annual Plenary Meeting Garching, 01/22/2019

▲ロト ▲周ト ▲ヨト ▲ヨト 三回 のの⊙

Supervised, Unsupervised, Reinforcement Learning

We are witnessing an AI/ML revolution

- this is led by Supervised (speech recognition) and Reinforcement Learning (self-driving cars)
- i.e. Prediction and Acting
- Unsupervised learning
 - cluster analysis, dimension reduction, explanatory models
 - is in a much more primitive state of development
 - it is harder conceptually: defining the objective is part of the problem
 - but everybody does it [in the sciences]
 - because exploration, explanation, understanding, uncovering the structure of the data are necessary

▲ロト ▲理ト ▲ヨト ▲ヨト 単同 めんぐ

in the language of the discipline

is the next big data challenge...?

Unsupervised learning at scale and automatically validated

▶ Topics: Geometry and combinatorics

- Non-linear dimension reduction
- Topological data analysis
- Graphs, rankings, clustering
- Algorithms and computation
- Mathematics/theory/theorems/models
 - validation/checking/guarantees
 - beyond discovering patterns
- Demands from practical problems stimulate good research

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

- astronomy
- chemistry and materials science

Basics of manifold learning algorithms Computational challenges

Metric Manifold Learning

Estimating the embedding distortion Estimating the kernel bandwidth

Scalable manifold learning

Finding filaments in high dimensions More computational challenges ahead megaman

Outline

Basics of manifold learning algorithms Computational challenges

Metric Manifold Learning

Estimating the embedding distortion Estimating the kernel bandwidth

Scalable manifold learning

Finding filaments in high dimensions More computational challenges ahead megaman

▲ロト ▲理ト ▲ヨト ▲ヨト 単同 めんぐ

When to do (non-linear) dimension reduction

- ▶ high-dimensional data $p \in \mathbb{R}^D$, $D = 64 \times 64$
- \blacktriangleright can be described by a small number *d* of continuous parameters

イロト 不得 トイヨト イヨト ふうくろ

Usually, large sample size n

When to do (non-linear) dimension reduction

Why?

- To save space and computation
 - $n \times D$ data matrix $\rightarrow n \times m, m \ll D$
- To use it afterwards in (prediction) tasks
- To understand the data better
 - preserve large scale features, suppress fine scale features

■▶ 三日 のへの

Spectra of galaxies measured by the Sloan Digital Sky Survey (SDSS)

www.sdss.org

- Preprocessed by Jacob VanderPlas and Grace Telford
- n = 675,000 spectra $\times D = 3750$ dimensions

◆□> ◆□> ◆豆> ◆豆> ●目目 の々で

Molecular configurations

aspirin molecule

- Data from Molecular Dynamics (MD) simulations of small molecules by [Chmiela et al. 2016]
- n ≈ 200,000 configurations × D ~ 20 60 dimensions

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Input Data p₁,... p_n, embedding dimension m, neighborhood scale parameter ε

▲ロト ▲周ト ▲ヨト ▲ヨト 三回 のの⊙

- ▶ Input Data $p_1, \ldots p_n$, embedding dimension *m*, neighborhood scale parameter ϵ
- ▶ Construct neighborhood graph p, p' neighbors iff $||p p'||^2 \le \epsilon$

▲ロト ▲理ト ▲ヨト ▲ヨト 単同 めんぐ

- ▶ Input Data $p_1, ..., p_n$, embedding dimension *m*, neighborhood scale parameter ϵ
- ▶ Construct neighborhood graph p, p' neighbors iff $||p p'||^2 \le \epsilon$
- ► Construct a *n* × *n* matrix: its leading eigenvectors are the coordinates φ(*p*_{1:n})

▲ロト ▲理ト ▲ヨト ▲ヨト 単同 めんぐ

- ▶ Input Data $p_1, ..., p_n$, embedding dimension *m*, neighborhood scale parameter ϵ
- ▶ Construct neighborhood graph p, p' neighbors iff $||p p'||^2 \le \epsilon$
- ► Construct a *n* × *n* matrix: its leading eigenvectors are the coordinates φ(*p*_{1:n})

LAPLACIAN EIGENMAPS/DIFFUSION MAPS [Belkin,Niyogi 02,Nadler et al 05]

Construct similarity matrix

 $S = [S_{\rho p'}]_{p,p' \in \mathcal{D}}$ with $S_{pp'} = e^{-rac{1}{\epsilon}||p-p'||^2}$ iff p,p' neighbors

- Construct Laplacian matrix $L = I T^{-1}S$ with T = diag(S1)
- Calculate $\phi^{1...m}$ = eigenvectors of *L* (smallest eigenvalues)
- ▶ coordinates of $p \in D$ are $(\phi^1(p), \ldots \phi^m(p))$

Manifold Learning is like choosing a basis

Bases

- Fourier
- Finite Element
- RHKS
- SG
- ► ...

Trade dimension reduction vs. loss of information

- Manifold Learning learns a basis from data
 - ► e.g. eigenfunctions of △ operator in LAPLACIANEIGENMAPS/DIFFUSIONMAPS
 - Maps high D data to $m \ll D$ dimensions

▲ロト ▲周ト ▲ヨト ▲ヨト 三回 のの⊙

ML poses special computational challenges

- structure of computation not regular
 - and not known in advance
 - dictated by a random geometric graph
 - the graph represents the neighbohood relations between data points
 - affects storage, parallelization, run time (by unknown condition numbers)

イロト 不得 トイヨト イヨト ふうくろ

ML poses special computational challenges

- ▶ intrinsic dimension d
 - data dimension D arbitrarily large as long as d small
 - d must be guessed/estimated
 - controls statistical and almost all numerical properties of ML algorithm
 - ▶ in particular, the density of the neighborhood graph is super-linear in d

▲ロト ▲周ト ▲ヨト ▲ヨト 三回 のの⊙

ML poses special computational challenges

- ▶ intrinsic dimension d
 - data dimension D arbitrarily large as long as d small
 - d must be guessed/estimated
 - controls statistical and almost all numerical properties of ML algorithm
 - in particular, the density of the neighborhood graph is super-linear in d
- coordinate system is local

yellow

イロト 不得 トイヨト イヨト ふうくろ

purple

- not easily parallelizable
- data partitioning is open problem
- problem of finding neighbors efficiently

A toy example (the "Swiss Roll" with a hole)

points in $D \ge 3$ dimensions

same points reparametrized in 2D

Desired output

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A toy example (the "Swiss Roll" with a hole)

points in $D \ge 3$ dimensions

same points reparametrized in 2D

Desired output

うせん 正則 スポットポット (四)・スロッ

Embedding in 2 dimensions by different manifold learning algorithms Input

1 = 990

Outline

Basics of manifold learning algorithms Computational challenges

Metric Manifold Learning

Estimating the embedding distortion Estimating the kernel bandwidth

Scalable manifold learning

Finding filaments in high dimensions More computational challenges ahead megaman

▲ロト ▲理ト ▲ヨト ▲ヨト 単同 めんぐ

Our approach: Metric Manifold Learning

[Perrault-Joncas,M 10]

Given

 mapping \u03c6 that preserves topology true in many cases

Objective

- augment φ with geometric information g so that (φ, g) preserves the geometry
- g is the Riemannian metric.

Dominique Perrault-Joncas

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

g for Sculpture Faces

- n = 698 with 64×64 gray images of faces
 - head moves up/down and right/left

LTSA Algoritm

Laplacian Eigenmaps

Metric ML unifies embedding algorithms

- Distortions can now be corrected
 - implicitly: by integrating with the right length or volume element

- Iocally: Locally Normalized Visualization
- globally: Riemannian Relaxation
- Hence, all embedding algorithms preserve manifold geometry

Calculating distances in the manifold $\ensuremath{\mathcal{M}}$

true distance d = 1.57

		Shortest	Metric	Rel.
Embedding	f(p) - f(p')	Path <i>d</i> _G	â	error
Original data	1.41	1.57	1.62	3.0%
Isomap $m = 2$	1.66	1.75	1.63	3.7%
LTSA $m = 2$	0.07	0.08	1.65	4.8%
LE <i>m</i> = 2	0.08	0.08	1.62	3.1%

$$l(c) = \int_{a}^{b} \sqrt{\sum_{ij} g_{ij} \frac{dx^{i}}{dt} \frac{dx^{j}}{dt}} dt,$$

Locally Normalized Visualization

local neighborhood, unnormailzed

" " " " " " " " "

local neighborhood, Locally Normailzed

Riemannian Relaxation

イロト 不得 トイヨト イヨト ふうくろ

Can we sometimes dispense with g?

Idea

▶ If embedding is isometric, then push-forward metric is identity

Idea, formalized

Measure distortion from isometry by

$$\mathsf{loss}(\phi) = \sum_{i=1}^n w_i ||G_i(\phi) - I_d||^2$$

- where G_i is Riemann metric estimate at point i
- I_d is identity matrix

• Iteratively change embedding $\phi_{1:n}$ to minimize loss Implementation

- Initialization with e.g Laplacian Eigenmaps
- Projected gradient descent to (local) optimum

▶ Hourglass–Sphere

Riemannian Relaxation for Ethanol molecular configurations

Self-consistent method of chosing ϵ

- > Every manifold learning algorithm starts with a neighborhood graph
- Parameter $\sqrt{\epsilon}$
 - is neighborhood radius
 - and/or kernel banwidth
- ▶ For example, we use the kernel $K(p, p') = e^{-\frac{||p-p'||^2}{\epsilon}}$ if $||p - p'||^2 \le \epsilon$ and 0 otherwise
- Problem: how to choose ϵ ?

▲ロト ▲理ト ▲ヨト ▲ヨト 単同 めんぐ

Our idea

For given ϵ and data point p

- Project neighbors of p onto tangent subspace
 - this "embedding" is approximately isometric to original data
- ▶ Calculate Laplacian $L(\epsilon)$) and estimate distortion $H_{\epsilon,p}$ at p
 - $H_{\epsilon,p}$ must be $\approx I_d$ identity matrix
- ▶ Idea: choose ϵ so that geometry encoded by L_{ϵ} is closest to data geometry

イロト 不得 トイヨト イヨト ふうくろ

Completely unsupervised

$\boldsymbol{\epsilon}$ and distortion for aspirin

meta-stable cluster

stable cluster

Semisupervised learning benchmarks [Chapelle&al 08]

Multiclass classification problems

Classification error (%)					
	Method				
Dataset	CV	[Chen&Buja]	Ours		
Digit1	3.32	2.16	2.11		
USPS	5.18	4.83	3.89		
COIL	7.02	8.03	8.81		
g241c	13.31	23.93	12.77		
g241d	8.67	18.39	8.76		
	superv.	fully unsupervised			

Outline

Basics of manifold learning algorithms

Metric Manifold Learning

Estimating the embedding distortion Estimating the kernel bandwidth

Scalable manifold learning

Finding filaments in high dimensions More computational challenges ahead megaman

▲ロト ▲理ト ▲ヨト ▲ヨト 単同 めんぐ

Finding filaments in high dimensions

三日 のへの

- data in \mathbb{R}^D near a curve (or set of curves)
- wanted: track the ridge of the data density

Mathematically,

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

In other words, on a ridge

- $\nabla p \propto v_1$ direction of least negative curvature (LNC)
- $\nabla p, v_1$ are tangent to the ridge

SCMS Algorithm

until convergence

▶ Algorithm SCMS finds 1 point on ridge; *n* restarts to cover all density

うして 正則 スポッス ポット きょうくしゃ

- Run time $\propto nD^2$ /iteration
- Storage $\propto D^2$

Accelerating SCMS

reduce dependency on n per iteration

- index data (clustering, KD-trees, ...)
- we use FLANN [Muja,Lowe]
- $n \leftarrow n'$ average number of neighbors
- reduce number iterations: track ridge instead of cold restarts

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

- project ∇p on v_1 instead of v_1^{\perp}
- tracking ends at critical point (peak or saddle)
- ► reduce dependence on *D*
 - $D^2 \leftarrow mD$ with $m \approx 5$

(Approximate) SCMS step without computing Hessian

Recall SCMS = Subspace Constrained Mean Shift

- Given $g \propto \nabla p(x)$
- Wanted $\operatorname{Proj}_{v_1^{\perp}} g = (I v_1 v_1^{T})g$
- ► Need V₁

principal e-vector of $H = -\nabla^2(\ln p)$ for $\lambda_1 =$ smallest e-value of H without computing/storing H

▲ロト ▲理ト ▲ヨト ▲ヨト 単同 めんぐ

(Approximate) SCMS step without Hessian: First idea

Wanted

 v_1 principal e-vector of $H = -\nabla^2(\ln p)$ for $\lambda_1 =$ smallest e-value of H

- First Idea
 - 1. use LBFGSS to approximate H^{-1} by $\hat{H^{-1}}$ of rank 2m [Nocedal & Wright]

うして 正則 スポッス ポット きょうくしゃ

- 2. \hat{v}_1 obtained by $2m \times 2m$ SVD + Gram-Schmidt
- Run time $\propto Dm + m^2$ / iteration (instead of nD^2)
- Storage $\propto 2mD$ for $\{x^{k-l} x^{k-l-1}\}_{l=1:m}, \{g^{k-l} g^{k-l-1}\}_{l=1:m}$
- Problem v₁ too inaccurate to detect stopping

(Approximate) SCMS step without Hessian: Second idea

Wanted

 v_1 principal e-vector of $H = -\nabla^2(\ln p)$ for $\lambda_1 =$ smallest e-value of H

Second Idea

- 1. store $\{x^{k-l} x^{k-l-1}\}_{l=1:m} \cup \{g^{k-l} g^{k-l-1}\}_{l=1:m} = V$
- 2. minimize $v^T H v$ s.t. $v \in \text{span } V$ where H is exact Hessian
- ► Possible because $H = \frac{1}{\sum c_i} \sum c_i u_i u_i^T gg^T \frac{1}{h^2} I$ with $c_{1:n}, u_{1:n}$ computed during Mean-Shift

うして 正則 スポッス ポット きょうくしゃ

- Run time $\propto n'Dm + m^2$ / iteration (instead of nD^2)
- Storage $\propto 2mD$
- Much more accurate

Principal curves SCMS vs. L-SCMS

For large n neighbor search dominates

4000

5000

Scaling: Statistical viewpoint

- Manifold estimation is non-parametric
 - model becomes more complex when more data available
 - provided ϵ kernel bandwidth decreases slowly with n
- Rates of convergence for manifold estimation as $n \longrightarrow \infty$
 - ▶ rate of Laplacian $n^{-\frac{1}{d+6}}$ [Singer 06], and of its eigenvectors $n^{-\frac{2}{(5d+6)(d+6)}}$ [Wang 15]
 - minimax rate of manifold learning $n^{-\frac{2}{d+2}}$ [Genovese et al. 12]
- Compare with rate of convergence for parametric estimation $n^{-\frac{1}{2}}$

Hence,

▶ for non-parametric models, accuracy improves very slowly with *n*

うして 正則 スポッス ポット きょうくしゃ

manifold learning REQUIRES big data

Scaling: Computational viewpoint

LAPLACIAN EIGENMAPS revisited

1. Construct similarity matrix

 $S=[S_{\rho\rho'}]_{\rho,\rho'\in\mathcal{D}}$ with $S_{\rho\rho'}=e^{-\frac{1}{e}||\rho-\rho'||^2}$ Nearest neighbor search in high dimensions

iff p, p' neighbors

- 2. Construct Laplacian matrix $L = I - T^{-1}S$ with T = diag(S1)
- Calculate ψ^{1...m} = eigenvectors of L (smallest eigenvalues)
- 4. coordinates of $p \in D$ are $(\psi^1(p), \ldots \psi^m(p))$

Sparse Matrix Vector multiplication

Principal eigenvectors

 of sparse, symmetric, (well conditioned) matrix

・ 日 ・ ・ 西 ・ ・ ヨ ・ ・ 日 ・ ・ の へ の

うして 正則 スポッス ポット きょうくしゃ

- With bandwidth ϵ estimation
 - overhead not larger than single embedding

Manifold Learning and Clustering with millions of points

https://www.github.com/megaman

James McQueen Jake VanderPlas

Grace Telford

Yu-chia Chen

- Implemented in python, compatible with scikit-learn
- Statistical/methodological novelty
 - implements recent advances in the statistical understanding of manifold learning, e.g radius based neighborhoods [Hein 2007], consistent graph Laplacians [Coifman 2006], Metric learning
- Designed for performance
 - sparse representation as default
 - incorporates state of the art FLANN package¹
 - uses amp, lobpcg fast sparse eigensolver for SDP matrices
 - exposes/caches intermediate states (e.g. data set index, distances, Laplacian, eigenvectors)
- Designed for extensions

Scalable Manifold Learning in python with megaman

https://www.github.com/mmp2/megaman

English words and phrases taken from Google news (3,000,000 phrases originally represented in 300 dimensions by the Deep Neural Network word2vec [Mikolov et al])

Main sample of galaxy spectra from the Sloan Digital Sky Survey (675,000 spectra originally in 3750 dimensions).

うして 正則 スポッス ポット きょうくしゃ

preprocessed by Jake VanderPlas and Grace Telford

megaman on Theta

Parallelism support (OpenMP)

- Nearest neighbors (brute force)
- Eigenproblem: SLEPc added
- Commonly used kernels for MD included and tested
 - SOAP, SLATM
- ► (in progress) Highly parallelizable random projection based graph Laplacian construction

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Argonne

Computational challenges ahead

- Computing the neighborhood graphs
 - K-nearest neighbors vs. radius neighbors
- Partitioning the data
- Estimation of d and embedding dimension m in preprocessing

K-nearest neighbors vs. radius neighbors

- k-nearest neighbors graph: each node has degree k
- ▶ radius neighbors graph: p, p' neighbors iff $||p p'|| \le r$

Does it matter?

K-nearest neighbors vs. radius neighbors

- k-nearest neighbors graph: each node has degree k
- ▶ radius neighbors graph: p, p' neighbors iff $||p p'|| \le r$
- Does it matter?
- Yes, for estimating the Laplacian and distortion
 - Why? [Hein 07, Coifman 06, Ting 10, ...] k-nearest neighbor Laplacians do not converge to Laplace-Beltrami operator Δ

イロト 不得 トイヨト イヨト ふうくろ

- but to $\Delta + 2\nabla(\log p) \cdot \nabla$ (bias due to non-uniform sampling)
- Renormalization of Laplacian also necessary

configurations of ethanol d = 2

Challenge: radius neighborhood graph

Scalable radius neighborhood graph construction needed

- existing scalable software (FLANN) finds k-nearest neighbors
- in progress: scalable approximate radius neighbors search by Locality Sensitive Hashing [Charikar, Siminelakis 18]
- Laplacian less tractable numerically
 - number of non-zeros in each row depends on data density

イロト 不得 トイヨト イヨト ふうくろ

Challenge: data partitioning

- www.sdss.org

- When data does not fit in memory
- Manifold framework naturally suited
- Problem: data must be (re)organized by locality
 - a point and its neighbors are in the same partition
 - by e.g. clustering
- No systematic work in this area yet

Estimating d and m before embedding

- d is intrinsic dimension
 - estimating d not completely solved
- ▶ *m* is embedding dimension
 - ▶ m = # coordinates needed to embed data = # eigenvectors of L
- Theoretically
 - $m \leq 2d$ to embed \mathcal{M} continuously
 - $m \sim d^3$ to embed \mathcal{M} isometrically
- Practically
 - (some eigenfunctions are "harmonics" of previous eigenfunctions)
 - data contains K clusters
 - $\leq K 1$ additional dimensions needed
 - data is union of several manifolds
 - $m \leq m_1 + m_2 + \ldots$
 - Chicken and egg problem [lambda, V] = eigs(L, m)
 - need to analyze data to find m!
 - ▶ Heuristics: start with clustering subset of data, locally estimate d, ...
 - ► Open?
 - estimate principal eigenvalues and eigengaps <u>before</u> eigs()

うして 正則 スポッス ポット きょうくしゃ

Manifold learning for sciences and engineering

Manifold learning should be like PCA

- tractable/scalable
- "automatic" minimal burden on human
- first step in data processing pipe-line should not introduce artefacts

More than PCA

- estimate richer geometric/topological information
- dimension
- borders, stratification
- clusters
- Morse complex
- meaning of coordinates/continuous parametrization

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Manifold Learning for engineering and the sciences

- manifold learning as preprocessing for other tasks (learning the basis)
- "physical laws through machine learning"

イロト 不得 トイヨト イヨト ふうくろ

 scientific discovery by quantitative/statistical data analysis Samson Koelle, Yu-Chia Chen, Hanyu Zhang, Alon Milchgrub Dominique-Perrault Joncas (Google), James McQueen (Amazon)

Jacob VanderPlas, Grace Telford (UW Astronomy) Jim Pfaendtner (UW), Chris Fu (UW) A. Tkatchenko (Luxembourg), S. Chmiela (TU Berlin), A. Vasquez-Mayagoitia (ALCF)

Thank you

イロト 不得 トイヨト イヨト ふうくろ

Preserving topology vs. preserving (intrinsic) geometry

- Algorithm maps data $p \in \mathbb{R}^D \longrightarrow \phi(p) = x \in \mathbb{R}^m$
- ► Mapping M → φ(M) is diffeomorphism preserves topology often satisfied by embedding algorithms
- Mapping ϕ preserves
 - distances along curves in M
 - \blacktriangleright angles between curves in ${\cal M}$
 - areas, volumes
 - ... i.e. ϕ is isometry
 - For most algorithms, in most cases, ϕ is not isometry

Preserves topology

Preserves topology + intrinsic geometry

イロト 不得 トイヨト イヨト 山口 ろくつ

Previous known results in geometric recovery

Positive results

- Nash's Theorem: Isometric embedding is possible.
- Diffusion Maps embedding is isometric in the limit [Besson 1994]
- algorithm based on Nash's theorem (isometric embedding for very low d) [Verma 11]
- Isomap [Tennenbaum,]recovers flat manifolds isometrically
- Consistency results for Laplacian and eigenvectors
 - [Hein & al 07, Coifman & Lafon 06, Singer 06, Ting & al 10, Gine & Koltchinskii 06]
 - imply isometric recovery for LE, DM in special situations

Negative results

- obvious negative examples
- No affine recovery for normalized Laplacian algorithms [Goldberg&al 08]
- Sampling density distorts the geometry for LE [Coifman& Lafon 06]

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Our approach: Metric Manifold Learning

[Perrault-Joncas,M 10]

Given

 mapping \u03c6 that preserves topology true in many cases

Objective

- augment φ with geometric information g so that (φ, g) preserves the geometry
- g is the Riemannian metric.

Dominique Perrault-Joncas

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

The Riemannian metric g

Mathematically

- $\mathcal{M} = (\text{smooth}) \text{ manifold}$
- ▶ p point on M
- $T_p\mathcal{M} =$ tangent subspace at p
- $g = \text{Riemannian metric on } \mathcal{M}$

g defines inner product on $T_p\mathcal{M}$

$$\langle v, w \rangle = v^T_{g_p} w \text{ for } v, w \in T_p \mathcal{M} \text{ and for } p \in \mathcal{M}$$

- g is symmetric and positive definite tensor field
- g also called first fundamental form
- (\mathcal{M}, g) is a Riemannian manifold

Computationally at each point $p \in \mathcal{M}$, g_p is a positive definite matrix of rank d

All (intrinsic) geometric quantities on $\mathcal M$ involve g

Volume element on manifold

$$Vol(W) = \int_W \sqrt{\det(g)} dx^1 \dots dx^d$$
.

Length of curve c

$$l(c) = \int_{a}^{b} \sqrt{\sum_{ij} g_{ij} \frac{dx^{i}}{dt} \frac{dx^{j}}{dt}} dt,$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

- Under a change of parametrization, g changes in a way that leaves geometric quantities invariant
- Current algorithms estimate \mathcal{M}
- This talk: estimate g along with M (and in the same coordinates)

Problem formulation

► Given:

- data set $\mathcal{D} = \{p_1, \dots, p_n\}$ sampled from manifold $\mathcal{M} \subset \mathbb{R}^D$
- embedding { $x_i = \phi(p_i), p_i \in \mathcal{D}$ } by e.g LLE, Isomap, LE, ...

► Estimate $G_i \in \mathbb{R}^{m \times m}$ the (pushforward) Riemannian metric for $p_i \in D$ in the embedding coordinates ϕ

• The embedding $\{x_{1:n}, G_{1:n}\}$ will preserve the geometry of the original data

g for Sculpture Faces

- n = 698 gray images of faces in $D = 64 \times 64$ dimensions
 - head moves up/down and right/left

LTSA Algoritm

Laplacian Eigenmaps

Relation between g and Δ

- $\Delta = Laplace$ -Beltrami operator on \mathcal{M}
 - $\Delta = \operatorname{div} \cdot \operatorname{grad}$

• on
$$C^2$$
, $\Delta f = \sum_j \frac{\partial^2 f}{\partial x_i^2}$

• on weighted graph with similarity matrix S, and $t_p = \sum_{pp'} S_{pp'}$, $\Delta = \text{diag} \{ t_p \} - S$

Proposition 1 (Differential geometric fact)

$$\Delta f = \sqrt{\det(h)} \sum_{l} \frac{\partial}{\partial x^{l}} \left(\frac{1}{\sqrt{\det(h)}} \sum_{k} h_{lk} \frac{\partial}{\partial x^{k}} f \right) \,,$$

Estimation of g

Proposition 2 (Main Result 1)

Let Δ be the Laplace-Beltrami operator on \mathcal{M} . Then

$$h_{ij}(\boldsymbol{p}) = \frac{1}{2} \Delta(\phi_i - \phi_i(\boldsymbol{p})) (\phi_j - \phi_j(\boldsymbol{p}))|_{\phi_i(\boldsymbol{p}),\phi_j(\boldsymbol{p})}$$

where $h = g^{-1}$ (matrix inverse) and i, j = 1, 2, ..., m are embedding dimensions Intuition:

- ▶ at each point $p \in M$, g(p) is a $d \times d$ matrix
- ▶ apply Δ to embedding coordinate functions ϕ_1, \ldots, ϕ_m
- this produces $g^{-1}(p)$ in the given coordinates
- our algorithm implements matrix version of this operator result
- ▶ consistent estimation of ∆ is solved [Coifman&Lafon 06,Hein&al 07]

うして 正則 スポッス ポット きょうくしゃ

Algorithm to Estimate Riemann metric g (Main Result 2)

Given dataset ${\mathcal D}$

- 1. Preprocess (construct neighborhood graph, ...)
- 2. Find an embedding ϕ of \mathcal{D} into \mathbb{R}^m
- 3. Estimate discretized Laplace-Beltrami operator $L \in \mathbb{R}^{n \times n}$

▲ロト ▲理ト ▲ヨト ▲ヨト 単同 めんぐ

4. Estimate $H_p = G_p^{-1}$ and $G_p = H_p^{\dagger}$ for all $p \in \mathcal{D}$

Output (ϕ_p, G_p) for all p

Algorithm to Estimate Riemann metric g (Main Result 2)

Given dataset ${\mathcal D}$

- 1. Preprocessing (construct neighborhood graph, ...)
- **2.** Find an embedding ϕ of \mathcal{D} into \mathbb{R}^m
- 3. Estimate discretized Laplace-Beltrami operator L
- 4. Estimate $H_p = G_p^{-1}$ and $G_p = H_p^{\dagger}$ for all p

4.1 For i, j = 1 : m, $H^{ij} = \frac{1}{2} \left[L(\phi_i * \phi_j) - \phi_i * (L\phi_j) - \phi_j * (L\phi_i) \right]$ where X * Y denotes elementwise product of two vectors $X, Y \in \mathbb{R}^N$ 4.2 For $p \in \mathcal{D}$, $H_p = [H_p^{ij}]_{ij}$ and $G_p = H_p^{\dagger}$ where $L(\phi_p, G_p)$ for all $p \in \mathcal{D}$.

イロト 不得 トイヨト イヨト 山口 ろくつ

Output (ϕ_p, G_p) for all p

Algorithm METRICEMBEDDING

Input data \mathcal{D} , *m* embedding dimension, ϵ resolution

- 1. Construct neighborhood graph p, p' neighbors iff $||p p'||^2 \le \epsilon$
- 2. Construct similary matrix $S_{pp'} = e^{-\frac{1}{\epsilon}||p-p'||^2}$ iff p, p' neighbors, $S = [S_{pp'}]_{p,p' \in D}$
- 3. Construct (renormalized) Laplacian matrix [Coifman & Lafon 06]

3.1
$$t_{\rho} = \sum_{\rho' \in \mathcal{D}} S_{\rho\rho'}, T = \text{diag } t_{\rho}, \rho \in \mathcal{D}$$

3.2 $\tilde{S} = I - T^{-1}ST^{-1}$
3.3 $\tilde{t}_{\rho} = \sum_{\rho' \in \mathcal{D}} \tilde{S}_{\rho\rho'}, \tilde{T} = \text{diag } \tilde{t}_{\rho}, \rho \in \mathcal{D}$
3.4 $P = \tilde{T}^{-1}\tilde{S}.$

- **4**. Embedding $[\phi_p]_{p \in \mathcal{D}} = \text{GENERICEMBEDDING}(\mathcal{D}, m)$
- 5. Estimate embedding metric H_p at each point

denote Z = X * Y, $X, Y \in \mathbb{R}^N$ iff $Z_i = X_i Y_i$ for all i5.1 For i, j = 1 : m, $H^{ij} = \frac{1}{2} \left[P(\phi_i * \phi_i) - \phi_i * (P\phi_i) - \phi_i * (P\phi_i) \right]$ (column

vector) $\tilde{\mathcal{U}} = [\mathcal{U} = [\mathcal$

5.2 For
$$p \in \mathcal{D}$$
, $\tilde{H}_p = [H_p^y]_{ij}$ and $H_p = \tilde{H}_p$

Ouput $(\phi_p, H_p)_{p \in \mathcal{D}}$

Metric Manifold Learning summary

Metric Manifold Learning = estimating (pushforward) Riemannian metric G_i along with embedding coordinates x_i Why useful

- Measures local distortion induced by any embedding algorithm $G_i = I_d$ when no distortion at p_i
- Algorithm independent geometry preserving method
- Outputs of different algorithms on the same data are comparable
- Models built from compressed data are more interpretable

Applications

- Correcting distortion
 - Integrating with the local volume/length units based on G_i
 - Riemannian Relaxation (coming next)
- Estimation of neighborhood radius [Perrault-Joncas,M,McQueen NIPS17]
- ▶ and of intrinsic dimension *d* (variant of [Chen,Little,Maggioni,Rosasco])
- Accelerating Topological Data Analysis (in progress)