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Manifold coordinates with Scientific meaning

Motivation – understanding data from a Molecular Dynamics simulation

original
ethanol data

preprocessed

Marina Meilă Yu-chia Chen, Samson Koelle, Hanyu Zhang and Ioannis Kevrekidis (University of Washington mmp@stat.washington.edu)Manifold Learning 2.0 May 20, 2022 7 / 63



Manifold coordinates with Scientific meaning

Motivation – understanding data from a Molecular Dynamics simulation

original after manifold learning
ethanol data

preprocessed
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Manifold coordinates with Scientific meaning

Motivation – understanding data from a Molecular Dynamics simulation

original
ethanol data torsion 1

preprocessed torsion 2

2 rotation angles (torsions) describe this manifold
Can we discover these features automatically? Can we select these angles from a
larger set of features with physical meaning?Marina Meilă Yu-chia Chen, Samson Koelle, Hanyu Zhang and Ioannis Kevrekidis (University of Washington mmp@stat.washington.edu)Manifold Learning 2.0 May 20, 2022 7 / 63



Manifold coordinates with Scientific meaning

scientific data driven
language coordinates
(torsions) (from DiffMaps, Isomap)

+ =

Idea Replace data driven coordinates with selected torsions
• Scientist: proposes a dictionary G with all variables of interest
• ML algorithm: outputs embedding φ,
• ManifoldLasso: finds new coordinates in G “equivalent” with φ ← our algorithm

Explanation
= find manifold coordinates from among scientific variables of interest
should be in the language of the domain
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Manifold coordinates with Scientific meaning Functional Lasso

Problem formulation

gS ⊂ G φ

+ =
Given

Domain knowledge
dictionary of domain-related smooth functions G = {g1, . . . gp , with gj : RD → R}.
e.g. all torsions in ethanol

Data driven coordinates
data ξi ∈ RD , i ∈ 1 . . . n
embedding of data φ(ξ1:n) in Rm

Assume
φ(ξ) = h(gj1 (ξ), . . . gjs (ξ)) with gj1,...js ∈ G

Wanted S = {j1, . . . js} interpretable coordinates
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Manifold coordinates with Scientific meaning Functional Lasso

Idea: Sparse regression in function space

φ = h ◦ gS
manifold functions from G

coordinates

Challenges

sparse, non-linear regression problem

ML coordinates φ defined up to
diffeomorphism

hence, h cannot assume a parametric
form

we cannot choose a basis for h

φk may depend on multiple gj

will not assume φ isometric

Dφ = DhDgS

Leibnitz Rule

sparse linear regression problem

For every data i
Y i = gradφ(ξi ),
Xi = grad g1:p(ξ)

βij = ∂h
∂gj

(ξi )

Sparse linear system Yi = Xiβi

Constraint: subset S is same for all i

Functional (Group) Lasso

optimize

min
β

Jλ(β) = 1
2

n∑
i=1

||Yi − Xiβ i ||
2
2 + λ

∑
j

||βj ||, (ManifoldLasso)

support S of β selects gj1,...js from G
Marina Meilă Yu-chia Chen, Samson Koelle, Hanyu Zhang and Ioannis Kevrekidis (University of Washington mmp@stat.washington.edu)Manifold Learning 2.0 May 20, 2022 18 / 63
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Manifold coordinates with Scientific meaning Pulling back the coordinate gradients
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Manifold coordinates with Scientific meaning Pulling back the coordinate gradients

ManifoldLasso Algorithm

Given Data ξ1:n, dimM = d , embedding φ(ξ1:n), dictionary G = {g1:p}
1 Estimate tangent subspace at ξi by (weighted) PCA

2 Project dictionary functions gradients ∇gj on tangent subspace, obtain X1:n ∈ Rd×p

3 Estimate gradients of φ1:k , obtain Y1:n ∈ Rd×m

By pull-back from embedding space φ

4 Solve GroupLasso(Y1:n,X1:n, d), obtain support S

Output S
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Manifold coordinates with Scientific meaning Pulling back the coordinate gradients

Ethanol MD simulation

regularization paths β1:p vs λ
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Manifold coordinates with Scientific meaning Pulling back the coordinate gradients

Theory

When is S unique? / When can M be uniquely parametrized by G?
Functional independence conditions on dictionary G and subset gj1,...js

Basic result

fS = h ◦ fS′ on U iff

rank

(
DfS
DfS′

)
= rankDfS′ on U

When can GLasso recover S ?
(Simple) Incoherence Conditions

µ = max
i=1:n,j∈S,j′ 6∈S

|XT
ji Xj′ i |

‖Xji‖‖Xj′ i‖
ν =

1

mini=1:n ||XT
iSXiS ||2

ndσ2 =
∑
i,k

ε2
ik

Theorem If, ‖X1:p‖ = 1, µν
√
d + σ

√
nd
λ

< 1 then βj = 0 for j 6∈ S .
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Manifold coordinates with Scientific meaning Pulling back the coordinate gradients

Recovery for ManifoldLasso
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Manifold coordinates with Scientific meaning Pulling back the coordinate gradients

TangentSpaceLasso: ManifoldLasso without embedding

Simplification regress basis of TξM on gradients of gj
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Manifold coordinates with Scientific meaning Pulling back the coordinate gradients

Experiments

Dataset n Na D d εN m n′ p
SwissRoll 10000 NA 51 2 .18 2 100 51 synthetic
RigidEthanol 10000 9 50 2 3.5 3 100 12
Ethanol 50000 9 50 2 3.5 3 100 12 skeleton G
Malonaldehyde 50000 9 50 2 3.5 3 100 12
Toluene 50000 16 50 1 1.9 2 100 30
Ethanol 50000 9 50 2 3.5 3 100 756 exhaustive G
Malonaldehyde 50000 9 50 2 3.5 3 100 756

φ Lasso |G|

p = dictionary size, m = embedding dimension, n = sample size for manifold estimation, n′ =

sample size for ManifoldLasso
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Manifold coordinates with Scientific meaning Pulling back the coordinate gradients

Two-stage sparse recovery for exhaustive G, p = 756

Ethanol

Malonaldehyde
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Manifold coordinates with Scientific meaning Pulling back the coordinate gradients

Tangent Space Lasso experiments
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Manifold coordinates with Scientific meaning Pulling back the coordinate gradients

Summary of ManifoldLasso/FunctionalLasso

Technical contribution

FunctionalLasso: non-linear sparse functional regression

Method to push/pull vectors through mappings φ

ManifoldLasso: regression of data driven coordinates φ1:m on domain-specific
functions G = {g1:p}

Significance
scientific data driven interpretable
language coordinates coordinates
(torsions)

+ =
explain learned coordinates by dictionaries of domain-relevant functions

transmissible knowledge, compare embeddings from different experiments

extensions to: estimated ∇g, simultaneous explanation of multiple manifolds
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Machine Learning 1-Laplacians, topology, vector fields

Learning with flows and vector fields [with Yu-chia Chen, Yoannis Kevrekidis]
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Machine Learning 1-Laplacians, topology, vector fields 1-Laplacian ∆1(M) estimation from samples
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Machine Learning 1-Laplacians, topology, vector fields 1-Laplacian ∆1(M) estimation from samples

Why Laplacians? Why higher order?

manifold M (Assumed)

∆0(M) =Laplace-Beltrami operator

Data ξ1, . . . ξn (Observed)

L0 is graph Laplacian, estimator of
∆0(M), e.g. [Coifman, Lafon 2006]

L0 and its principal e-vectors
embedding data by Diffusion Maps [Coifman, Lafon 2006]
Function approximation – basis for any function on M
Smoothing, semi-supervised learning (Laplacian regularization) on manifolds
Spectral Clustering = topology + geometry

Higher order Laplacians ∆1, . . .∆k also capture geometry and topology of M
∆0 operates on functions, ∆1 on vector fields, ∆k on k-forms

Our work
estimate ∆1(M) from data
Helmholtz-Hodge decomposition of ∆1(M) estimated from data
Smoothing, function approximation, semi-supervised learning (Laplacian regularization)
for vector fields on manifolds
1st (co-)homology embedding of graph edges
Manifold prime decomposition
find short loop bases in H1
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Estimating the 1-Laplacian with samples from M

Manifold M
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L1 estimation for Molecular Dynamics data (malonaldehyde)
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Outline

1 Manifold coordinates with Scientific meaning
Functional Lasso
Pulling back the coordinate gradients

2 Machine Learning 1-Laplacians, topology, vector fields
1-Laplacian ∆1(M) estimation from samples
Analysis of vector fields – Helmholtz-Hodge decomposition
Harmonic Embedding Spectral Decomposition Algorithm
Spectral Shortest Homologous Loop Detection
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Eigenfunctions of L1 – what are they useful for?

Eigenfunctions of L1 = basis of vector fields on M
Helmholtz-Hodge Decomposition classifies eigenfunctions of L1

C1
∼= RnE ∼= ImLdown

1︸ ︷︷ ︸
gradient

⊕NullL1︸ ︷︷ ︸
harmonic

⊕ ImLup
1︸ ︷︷ ︸

curl

Analysis of vector fields on M
Decompose onto harmonic, gradient, curl
Smooth, predict, extend, complete a flow

Analysis of M
H1 = NullL1 Space of loops on M (1st co-homology space)
dimH1 = β1 number of (independent loops)
Find shortest loop basis
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Helmholtz-Hodge decomposition
for ocean buoys data
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simplicial complex (V ,E ,T )
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Flow Smoothing
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Flow Completion – Semi-Supervised Learning (SSL)
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Outline

1 Manifold coordinates with Scientific meaning
Functional Lasso
Pulling back the coordinate gradients

2 Machine Learning 1-Laplacians, topology, vector fields
1-Laplacian ∆1(M) estimation from samples
Analysis of vector fields – Helmholtz-Hodge decomposition
Harmonic Embedding Spectral Decomposition Algorithm
Spectral Shortest Homologous Loop Detection
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Connected sum and manifold (prime) decomposition

The connected sum ? M =M1]M2:

1 removing two d-dimensional “disks” from M1 and
M2 (shaded area)

2 gluing together two manifolds at the boundaries

Existence of prime decomposition: factorize a manifold M =M1] · · · ]Mκ into Mi ’s
so that Mi is a prime manifold

d = 2: classification theorem of surfaces ?

d = 3: the uniqueness of the prime decomposition was shown by Kneser-Milnor
theorem ?

d ≥ 5: ? proved the existence of factorization (but they might not be unique)
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The decomposition of the higher-order homology embedding constructed
from the k-Laplacian [Chen,M NeurIPS 2021]

Denote Y the harmonic e-vectors of Lk

Theoretic aim

Recover the homology basis Yi of each prime manifold Mi

(Yi localized on each Mi )

Provide an analogue to Orthogonal Cone Structure result ???

in spectral clustering (H0)

Algorithmic aim

Let Ŷ = diag{Yi}
The null space basis of Lk is only
identifiable up to a unitary matrix

Algorithm to find Z = YO,
approximation of Ŷ

Z is localized, more interpretable
than Y

1st
coordinate

Y

2nd
coordinate 3rd

coordinate 4th
coordinate

Z
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Harmonic Eigenfunctions Y (raw) vs. Z (decoupled)
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Connected sum as a matrix perturbation: Assumptions

1 Points are sampled from a decomposable manifold
κ-fold connected sum: M =M1] · · · ]Mκ
Hk (SC) (discrete) and Hk (M,R) (continuous) are
isomorphic. Also for every Mi

Works for any consistent method to build Lk

We use our prior work ? for L1

2 No k-homology class is created/destroyed during the connected sum
If dim(M) > k, then Hk (M1]M2) ∼= Hk (M1)⊕Hk (M2) ?

[Technical] The eigengap of Lk is the min of each L̂(ii)
k : δ = min{δ1, · · · , δκ}

3 Sparsely connected manifold
Not too many triangles are created/destroyed during connected sum (for k = 1)
Empirically, the perturbation is small even when M is not sparsely connected
[Technical] Perturbations of `-simplex set Σ` are small (ε` and ε′` are small)
for ` = k, k − 1
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Subspace perturbation

Theorem 1

Under Assumptions 1–3∥∥∥DiffLdown
k

∥∥∥2
≤
[

2
√
ε′k + ε

′
k +

(
1 +

√
ε′k

)2√
ε′k−1 + 4

√
εk−1

]2

(k + 1)2; and

∥∥DiffLup
k

∥∥2 ≤
[

2
√
ε′k + ε

′
k + 2εk + 4

√
εk

]2
(k + 2)2

,

and there exists a unitary matrix O ∈ Rβk×βk such that

∥∥∥YNk ,: − ŶNk ,:O
∥∥∥2

F
≤

8βk
[∥∥DiffLdown

k

∥∥2
+ ‖DiffLup

k ‖
2
]

min{δ1, · · · , δκ}
. (1)

Assu. 2: no topology is destroyed/created

Assu. 3: sparsely connected

Nk : bound only simplexes that are not altered during connected sum
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Harmonic Embedding Spectral Decomposition Algorithm

In Simplicial complex (V ,E ,T ), weights
WV ,WE ,WT

1 Compute L1

2 Eigendecomposition

β1,Y ← Null(L1)

3 Independent Component Analysis

Z← ICAnoprewhite(Y)

Out Z
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Outline

1 Manifold coordinates with Scientific meaning
Functional Lasso
Pulling back the coordinate gradients

2 Machine Learning 1-Laplacians, topology, vector fields
1-Laplacian ∆1(M) estimation from samples
Analysis of vector fields – Helmholtz-Hodge decomposition
Harmonic Embedding Spectral Decomposition Algorithm
Spectral Shortest Homologous Loop Detection
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Spectral Shortest Homologous Loop Detection

In Z = [z1, . . . zβ1 ], (V ,E), edge lengths dE

for l = 1 : β1

1 Remove edges e with low |Zle |, keep top 1/β1

fraction Ekeep

2 Construct Gl = (V ,Ekeep), edge weights dE
3 Repeat for a lot of edges in Ekeep

1 select e = (t, s0) ∈ Ekeep
2 find shortest path s0 to t

Pe ←Dijkstra(V ,Ekeep \ {e}, s0, t, dE )

4 Cl ← argmine length(loop(Pe))

Out loops C1:β1
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Shortest loop basis on real data

RNA single cell sculpture ocean buoys retina
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Summary – Manifold Learning beyond embedding algorithm

Manifolds, vector fields, . . .
historically used for modeling scientific data
represented analytically

NOW representations learned from data
• machine learning needs to handle new mathematical concepts
• need to output results in scientific language

Generic method for Interpretation in the language of the domain
by finding coordinates from among domain-specific functions
non-parametric and non-linear

Extended manifold learning from scalar functions to vector fields
first 1-Laplacian estimator
continuous limit derived
natural extensions of smoothing, semi-supervised learning to vector field data
perturbation result for prime manifold decomposition
algorithm for shortest loop basis
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Samson Koelle, Yu-Chia Chen, Hanyu Zhang, Alon Milchgrub

Hugh Hillhouse (UW), Jim Pfaendtner (UW), Chris Fu (UW)
A. Tkatchenko (Luxembourg), S. Chmiela (TU Berlin), A. Vasquez-Mayagoitia (ALCF)

Thank you
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