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Outline

© Manifold coordinates with Scientific meaning
@ Functional Lasso
@ Pulling back the coordinate gradients

© Machine Learning 1-Laplacians, topology, vector fields
@ 1-Laplacian A;(M) estimation from samples
@ Analysis of vector fields — Helmholtz-Hodge decomposition
@ Harmonic Embedding Spectral Decomposition Algorithm
@ Spectral Shortest Homologous Loop Detection
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© Manifold coordinates with Scientific meaning
@ Functional Lasso
@ Pulling back the coordinate gradients
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Manifold coordinates with Scientific meaning

Motivation — understanding data from a Molecular Dynamics simulation

original
ethanol data

aspiin33 vs 82

preprocessed
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Manifold coordinates with Scientific meaning

Motivation — understanding data from a Molecular Dynamics simulation

original after manifold learning
ethanol data

aspiin33 vs 82

preprocessed
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Manifold coordinates with Scientific meaning

Motivation — understanding data from a Molecular Dynamics simulation

original
ethanol data torsion 1

aspiin33 vs 82

preprocessed torsion 2

@ 2 rotation angles (torsions) describe this manifold

@ Can we discover these features automatically? Can we select-these-angles from a
Manifold Learning 2.0 May 20, 2022  7/63



Manifold coordinates with Scientific meaning

scientific data driven
language coordinates
(torsions) (from DiffMaps, Isomap)
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Manifold coordinates with Scientific meaning

coordinates

scientific data driven with scientific
language coordinates interpretation
(torsions) (from DiffMaps, Isomap) (selected torsions)

Idea Replace data driven coordinates with selected torsions
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Manifold coordinates with Scientific meaning

coordinates

scientific data driven with scientific
language coordinates interpretation
(torsions) (from DiffMaps, Isomap) (selected torsions)

Idea Replace data driven coordinates with selected torsions

e Scientist: proposes a dictionary G with all variables of interest
e ML algorithm: outputs embedding ¢,
e MANIFOLDLASSO: finds new coordinates in G “equivalent” with ¢ < our algorithm
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Manifold coordinates with Scientific meaning

coordinates

scientific data driven with scientific
language coordinates interpretation
(torsions) (from DiffMaps, Isomap) (selected torsions)

g ¢ gsCg

Idea Replace data driven coordinates with selected torsions

e Scientist: proposes a dictionary G with all variables of interest
e ML algorithm: outputs embedding ¢,
e MANIFOLDLLASSO: finds new coordinates in G “equivalent” with ¢ < our algorithm

@ Explanation

o = find manifold coordinates from among scientific variables of interest
e should be in the language of the domain

A E—T, R



Manifold coordinates with Scientific meaning Functional Lasso
Outline

© Manifold coordinates with Scientific meaning
@ Functional Lasso
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Manifold coordinates with Scientific meaning [STQISEIEINICELTY

Problem formulation

g5 CG

¢
*
. f 4
¥ ¢ R
- = &
Given
@ Domain knowledge

o dictionary of domain-related smooth functions G = {g1,...gp, with gj : RD — R}.

e e.g. all torsions in ethanol
@ Data driven coordinates

edatag;eRP,ic1...n
o embedding of data ¢(&1:n) in R™

@ Assume
?(&) = h(gi (§),--- gi(§)) with g;;. . €G
@ Wanted S = {j1,...Js} interpretable coordinates

A E—T, i 20, 2
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Manifold coordinates with Scientific meaning [STQISEIEINICELTY

Idea: Sparse regression in function space

¢ = hogs
manifold functions from G
coordinates

Challenges
@ sparse, non-linear regression problem

@ ML coordinates ¢ defined up to
diffeomorphism

A E—T,
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Manifold coordinates with Scientific meaning [STQISEIEINICELTY

Idea: Sparse regression in function space

¢ = hogs
manifold functions from G
coordinates

Challenges
@ sparse, non-linear regression problem

@ ML coordinates ¢ defined up to
diffeomorphism

@ hence, h cannot assume a parametric
form

@ we cannot choose a basis for h
@ ¢, may depend on multiple g;

@ will not assume ¢ isometric

A E—T, N i /G



Manifold coordinates with Scientific meaning [STQISEIEINICELTY

Idea: Sparse regression in function space

¢ = hogs D¢ = DhDgs
manifold functions from G

coordinates Leibnitz Rule

Challenges
. . @ sparse linear regression problem
@ sparse, non-linear regression problem

@ ML coordinates ¢ defined up to
diffeomorphism

@ hence, h cannot assume a parametric
form

@ we cannot choose a basis for h
@ ¢, may depend on multiple g;

@ will not assume ¢ isometric
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Manifold coordinates with Scientific meaning [STQISEIEINICELTY

Idea: Sparse regression in function space

¢ = hogs
manifold functions from G
coordinates

Challenges
@ sparse, non-linear regression problem

@ ML coordinates ¢ defined up to
diffeomorphism

@ hence, h cannot assume a parametric
form

@ we cannot choose a basis for h
@ ¢, may depend on multiple g;

@ will not assume ¢ isometric

D¢ = DhDgs

Leibnitz Rule

@ sparse linear regression problem
o For every data i

o Y, = grad 6(&),

o X; =gradgip(§)

° B = %(5,-)

e Sparse linear system Y; = X;/3;

@ Constraint: subset S is same for all /

A E—T, N i B/



Manifold coordinates with Scientific meaning [STQISEIEINICELTY

Idea: Sparse regression in function space

¢ = hogs D¢ = DhDgs
manifold functions from G

coordinates Leibnitz Rule

Challenges

. . @ sparse linear regression problem

@ sparse, non-linear regression problem >
o For every data i

° ML coordm:_ates ¢ defined up to o Vi = grad 6(&),
diffeomorphism o X; = grad gi.,(€)

@ hence, h cannot assume a parametric ° B = %(E:‘)
form

e Sparse linear system Y; = X;/3;

@ we cannot choose a basis for h . . .
@ Constraint: subset S is same for all j

@ ¢, may depend on multiple g;

@ will not assume ¢ isometric
Functional (Group) Lasso
@ optimize

min A(B) = 3D Vi =XiBil3+AD_115)ll, (MaNFOLDLAsSO)
i=1 J

@ support S of [ selects gj,....;, from G
Manifold Learning 2.0 May 20, 2022  18/63



Manifold coordinates with Scientific meaning Pulling back the coordinate gradients
Outline

© Manifold coordinates with Scientific meaning

@ Pulling back the coordinate gradients
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MANIFOLDLASSO Algorithm

Given Data &1.p, dim M = d, embedding ¢(&1.»), dictionary G = {gi.p}
@ Estimate tangent subspace at &; by (weighted) PCA
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MANIFOLDLASSO Algorithm

Given Data &1.p, dim M = d, embedding ¢(&1.»), dictionary G = {gi.p}

@ Estimate tangent subspace at &; by (weighted) PCA
@ Project dictionary functions gradients Vgj on tangent subspace, obtain Xi., € RI*P
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MANIFOLDLASSO Algorithm

Given Data &1.p, dim M = d, embedding ¢(&1.»), dictionary G = {gi.p}
@ Estimate tangent subspace at &; by (weighted) PCA

@ Project dictionary functions gradients Vgj on tangent subspace, obtain Xi., € RI*P
@ Estimate gradients of ¢1.x, obtain Y., € R*™
By pull-back from embedding space ¢
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MANIFOLDLASSO Algorithm

Given Data &1.p, dim M = d, embedding ¢(&1.»), dictionary G = {gi.p}
Estimate tangent subspace at & by (weighted) PCA

Project dictionary functions gradients Vg; on tangent subspace, obtain X;., € RY*P

© 0O

Estimate gradients of ¢1.., obtain Yi., € R¥*™

By pull-back from embedding space ¢

@ Solve GROUPLASSO( Yi:5, X1, d), obtain support S
Output S

A E—T, R



[VELTCICRECIIGIMETE RV Y EUETN L EENIL-A  Pulling back the coordinate gradients

Ethanol MD simulation
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Manifold coordinates with Scientific meaning Pulling back the coordinate gradients
Theory

® When is S unique? / When can M be uniquely parametrized by G?7
Functional independence conditions on dictionary G and subset gj, .. ;.
@ Basic result

fs = hofs on U iff

Dfs _
rank( Df., ) = rank Dfs;  on U

A E—T, T



Manifold coordinates with Scientific meaning Pulling back the coordinate gradients
Theory

® When is S unique? / When can M be uniquely parametrized by G?7
Functional independence conditions on dictionary G and subset gj, .. ;.

@ Basic result
fs = hofs on U iff

Dfs _
rank( Df., ) = rank Dfs;  on U

@ When can GLASSO recover S 7
(Simple) Incoherence Conditions

|)(j¥)(j’i| 1

= max U =~ pdo? = Ze?
M e s X%l mini—1.n | X5 Xis] |2 Z

Theorem If, ||X1.,| = 1, pv/d + "Tm < 1then 3 =0forj¢S.

A E—T, i 20, 2
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[VELTCICRECIIGIMETE RV Y EUETN L EENIL-A  Pulling back the coordinate gradients

Recovery for MANIFOLDLASSO

Theorem T (Support recovery) Assume that eguation (30) holds, and that 3 | ||zi;||* = '}'}2
forallj =1:p. Let ymax = Max;gs v, 5 = MaXi=1:n :1?:;:: ||I:.:|'|| . Denote by @ the solution of
(31) for some A>0. If 1 — (s —1)p >0 and

m Ks avd
"max ) B +—= 51 a7
L (1—(s—1)mn1._1mmfcs||a:=:j-f|| Aﬁ) (37

then Bi; =0 for j ¢ S and alli =1,...n.

M

Corollary 8 Assume that equation (31) and condition (37) hold. Let & = [t oo —ome——
=1 JTES i3

, mnx Tyl

and g = ||J?-;|| Denote by B the solution to problem (31) for some A > 0. If (1) A =c¢{ e an !
e>1, and (2) ||8}]] = oV A(Ymax + ) + A1 + /3) for all j € 8, then the support S is recovered
exactly and

1- K Ymax

A 1 .
||-d_7 - ﬁ1_-:“ < g‘/&{'}'mnx + '}'S} + )‘(l + V’a =g d’?’max [1 + Vs flrr)'"ma_x + Ci] fGT all J S S.
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Marina Meild

TANGENTSPACELASSO: MANIFOLDLASSO without embedding

Simplification regress basis of 7¢ M on gradients of g;

Proposition 2 (after (?)). Let F, f; be dictionary and dic-
tionary functions on the d—dimensional smooth manifold
M. Assume f; € C* with ¢ > d + 1. Suppese S C [p],
and denote by grad fs the R** matrix of concatenated
grad f; : f € S. Then, if there is a subset S’ ¢ S such that
the following rank condition holds globally:

rank (grad f; ) = rankgrad fg . )

Then there exists a function h which is C* almost every-
where in the image of fs: (M) such that fs = ho fg

ps = sup

T
cemteP s e el ®)

vg = sup

1 of (XE Xge) e (6)
feMPaekd:||allz=1

Manifold Learning 2.0

Proposition 3. Assume that

1. M is d—dimensional C* compact manifold with
strictly positive reach.

2. Data & are sampled from some density p on M with
p > 0all over M.

3. £ € M° with probability 1 under p.

Let S be the "true’ support, S[ﬁ) be the support selected
by TSLASSO, us and vs be defined by (5) and (6), and
Surther assume

4. |S|=d
5. Dfs has rank d on M?,
6. pgrsd < 1.

Then if we adapt the tangent space estimation algorithm in
(?) with bandwidth choice h = O(logn/(n — 1)), with
n > (1 — psvsd)/2usd)¥ *=1) we have

Pr(SB)cS)>1-0 ((%)%) .

May 20, 2022 27 /63



Manifold coordinates with Scientific meaning Pulling back the coordinate gradients

Experiments

Dataset n N, DJd| e [ m n’ p
SwissRoll 10000 NA | 51 2 .18 2 100 51 synthetic
RigidEthanol 10000 9 50 | 2 | 35| 3 100 12
Ethanol 50000 9 50 | 2 | 35| 3 100 12 skeleton G
Malonaldehyde | 50000 9 50 | 2 | 35| 3 100 12
Toluene 50000 | 16 | 50 | 1 | 1.9 | 2 100 30
Ethanol 50000 9 50 | 2 | 35 | 3 100 756 | exhaustive G
Malonaldehyde | 50000 9 50 | 2 | 35| 3 100 756

) Lasso | |G]

p = dictionary size, m = embedding dimension, n = sample size for manifold estimation, n’ =
sample size for MANIFOLDLASSO

Marina Meild

Manifold Learning 2.0

May 20, 2022
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Manifold coordinates with Scientific meanin Pulling back the coordinate gradients

Two-stage sparse recovery for exhaustive G, p = 756

Ethanol

Regularization path (single replicate) Estimated Supports

Malonaldehyde

Regularization path (single replicate) Estimated Supports

A E—T, N i SUCE



[VELTCICRECIIGIMETE RV Y EUETN L EENIL-A  Pulling back the coordinate gradients

Tangent Space Lasso experiments

Toluene

eMDA-H-H-Me

Ethanol

Malonaldehyde

-Xylene
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[VELTCICRECIIGIMETE RV Y EUETN L EENIL-A  Pulling back the coordinate gradients

Summary of MANIFOLDLASSO/FUNCTIONALLASSO

Technical contribution
o FUNCTIONALLASSO: non-linear sparse functional regression
@ Method to push/pull vectors through mappings ¢
@ MANIFOLDLASSO: regression of data driven coordinates ¢1.,, on domain-specific
functions G = {g1}

2
[
JLX
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[VELTCICRECIIGIMETE RV Y EUETN L EENIL-A  Pulling back the coordinate gradients

Summary of MANIFOLDLASSO/FUNCTIONALLASSO

Technical contribution
o FUNCTIONALLASSO: non-linear sparse functional regression
@ Method to push/pull vectors through mappings ¢
@ MANIFOLDLASSO: regression of data driven coordinates ¢1.,, on domain-specific
functions G = {g1}

@ Significance
scientific data driven interpretable
language coordinates coordinates
(torsions)
*
¢ R t
- ¢

@ explain learned coordinates by dictionaries of domain-relevant functions
@ transmissible knowledge, compare embeddings from different experiments

@ extensions to: estimated Vg, simultaneous explanation of multiple manifolds

A E—T, R



Machine Learning 1-Laplacians, topology, vector fields

Learning with flows and vector fields [with Yu-chia Chen, Yoannis Kevrekidis|

1-Laplacian estimation

Directed graph embedding
Manifold + vector field [NIPS 2011]

‘ _,,_. Independent loops
—_— [Arxiv:2107.10970]
S [NeurlPS 2021]

=T, Ny o e E)CE



Machine Learning 1-Laplacians, topology, vector fields [ESSEVIEELWAST@Z PR ENIRTELIEET IS
Outline

© Machine Learning 1-Laplacians, topology, vector fields
@ 1-Laplacian A;(M) estimation from samples
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Why Laplacians? Why higher order?

e manifold M (Assumed) o Data ¢!,...£" (Observed)

o Ag(M) =Laplace-Beltrami operator @ Lo is graph Laplacian, estimator of
Ao(M), e.g. [Coifman, Lafon 2006]

A E—T, R



Why Laplacians? Why higher order?

e manifold M (Assumed) o Data ¢!,...£" (Observed)

o Ag(M) =Laplace-Beltrami operator @ Lo is graph Laplacian, estimator of
Ao(M), e.g. [Coifman, Lafon 2006]
Lo and its principal e-vectors

e embedding data by Diffusion Maps [Coifman, Lafon 2006]

e Function approximation — basis for any function on M

e Smoothing, semi-supervised learning (Laplacian regularization) on manifolds
o Spectral Clustering = topology + geometry
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Why Laplacians? Why higher order?

e manifold M (Assumed) o Data ¢!,...£" (Observed)

o Ag(M) =Laplace-Beltrami operator @ Lo is graph Laplacian, estimator of
Ao(M), e.g. [Coifman, Lafon 2006]

Lo and its principal e-vectors
e embedding data by Diffusion Maps [Coifman, Lafon 2006]
e Function approximation — basis for any function on M
e Smoothing, semi-supervised learning (Laplacian regularization) on manifolds
o Spectral Clustering = topology + geometry

Higher order Laplacians Aj,... Ay also capture geometry and topology of M
e Ag operates on functions, A on vector fields, Ay on k-forms
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Why Laplacians? Why higher order?

e manifold M (Assumed) o Data ¢!,...£" (Observed)

o Ag(M) =Laplace-Beltrami operator @ Lo is graph Laplacian, estimator of
Ao(M), e.g. [Coifman, Lafon 2006]

e [ is estimator of A1(M)
[Chen,M,Kevrekidis Arxiv:2103.07626]

@ A;(M) is 1-st order Laplacian operator

Lo and its principal e-vectors
e embedding data by Diffusion Maps [Coifman, Lafon 2006]
o Function approximation — basis for any function on M
e Smoothing, semi-supervised learning (Laplacian regularization) on manifolds
e Spectral Clustering = topology + geometry

Higher order Laplacians Ay, ... Ay also capture geometry and topology of M
o Ay operates on functions, Aj on vector fields, Ax on k-forms

Our work
o estimate Aj(M) from data
o Helmholtz-Hodge decomposition of Aj(M) estimated from data
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Why Laplacians? Why higher order?

e manifold M (Assumed) e Data ¢',...£" (Observed)
o Ag(M) =Laplace-Beltrami operator @ Lo is graph Laplacian, estimator of
@ A;(M) is 1-st order Laplacian operator Ao(M), e.g. [Coifman, Lafon 2006]

e [, is estimator of A;(M)
[Chen,M,Kevrekidis Arxiv:2103.07626]

Lo and its principal e-vectors

e embedding data by Diffusion Maps [Coifman, Lafon 2006]

o Function approximation — basis for any function on M

e Smoothing, semi-supervised learning (Laplacian regularization) on manifolds

e Spectral Clustering = topology + geometry
Higher order Laplacians Ay, ... Ay also capture geometry and topology of M

o Ay operates on functions, Aj on vector fields, Ax on k-forms
Our work

o estimate Aj(M) from data

o Helmholtz-Hodge decomposition of Aj(M) estimated from data

e Smoothing, function approximation, semi-supervised learning (Laplacian regularization)

for vector fields on manifolds

e 1st (co-)homology embedding of graph edges
Manifold prime decomposition
o find short loop bases in H;

A —T, R



Machine Learning 1-Laplacians, topology, vector fields

1-Laplacian Aj (M) estimation from samples

Estimating the 1-Laplacian with samples from M

—— Manifold M\
Samples X \_ /

L = B W, 'BeWe
L =W'BrWiB{
4

Li=a -L{""+b- L7

Marina Meild

SC, = (V,E,T)

=~ -

- N
X e=(s,t)€E
N 1fHX SXell <5

~

\

\ N E = \
t=(s,t,u)€e 'x V

if( t,u),(s,u) € E

/
\l> /
</

= [Briwt

we (% Y)
+wr(% Y, 2

= WT(X,‘_-J/Z)
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Machine Learning 1-Laplacians, topology, vector fields [ESSEVIEELWAST@Z PR ENIRTELIEET IS

L1 estimation for Molecular Dynamics data (malonaldehyde)

- 1*‘ - 2“d eigenflow

E ~
025+
025 -0.04
z
0.20-
0.204
-0.03 =
&
0.15- 5
0.15- £ o-
-0.02 £
0.10- =
0.10- _§
: 2
- S
0.05- 001 o
0.05-
0.00 -0.00 —ne

0.00- V1, .

i 4 7 1013 16 19
e MSEC)  ca ML) —a— ML) Carbonyl torsion 1 (purple)

graph Laplacian wt = 1, [Berry, Giannakis 2020], [Chen,M,Kevrekidis 2020]
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[VETHIL N REETG I g R IET ETSEL ERE VLT [FARVEIG TR (N ER  Analysis of vector fields — Helmholtz-Hodge decomposition
Outline

© Machine Learning 1-Laplacians, topology, vector fields

@ Analysis of vector fields — Helmholtz-Hodge decomposition

A E—T, N i G



[VETHIL N REETG I g R IET ETSEL ERE VLT [FARVEIG TR (N ER  Analysis of vector fields — Helmholtz-Hodge decomposition

Eigenfunctions of £1 — what are they useful for?

o Eigenfunctions of £1 = basis of vector fields on M

o Helmholtz-Hodge Decomposition classifies eigenfunctions of £;

Ci =R = Im £{°" @ Null £ ® Im LP
N~ N —

gradient harmonic curl

o Analysis of vector fields on M

o Decompose onto harmonic, gradient, curl
e Smooth, predict, extend, complete a flow

o Analysis of M
e Hi1 = NullL; Space of loops on M (1st co-homology space)
o dimH; = B1 number of (independent loops)
o Find shortest loop basis

A E—T, Ny i D)2



arning 1-Laplacians, topolo;

VEG IR ER  Analysis of vector fields — Helmholtz-Hodge decomposition

Helmholtz-Hodge decomposition
for ocean buoys data

IR &

A Gradient

40°N

Gradient
Curl

7 10 13
k-th eigenvector dy,

A E—T, Ny 20, 20
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VEG IR ER  Analysis of vector fields — Helmholtz-Hodge decomposition

Build SC, &
edge flow

1. Smoothed flow: @ = (I + «£L7) lw
2. Obtain vertex-wise vector field by
solving a linear system

C_ _a=50 ‘ o = 500

136°E 172°E 152°W 116°W 80°W 100°E 136°E 152°W 16°W 80°W 100°E 136°E 172°E 152°W ne'w 80°W

A E—T, Ny i e



arning 1-Laplacians, topolo;

Flow Completion

A

—— Manifold M Line integral
Samples X

W Vector field v

B
7{/}/;/ .
[ttt

&

0.9

Observed VE

0.8

R2

07

Sign Accuracy

025 050 075
Training set ratio

—— LaplacianRLS

Marina Meild

approximation

UpDownLaplacianRLS

025 050 075
Training set ratio

Manifold Learning 2.0

—— RidgeReg d(<;)

Analysis of vector fields — Helmholtz-Hodge decomposition

— Semi-Supervised Learning (SSL)

m Trainset By
B Testset

E

07

025 050 075
Training set ratio

025 050

—— RidgeReg ¢(SEC)

May 20, 2022

0.75

Training set ratio

(Unweighted) LaplacianRLS
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Machine Learning 1-Laplacians, topology, vector fields Harmonic Embedding Spectral Decomposition Algorithm
Outline

© Machine Learning 1-Laplacians, topology, vector fields

@ Harmonic Embedding Spectral Decomposition Algorithm

Manifold Learning 2.0 May 20, 2022 50/63



Machine Learning 1-Laplacians, topology, vector fields Harmonic Embedding Spectral Decomposition Algorithm

Connected sum and manifold (prime) decomposition

The connected sum ? M = M Ma:

@ removing two d-dimensional “disks” from M; and M, \ /Mz

M (shaded area)
@ gluing together two manifolds at the boundaries

A E—T, N i UG



Machine Learning 1-Laplacians, topology, vector fields Harmonic Embedding Spectral Decomposition Algorithm

Connected sum and manifold (prime) decomposition

The connected sum ? M = M Ma:

@ removing two d-dimensional “disks” from M; and M, \ /Mz

M (shaded area)
@ gluing together two manifolds at the boundaries

Existence of prime decomposition: factorize a manifold M = Mf--- M, into M,’s
so that M, is a prime manifold

@ d = 2: classification theorem of surfaces ?

o d = 3: the uniqueness of the prime decomposition was shown by Kneser-Milnor
theorem ?

@ d >5: ? proved the existence of factorization (but they might not be unique)

A E—T, N i UG



Machine Learning 1-Laplacians, topology, vector fields Harmonic Embedding Spectral Decomposition Algorithm

The decomposition of the higher-order homology embedding constructed
from the k-Laplacian [Chen,M NeurlPS 2021]

Denote Y the harmonic e-vectors of Ly Embedding of spectral clustering
Theoretic aim \
@ Recover the homology basis Y; of each prime manifold M; . ﬁ )

(Y; localized on each M;) U/

@ Provide an analogue to Orthogonal Cone Structure result 777
in spectral clustering (#o) i

A E—T, R



Machine Learning 1-Laplacians, topology, vector fields Harmonic Embedding Spectral Decomposition Algorithm

The decomposition of the higher-order homology embedding constructed
from the k-Laplacian [Chen,M NeurlPS 2021]

Denote Y the harmonic e-vectors of Ly Embedding of spectral clustering

Theoretic aim

@ Recover the homology basis Y; of each prime manifold M;
(Y; localized on each M;)

@ Provide an analogue to Orthogonal Cone Structure result 777
in spectral clustering (Ho)

Algorithmic aim

o Let Y = diag{Y;}

@ The null space basis of L is only
identifiable up to a unitary matrix

Algorithm to find AZ =YO,
approximation of Y

st nd
1% coordinate 2™ Coordinate

@ Z is localized, more interpretable
than Y

A E—T, Ny i e



Harmonic Embedding Spectral Decomposition Algorithm

Machine Learning 1-Laplaci

Harmonic Eigenfunctions Y (raw) vs. Z (decoupled)

t . nd . rd . th .
1S coordinate 2"%oordinate 3 coordinate 4™ coordinate

Manifold Learning 2.0 May 20, 2022 53 /63




Machine Learning 1-Laplacians, topology, vector fields Harmonic Embedding Spectral Decomposition Algorithm

Connected sum as a matrix perturbation: Assumptions

@ Points are sampled from a decomposable manifold
o r-fold connected sum: M = Mt - iM,

o H(SC) (discrete) and Hy (M, ]R) (contlnuous) are M \ /M2
isomorphic. Also for every M;
@ Works for any consistent method to build £y
@ We use our prior work ? for £;
MMy

A E—T, N i e



Machine Learning 1-Laplacians, topology, vector fields Harmonic Embedding Spectral Decomposition Algorithm

Connected sum as a matrix perturbation: Assumptions

@ Points are sampled from a decomposable manifold
o r-fold connected sum: M = Mt - iM,

o H(SC) (discrete) and Hy (M, ]R) (contlnuous) are M \ /M2
isomorphic. Also for every M;
@ Works for any consistent method to build £y
@ We use our prior work ? for £;
MMy

@ No k-homology class is created/destroyed during the connected sum
o If dim(M) > k, then Hy(M1M2) = Hy(M1) D 'Hk”(./\/lg) ?
o [Technical] The eigengap of Ly is the min of each CAE("): 0 =min{d1, - ,dx}
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Connected sum as a matrix perturbation: Assumptions

@ Points are sampled from a decomposable manifold
o r-fold connected sum: M = Mt - iM,

o H(SC) (discrete) and Hy (M, ]R) (contlnuous) are M \ /M2
isomorphic. Also for every M;
@ Works for any consistent method to build £y
@ We use our prior work ? for £;
MMy

@ No k-homology class is created/destroyed during the connected sum
o If dim(M) > k, then Hy(M1M2) = Hy(M1) D 'Hk”(./\/tg) ?
o [Technical] The eigengap of Ly is the min of each CAE("): 0 =min{d1, - ,dx}

© Sparsely connected manifold
e Not too many triangles are created/destroyed during connected sum (for k = 1)
o Empirically, the perturbation is small even when M is not sparsely connected

o [Technical] Perturbations of {-simplex set >y are small (¢, and €|, are small)
ford =k, k—1
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Subspace perturbation

Theorem 1

Under Assumptions 1-3
2
< [2\/:’k+ €+ (1 + ﬁ)z €, + 4,/7@,1} (k +1)% and
IDIFLLP [ < [2/ef + f + 26 + 4\/5]2 (k +2),

and there exists a unitary matrix O € RP*Bx such that

|| DiffLIo™®

805 ||| DiffLE™||* + | DiffLy? ]
min{d1, -+, 0x} ’

R 2
Yo V0] < 8
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Subspace perturbation

Theorem 1

Under Assumptions 1-3

2
< [2\/:'k+e; +(1+ \/Q)Z N +4\/ﬁ} (k+1)% and
IDIALLP (| < [24/¢ + e + 2e +4\/§]2(k+2)2,

and there exists a unitary matrix O € RP*Bx such that

|| DiffLdo™

805 ||| DiffLE™||* + | DiffLy? ]
min{d1, -+ ,0.}

R 2
Yo V0] < o

@ Assu. 2: no topology is destroyed/created
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Subspace perturbation

Theorem 1

Under Assumptions 1-3

2
< [2\/:'k+e; +(1+ \/Q)Z N +4\/ﬁ} (k+1)% and
DI 2 < [2/f + e+ 2k +4\/§]2(k+2)2,

and there exists a unitary matrix O € RP*Bx such that

|| DiffLIo™®

865 ||| DiffLL™|* + | DiffL ;]
min{d1, - ,0x} '

R 2
Yo V0] < 8

@ Assu. 2: no topology is destroyed/created

@ Assu. 3: sparsely connected
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Subspace perturbation

Theorem 1

Under Assumptions 1-3

2
< [2\/:'k+e; +(1+ \/Q)Z N +4\/ﬁ} (k+1)% and
IDIALLP (| < [24/¢ + e + 2e +4\/§]2(k+2)2,

and there exists a unitary matrix O € RP*Bx such that

|| DiffLIo™®

865 ||| DiffLL™|* + | DiffL ;]
min{d1,- - ,0x} ’

R 2
v Vo < 8

@ Assu. 2: no topology is destroyed/created
@ Assu. 3: sparsely connected

@ Ny: bound only simplexes that are not altered during connected sum
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Harmonic Embedding Spectral Decomposition Algorithm

In Simplicial complex (V, E, T), weights
Wy, We, W

@ Compute £

@ Eigendecomposition
b1, Y < Null(L:)
© Independent Component Analysis

Z < ICANOPREWHITE(Y)

Out Z
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Outline

© Machine Learning 1-Laplacians, topology, vector fields

@ Spectral Shortest Homologous Loop Detection
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Spectral Shortest Homologous Loop Detection

In Z=[z1,...28], (V,E), edge lengths de

forl=1:06

@ Remove edges e with low |Z|, keep top 1/51
fraction Ejeep

@ Construct Gy = (V/, Ekeep), edge weights de

© Repeat for a lot of edges in Ejeep

@ select e = (t,50) € Egeep
@ find shortest path sy to t
Pe <~ DIKSTRA(V, Egeep \ {€}, %0, t, dE)

@ C « argmin, length(loop(Pe))
Out loops Ci.g,
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Shortest loop basis on real data

RNA single cell sculpture ocean buoys retina
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Summary — Manifold Learning beyond embedding algorithm

@ Manifolds, vector fields, ...
o historically used for modeling scientific data
o represented analytically
NOW representations learned from data
e machine learning needs to handle new mathematical concepts
e need to output results in scientific language
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Summary — Manifold Learning beyond embedding algorithm

@ Manifolds, vector fields, ...

historically used for modeling scientific data

represented analytically

representations learned from data

machine learning needs to handle new mathematical concepts
need to output results in scientific language

@ Generic method for Interpretation in the language of the domain

by finding coordinates from among domain-specific functions
non-parametric and non-linear

o Extended manifold learning from scalar functions to vector fields

first 1-Laplacian estimator

continuous limit derived

natural extensions of smoothing, semi-supervised learning to vector field data
perturbation result for prime manifold decomposition

algorithm for shortest loop basis
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Thank you

Argonne &
imm
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