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Simultaneous recovery of the consensus and structure of permutations

Marina Meil3
University of Washington
with Chris Meek, Microsoft Research
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The “Sushi preference” data

N = 5000 people ranked n = 12 types of sushi

sake |ebi |ika |uni [tamago |kappa-maki |tekka-maki |anago [toro |maguro
ebi |kappa-maki [tamago [ika |toro |maguro [tekka-maki |anago |sake |uni
toro |ebi [maguro |ika [tekka-maki |uni [sake |anago |kappa-maki [tamago
tekka-maki [tamago |sake |ebi |ika |kappa-maki |maguro |toro |uni |anago
tamago |maguro |kappa-maki |ebi |sake |anago |uni [tekka-maki |toro |ika
uni [toro |ebi |anago |maguro [tekka-maki |ika |sake |kappa-maki [tamago
maguro |ika [toro |tekka-maki |ebi |uni |sake |tamago |anago |kappa-maki
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Consensus Ranking Problem
Given a set of rankings {71, m2,...7n} C S, find the consensus ranking 7o such that

N
mo = argmin E d(mi, mo)
Sn

i=1

for d = inversion distance / Kendall 7-distance / “bubble sort” distance
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N = 5000 people ranked n = 12 types of sushi

sake |ebi |ika |uni [tamago |kappa-maki |tekka-maki |anago [toro |maguro
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Consensus Ranking Problem
Given a set of rankings {71, m2,...7n} C S, find the consensus ranking 7o such that

N
mo = argmin E d(mi, mo)
Sn

i=1

for d = inversion distance / Kendall 7-distance / “bubble sort” distance

This problem is NP-hard ]
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Related work

Consensus Ranking/Single parameter/Mallows model

[Cohen,S,Singer 99] CSS ALGORITHM = greedy search on Q
improved by extracting strongly connected components
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[Ailon,Newman,Charikar 05] Randomized algorithm guaranteed 11/7 factor approximation
(ANC)

[Mohri, Ailon 08] linear program

[Mathieu, Schudy 07] (1 + €) approximation, time O(n®/e + 220(1/6))

[Davenport,Kalagnanan 03] Heuristics based on edge-disjoint cycles used by our B&B
implementation

[Conitzer,D,K 05] Exact algorithm based on integer programming, better bounds for edge
disjoint cycles (DK)

[Betzler,Brandt, 10] Exact problem reductions
[Awasthi,Blum,Sheffet,Vijayaraghavan 14]

> Most of this work based on the MinFAS view
Qi—5
Qi>5 & e 23 e

Prune graph to a DAG removing minimum weight
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Extensions and applications to social choice

Social choice

> Inferring rakings under partial and aggregated information [ShahJabatula08],
[JabatulaFariasShah10]

> Vote elicitation under probabilistic models of choice [LuBoutillier11]

UW Theory Seminar 2/2/16

> Voting rules viewed as Maximum Likelihood [ConitzerSandholm08]

> Algorithms guaranteed to retrive certain “winners” [LinAgarwall4]
“Noisy sorting”

» Using Hodge decompositions and L1, L2 distances [JiangLimYaoYel1]

> Noisy comparison [BravermanMossel08]
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ML Estimation/Multiple parameters/GM model

|[VlignerVerducci 86] @ estimation; heuristic for g

FV ALGORITHM/BORDA RULE

1. Compute §Gj,j = 1: n column sums of Q

UW Theory Seminar 2/2/16

2. Sort (gj)]_; in increasing order; mo is sorting permutation

> @; are Borda counts
» FV is consistent for infinite N
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Generalizing consensus ranking

» Not all inversions are equally important

Sushi preferences for uni have no consensus

sake |ebi |ika |uni [tamago |kappa-maki |tekka-maki |anago [toro |maguro
ebi |kappa-maki |[tamago |ika |toro |maguro |tekka-maki |anago |sake |uni
toro |ebi [maguro |ika |tekka-maki |uni |sake |anago |kappa-maki [tamago
tekka-maki |tamago |sake |ebi |ika |kappa-maki [maguro |toro |uni |anago
tamago |maguro |kappa-maki |ebi |sake |anago |uni [tekka-maki |toro |ika
uni [toro |ebi |anago |maguro [tekka-maki |ika |sake |kappa-maki [tamago
maguro |ika |toro |tekka-maki |ebi |uni [sake [tamago |anago |kappa-maki



Generalizing consensus ranking

» Not all inversions are equally important

UW Theory Seminar 2/2/16

... but there is consensus for maguro (tuna) and tekka-maki (tuna roll)
sake |ebi |ika |uni [tamago |kappa-maki |tekka-maki |anago [toro |maguro
ebi |kappa-maki [tamago [ika |toro |maguro [tekka-maki |anago |sake |uni
toro |ebi |maguro |ika |tekka-maki |uni |sake |anago |kappa-maki [tamago
tekka-maki [tamago |sake |ebi |ika |kappa-maki [maguro |toro |uni |anago
tamago |maguro |kappa-maki |ebi |sake |anago |uni [tekka-maki |toro |ika
uni [toro |ebi |anago |maguro |tekka-maki |ika |sake |kappa-maki [tamago
maguro l|ika |toro |tekka-maki |ebi |uni |sake |tamago |anago |kappa-maki
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Generalizing consensus ranking

» Not all inversions are equally important

introduce importance/weight parameters g
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Irish College Admissions data
Parameters of top 10 ranks in the 33 largest clusters found

m H1
0
5 10 1 20 25 30

5
cluster

Now &

rank j
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Combinatorial structure present
> described by a tree

2IN30NJ3S pue snsuasuod SulBnodaY :



Recursive Inversion Models (RIM)

[Meek, M 14]
0.1

s
VRN /N

apple banana cherry durian

UW Theory Seminar 2/2/16

T = tree structure
mo(7) = induced central ranking
01.n—1 = parameters at nodes
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Recursive Inversion Models (RIM)

[Meek, M 14]
0.1

s
VRN /N

apple banana cherry durian
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T = tree structure

mo(7) = induced central ranking

01.n—1 = parameters at nodes

Inversions are penalized by ; parameters

Example: 6 = (0.1, 1.2, 0.4)
Cost(alblc|d) = O
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Recursive Inversion Models (RIM)

[Meek, M 14]
0.1

s
VRN /N

apple banana cherry durian
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T = tree structure

mo(7) = induced central ranking

01.n—1 = parameters at nodes

Inversions are penalized by ; parameters

Example: 6 = (0.1, 1.2, 0.4)
Cost(alblc|d) = O
Cost(blalc|d) = 1.2
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Recursive Inversion Models (RIM)

[Meek, M 14]
0.1

s
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apple banana cherry durian
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T = tree structure

mo(7) = induced central ranking

01.n—1 = parameters at nodes

Inversions are penalized by ; parameters

Example: 6 = (0.1, 1.2, 0.4)

Cost(alblc|d) = O
Cost(blalc|d) = 1.2
Cost(c|blald) = 1.2+
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T = tree structure

mo(7) = induced central ranking

01.n—1 = parameters at nodes

Inversions are penalized by ; parameters

Example: 6 = (0.1, 1.2, 0.4)

Cost(alblc|d) = O
Cost(blalc|d) = 1.2
Cost(c|blald) = 1.2+
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Recursive Inversion Models (RIM)

[Meek, M 14]
0.1

s
VRN /N

apple banana cherry durian
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T = tree structure

mo(7) = induced central ranking
01.,—1 = parameters at nodes RIM distribution P_,_ 1
Inversions are penalized by ; parameters ’

" Let v; = number of inversions of 7 at node i
Example: 6 = (0.1, 1.2, 0.4)

Cost(alblc|ld) = 0 P g(m) o iegesexp(‘efvf)
M Cost(blalc|d) = 1.2

% Cost(c|blald) = 1.2+

£ P(alblc|ld) o €

i P(blalcld) o e 2

£ N

P(c|blald) e 12~




Recursive Inversion Models (RIM)

[Meek, M 14]
0.1

s
VRN /N

apple banana cherry durian
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T = tree structure
mo(7) = induced central ranking o
01.n—1 = parameters at nodes RIM distribution P—z—.§
Inversions are penalized by ; parameters )
Example: 6 = (0.1, 1.2, 0.4)
Cost(alblc|ld) = 0 P gm o JT exp(=0iv)
i€nodes
Cost(blalc|d) = 1.2
Cost(c|blald) = 1.2+

Let v; = number of inversions of 7 at node i

Normalization constant

Z(r,0) = []G(Li,Ri,exp(—67))
i€nodes

P(alblcld) o €° )

P(blalcld) o« e 1?2 with G(L,R,q) = (( ))’?"; (q)n = H(l O

P(c|blald) o« e 12T i=1
Structure 7 known as Riffle Independence model [Huang,Guestrin 12]

g
1
g
]
%
k=
L
a
2
=
o
@
=
S
S
)
=
]
3
2
S
1
<




The RIM is a general flexible model
0.1

I
/N /N

apple banana cherry durian
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> any tree structure
> any parameters (but 6; > 0 suffices)
» includes the Mallows and Generalized Mallows models

/\
apple -
/N

banana 0.4

/N

cherry durian
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Max Likelihood Estimation for RIM
[M,Meek 14]

> Problem Given permutations 71, ... 7wy, infer 7,60

UW Theory Seminar 2/2/16
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Max Likelihood Estimation for RIM
[M,Meek 14]

> Problem Given permutations 71, ... 7wy, infer 7,60
» Identifiability of 6

UW Theory Seminar 2/2/16

> reorder to obtain cannonical representation, with 6; > 0 for all i € nodes
> given 7, 0; can be estimated by convex univariate minimization

0.1\04
/N

apple banana cherry durian
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Max Likelihood Estimation for RIM
[M,Meek 14]

> Problem Given permutations 71, ... 7wy, infer 7,60
» Identifiability of 6

> reorder to obtain cannonical representation, with 6; > 0 for all i € nodes
> given 7, 0; can be estimated by convex univariate minimization

0.1\04
/N

apple banana cherry durian
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» ldentifiability of 7
Theorem[M, Meek 14] A model 7,0 is identifiable iff

1. 0; > 0 for all i € nodes
2. 0; # Opy(;) for all i € nodes (pa(i) is the parent of node i in 7)
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Max Likelihood Estimation for RIM
[M,Meek 14]

> Problem Given permutations 71, ... 7wy, infer 7,60
» Identifiability of 6

> reorder to obtain cannonical representation, with 6; > 0 for all i € nodes
> given 7, 0; can be estimated by convex univariate minimization

0.1\04
/N

apple banana cherry durian
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» ldentifiability of 7
Theorem[M, Meek 14] A model 7,0 is identifiable iff

1. 0; > 0 for all i € nodes
2. 0; # Opy(;) for all i € nodes (pa(i) is the parent of node i in 7)

» Hardness of 7 estimation

> Estimating 7o is NP-hard [Duchi, Mackey, Jordan 13]
> Estimating 7 structure given 7 is tractable
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Sufficient statistics

\
/\

apple banana cherry durian

Q(d|alblc) =

a b ¢ d

— 1 0 0|a
0 — 1 01»b
0 0 — 0]c
1 1 1 —|d




Sufficient statistics

UW Theory Seminar 2/2/16

0.1
\ a b ¢ d
- 1 1 0]a
R Q(d|alblc) =] 0 — 1 0 |b
: 0 0|— 0]c
apple banana cherry durian 1 1011 — |4

Cost(d|alblc) = 0.1 x 24+1.2x 0+4+0.4 x 1
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Max leellhood Fstlmatlon algorithm(s)

\
/\

apple banana cherry durian

UW Theory Seminar 2/2/16

» Estimating 7 given mq is tractable
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Max leellhood Fstlmatlon algorithm(s)

\
/\

apple banana cherry durian

UW Theory Seminar 2/2/16

» Estimating 7 given mq is tractable
> by Dynamic Programming (DP) algorithm, similar to Matrix Chain Multiplication,
Inside(-Outside) algorithm O(n*)
> contains 6; estimation at each DP “partial solution”

» Estimating 7o: Stochastic local search over 7 space, similar to Simulated
Annealing
1. Sample 7y from proposal distribution current P, g
2. Given mp™", find 7°Pt §°Pt by Dynamic Programming
3. Bring to cannonical form = 7" "W > (Q
4. Compute log-likelihood score, accept/reject like in Metropolis-Hastings, return to
step 1
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Experiments - Sushi preferences data

UW Theory Seminar 2/2/16

Data Test set log-likelihood w.r.t SA
N = 5000 permutations of n = 10 items
Compared with:

alph mo fixed, 7, 6|mo optimize o

GM fixed T, optimize o, 0
HG fixed 7 from [Huang,Guestrin,12], optimize 6
SA Simulated Annealing

test log-likelihood difference from SA

of] L = i
|

HG alph GMM
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Ntest = 300, Nyain = 4700, 30
replicates




Partial rankings

“Sushi preference” data n = 12
types of sushi

“My top 3 preferences are ika,
maguro, tekka, in this order”
“l like uni least of all”

“| prefer fish to non-fish”

UW Theory Seminar 2/2/16

Three good things about the RIM
> RIM is a general model (includes Mallows, generalized Mallows)
> likelihood P(|7(f)) factors according to tree (and partition function Z tractable)

» RIM has sufficient statistics
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Partial rankings

“Sushi preference” data n = 12
types of sushi
ika|maguro|tekkal{all other types}
{all but ebi}|ebi

{sake,anago,. .. } | {tamago,ika,...}

UW Theory Seminar 2/2/16

Ey Ey
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Partial rankings

“Sushi prefe_rence" data n =12 Partial ranking o [Huang & al, 10]
types of sushi o = (E|E] ... |Ex) with
ika|maguro|tekkal{all other types}
{all but ebi}|ebi

{sake,anago,. .. } | {tamago,ika,...}

UW Theory Seminar 2/2/16

» EiUE U. .. Ex = set
of items

E, E.
' ’ » shape (m,...nk),

ne = ‘Ek|, an =n
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Partial rankings

“Sushi prefe_rence" data n =12 Partial ranking o [Huang & al, 10]
types of sushi o = (E|E] ... |Ex) with
ika|maguro|tekkal{all other types}
{all but ebi}|ebi

{sake,anago,. .. } | {tamago,ika,...}
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» EiUE U. .. Ex = set
of items

E, E.
' ’ » shape (m,...nk),

ne=|Ek|, > mk=n
Three good things about the RIM
» RIM is a general model (includes Mallows, generalized Mallows)
» likelihood P(r|7(8)) factors according to tree ? YES [Huang et al, 10]
» RIM has sufficient statistics 7 NO
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Inferences with partial rankings in the RIM. Are they tractable?

The meaning of “tractable”
» Estimation of 7 for RIM is intractable in the worst case

> We define tractable as O(N poly(n))x time (memory) for complete data

UW Theory Seminar 2/2/16
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Inferences with partial rankings in the RIM. Are they tractable?

The meaning of “tractable”

» Estimation of 7 for RIM is intractable in the worst case

UW Theory Seminar 2/2/16

> We define tractable as O(N poly(n))x time (memory) for complete data

Main technical difficulty

» marginal probability of a partial ranking o

U|T(9 Z P( 7T|T

T~

where linear extension {m ~ o} of o can have exponential size
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Contributions

1. for marginal probability P(o|(6))

>
>

exact formula and polynomial algorithm
proved algorithm no more than 2/Nn more costly than for complete permutations
(and sometimes much faster)

—

2. for pairwise marginals E[Q.s] = Pr[aprecedes b| o, 7(6)]

>
>

exact recursive (polynomial) algorithm
proved algorithm no more costly than for complete permutations

3. for parameter § estimation (Maximum Likelihood)

>
>

convex univariate minimization algorithm for each 6i
proved algorithm is O(Nn) more costly than for complete permutations

4. for structure search (Maximum Likelihood)

>

previous work

complete data: local (simulated annealing) search algorithm with exact, tractable
steps [Meek M 14]

partial rankings: EM algorithm with approximate (or exponential) E step [Huang &
al 10]

our contributions

new “E step” based on completing the pairwise marginals E[Qp]

algorithms above can use the completed pairwise marginals as if they were complete
data



—

Computing the marginal probability P(o|r,0)
0.1

s s
Jat /\

apple banana cherry durian

UW Theory Seminar 2/2/16

RIM probability for complete data P(x|r, 5)

P(alblc|d) o €° (with v; = number of inversions of 7y at node i)
P(blalc|d) o« e '? —o;
P(c|blald) o e ?" Pom)= 1l e— v
i€nodes GL oRi (eXp( 9 ))
q)L+R
with G gr(q) = % H(l -q).

RIM probability for partial ranking o
[M, Meek in prep]
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PTﬁ(g) = H (factor at node /)

i€nodes
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Marginal P(7|7,6) for partial ranking o
0.1

s s
Jat /\

apple banana cherry durian
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Sufficient to consider root node
Complete ranking m = (c|a|b|d) Partial ranking o = (¢|{a, b, d})

—20 factor — e_29G071(e_8)G2,1(e_9)

e
factor = ———+
G22(e7?) G22(e7?)
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—

Marginal P(7|7,6) for partial ranking o
0.1

s s
Jat /\

apple banana cherry durian

UW Theory Seminar 2/2/16

Sufficient to consider root node

Complete ranking m = (c|a|b|d) Partial ranking o = (¢|{a, b, d})
—20 —20 -0 —0
e e Goil(e )GQ 1(6 )
factor = ———~ factor = : :
Goo(e7?) Go2(e7?)

In general, at some internal node where
> set L is merged with set R

> partial ranking o restricted to LU R is E1|Ez| ... |Ex with Ex = L U R,
LCL, nCR
» factor of P(o|7(6)) at this node is
970VG’lvfl(eie)Glz-fz(eig) s G/KJK(eig)
Gicpiri(e™?)

where v = # inversions in ¢ at node < # inversions in T ~ o

glhk,nk,0) =
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—

Marginal P(7|7,6) — how much extra computation?

How many additional factors?
em 1 G(),r = G/70 =1

UW Theory Seminar 2/2/16
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—

Marginal P(7|7,6) — how much extra computation?

How many additional factors?
em 1 GO,r = G/70 =1

em 2 at each node, at least one of Ly, R« decreases (and their initial sum is n)

UW Theory Seminar 2/2/16

> Hence, no more than n — 1 extra factors (but sometimes much fewer)
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—

Marginal P(7|7,6) — how much extra computation?

How many additional factors?
em 1 GO,r = G/70 =1

em 2 at each node, at least one of Ly, R« decreases (and their initial sum is n)

UW Theory Seminar 2/2/16

> Hence, no more than n — 1 extra factors (but sometimes much fewer)

» Example top-t rankings o = (ika|maguro|sake|{everything else}) P(c|,6) has at
most t — 1 non-trivial factors

g
1
g
]
%
k=
L
a
a
@
@
=
S
S
)
=
]
3
2
S
1
<




—

Marginal P(7|7,6) — how much extra computation?

How many additional factors?
em 1 GO,r = G/70 =1

em 2 at each node, at least one of Ly, R« decreases (and their initial sum is n)
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> Hence, no more than n — 1 extra factors (but sometimes much fewer)

» Example top-t rankings o = (ika|maguro|sake|{everything else}) P(c|,6) has at
most t — 1 non-trivial factors
How much additional computation?
> Gy R is computed recursively over | =0,...L, r=1,...R
> Hence, all G;,(#) in numerator are cached while computing the denominator
» Overhead for whole sample of size N is no more than n/N lookups+multiplications
» For comparison, for a complete whole sample
> computation of sufficient statistics is O(n?N)
> computation of Z given 6 is O(n?log n)
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Independence properties

/0.1

apple
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/\ b 0.4
VoA /N

apple banana cherry durian cherry durian

» define Q., = 1 iff a precedes b
» Q. L Qcg whenever path(a, b) N path(c,d) =0
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Independence properties

/0.1

apple
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/\ b 0.4
VoA /N

apple banana cherry durian cherry durian
» define Q., = 1 iff a precedes b
» Q. L Qcg whenever path(a, b) N path(c,d) =0
> Indepence checking can reveal the “branching structure” (but not )

> In progress: combine independence tests with local search to estimate 7
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Conclusion: No need to compromise!

Goals of inference in models on permutations
> Flexible w.r.t observation model (i.e. input data)
> partial rankings, pairwise observations
> Flexible w.r.t generative model
> RIMs are a class of flexible, identifyable, intepretable models
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» Exact and tractable algorithms, closed form expression
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