STAT 391

Homework 2
Out April 14, 2020
Due April 21, 2020
(c) Marina Meilă
mmp@cs.washington.edu

Problem 1 - from Homework 1 Please read the statement of Problem 4 in Homework 1
g. For any outcome $\left(n^{(1)}, n^{(2)}, n^{(3)}\right)$ define

$$
s\left(n^{(1)}, n^{(2)}, n^{(3)}\right)=n^{(1)}+n^{(2)}+n^{(3)},
$$

the sum of three digits drawn independently from P. For instance $s(2,0,6)=8$.
Let $\left(n^{(1)}, n^{(2)}, n^{(3)}\right)$ and $\left(\bar{n}^{(1)}, \bar{n}^{(2)}, \bar{n}^{(3)}\right)$ be two sequences with $s\left(n^{(1)}, n^{(2)}, n^{(3)}\right)>s\left(\bar{n}^{(1)}, \bar{n}^{(2)}, \bar{n}^{(3)}\right)$. Does this imply

$$
\begin{equation*}
P\left(n^{(1)}, n^{(2)}, n^{(3)}\right) \leq P\left(\bar{n}^{(1)}, \bar{n}^{(2)}, \bar{n}^{(3)}\right) ? \tag{1}
\end{equation*}
$$

Prove or give a counterexample.
[h. Extra credit] Denote by S_{s} the outcome space of s, and by Q the probability distribution of s.
We would like to know if $Q(s)$ decreases with s. First, set $\gamma=\frac{1}{2}$. Is it true that $Q(s)$ is monotonically decreasing in s ? Prove or give a counterexample.
[i. Extra credit] Find the values of $\gamma \in(0,1]$ for which the probability of $Q(s)$ decreases with s when $s \leq 10$.
Fact 1 The number of ways to write s as a sum of 3 non-negative integers is equal to $\binom{s+2}{2}$.
Fact 2 The number of ways to write s as a sum of 3 integers from S is equal to

$$
\begin{cases}\binom{s+2}{2} & \text { for } s=0, \ldots 9 \tag{2}\\ \binom{s+2}{2}-3\binom{s-8}{c^{2}} & \text { for } s=10, \ldots 19 \\ \binom{s+2}{2}-3\binom{s-8}{2}+3\binom{s-18}{2} & \text { for } s=20, \ldots 27\end{cases}
$$

[More extra credit: Prove Fact 1 or/and Fact 2]
Problem 2 - ML estimation with two models
Show your work. However, everything in the book or in class can be used without proof. E.g. you can use any ML estimation formulas from the lecture or book without proving them.
a. The Nisqually.com company sells books $\mathrm{A}, \mathrm{B}, \mathrm{C}$ on line. Each customer buys 0 or 1 copy of each title. Last week the company had 10 customers visit their online store. This is what the customers ordered:

A	B	C
1	0	0
1	0	0
1	0	0
0	1	0
0	1	0
1	0	0
0	0	1
0	0	1
0	0	0
1	0	0

Estimate $\theta_{A}=P_{A}(1), \theta_{B}=P_{B}(1), \theta_{C}=P_{C}(1)$ the probabilities that a customer orders books A, B, C respectively by the Maximum Likelihood method. We assume that customers' decision to buy each book is independent of the decision to buy other books, i.e.

$$
\begin{equation*}
P_{A B C}\left(x_{A}, x_{B}, x_{C}\right)=P_{A}\left(x_{A}\right) P_{B}\left(x_{B}\right) P_{C}\left(x_{C}\right) \tag{3}
\end{equation*}
$$

b. What is the \log-likelihood $l\left(\theta_{A}^{M L}, \theta_{B}^{M L}, \theta_{C}^{M L}\right)$ of the data set above under the ML parameters estimated in a? Numeric answer only.
c. Now we assume another (equally simplistic) customer model. Namely, that each customer buys only one book, either A, B, or C. Customers who buy nothing are not counted. This models is represented by the probability distribution $\tilde{P}=\left(\tilde{\theta}_{A}, \tilde{\theta}_{B}, \tilde{\theta}_{C}\right)$ over $\tilde{S}=\{A, B, C\}$ with $\tilde{\theta}_{A}+\tilde{\theta}_{B}+\tilde{\theta}_{C}=1, \tilde{\theta}_{A, B, C} \geq 0$.

The data observed from $\tilde{n}=9$ customers is $A, A, A, B, B, A, C, C, A$ (note that this is the same data as in a, excluding the customer who buys nothing.
Estimate the parameters $\tilde{\theta}_{A, B, C}$ by the ML method.
d. What is the log-likelihood $\tilde{l}\left(\tilde{\theta}_{A}^{M L}, \tilde{\theta}_{B}^{M L}, \tilde{\theta}_{C}^{M L}\right)$ of the data set above under the ML parameters estimated in \mathbf{c} ? Numeric answer only.
This exercise shows that the same data can be represented by different probabilistic models with different outcome spaces. Think whether the likelihoods l and \tilde{l} are comparable. The two models impose different restrictions on the data. Incidentally, this toy data set satisfies the more restrictive second model.

The first model, when it is applied to natural language, is called the Bag of Words model, while the second model is called the Multinomial model.
[e. Not graded] Can you tell if the toy Language Classification experiment uses the Bag of Words model, the Multinomial, or neither?

Problem 3 - ML estimation

Sam rolls a die n times, and observes a data set \mathcal{D} with counts $n_{1}, \ldots n_{6}$. He is told that the die is not a fair one: the odd faces have the same probabilitly of coming up, denoted by θ_{o}, the even faces also have the same probabilitly of coming up, denoted by θ_{e}, but $\theta_{o} \neq \theta_{e}$, i.e. the distribution P defined by the die is given by $\theta_{1}=\theta_{3}=\theta_{5}=\theta_{o}$ and $\theta_{2}=\theta_{4}=\theta_{6}=\theta_{e}$.
a. Write the expression of the probability $P(3,2,1,1,6)$.
b. Write the expression of $l\left(\theta_{o}, \theta_{e}\right)$ the log-likelihood of data set \mathcal{D} as a function of θ_{o}, θ_{e} and the counts $n_{1: 6}$.
c. Transform $l\left(\theta_{o}, \theta_{e}\right)$ into a function of one variable, $l\left(\theta_{e}\right)$.
d. Now find the ML estimate of θ_{e} by equating the derivative of $l\left(\theta_{e}\right)$ with 0 .
[e-Extra credit] Explain why the result above is intuitive/not surprising/natural.

[Problem 4-A tricky ML estimation - Extra credit]

You record n samples from a Poisson distribution with rate parameter λ. However, due to a really poor choice of variable (namely, boolean), all that ends up being recorded is whether each sample was zero or non-zero. Using only this information, and your knowlege of maximum likelihood estimation, what is your estimate of the rate parameter λ ?

Problem 5 - The ML estimate as a random variable

Submit the code used for this problem through the Assignments web page.
Consider the coin toss experiment $(m=2)$ with $\theta_{1}=0.3141$. The coin is tossed $n=100$ times, obtaining independent outcomes from which we estimate the parameters $\theta_{1}^{M L}, \theta_{0}^{M L}=1-\theta^{M L}$ by the max likelihood method.

1. What is the set of possible values $S_{\theta_{1}}$ for $\theta_{1}^{M L}$? Does the true θ_{1} belong to $S_{\theta_{1}}$?
2. Write the expression of the probability of each outcome in $S_{\theta_{1}}$, i.e the probability that $\theta^{M L}=j / n$ for $j=0,1, \ldots n$.
3. Make a plot of the probability distribution of $\theta^{M L}$. Preferably, this should be a "stem and flower" plot (the stem function in Matlab or python) like in figure 4.2 in the book. To avoid numerical overflow/underflow in the computation of the probabilities, consider using logarithms for the intermediate computations. The final results should not be in logarithm form, however. Take figure 4.2 as an example of how your plot should look like.
4. Let $\epsilon=0.02$. Answer using the probability distribution computed previously (numerical answer only is OK):

$$
\begin{aligned}
& \delta_{a b s}=P\left[\left|\theta^{M L}-\theta_{1}\right|>\epsilon\right]=? \\
& \delta_{r e l}=P\left[\frac{\left|\theta^{M L}-\theta_{1}\right|}{\theta_{1}}>\epsilon\right]=?
\end{aligned}
$$

5. Simulate tossing the coin with $\theta_{1}=0.3141 n=100$ times and compute $\theta^{M L}$. What is the value for $\theta^{M L}$ you have obtained, and what are the absolute and relative errors $\left|\theta^{M L}-\theta_{1}\right|, \frac{\left|\theta^{M L}-\theta_{1}\right|}{\theta_{1}}$?
