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mmp@stat.washington.edu

Problem 1 – Bayesian inference for the Normal distribution
The data are x1:n, the model is Normal(µ, σ2), with σ2 known.

a. For this question and the next, the prior for µ is Normal(0, s2). Show that the posterior mean mnew

is always smaller in absolute value than µML, i.e. |mnew| < |µML|. FYI: Making the prior mean m = 0
is therefore called shrinkage in statistics. It is a way to “smooth out” too extreme values that result from
the data. Another intuitive way of looking at priors with zero mean is to interpret them as follows. If
the data does not strongly indicate that µ > 0, then we better assume µ is near 0. For models with many
parameters, if we set our prior to have high mass near 0, we “promote” sparsity, i.e. high probability that
the posterior also has high mass at or near 0. There are better priors than the normal to favor sparsity.

b. One interpretation for the prior variance s2 is as “strenght of belief” that the value m = 0 is correct.
More exactly, when 1/s2 is large, the prior is concentrated around 0. We will define the shrinkage of µML

as

1− mnew

µML
.

Prove that the shrinkage increases with 1/s2 and decreases with the sample size n.

c. For the next two questions, the prior p0(µ) is uniform in [−a, a]. Obtain the posterior distribution of
µ, p(µ|x1:n, σ

2). Using Bayes rule, obtain the expression of p(µ|x1:n, σ
2) as a function of a and the data.

Be careful to handle all cases. Give and explicit simple expression for the normalization constant. You
are allowed to use special functions like Γ, sin, cos and Φ, the CDF of the standard normal distribution.

d. Show that when µML > 0, the expectation E[µ] under p(µ|x1:n, σ
2) satisfies |E[µ]| < µML, hence,

for this prior too, there is shrinkage. Hint 1: Make a drawing/plot of the posterior p(µ|x1:n, σ
2). Also

ask yourself what happens when µML = 0? Hint 2: Prove that E[µ] > 0. Hint 3: Show that
∫ a
−a(µ −

µML)p(µ|x1:n, σ
2)dµ < 0 when µML > 0 by writing the integral as a sum of two integrals, one on [−a, b],

the other on [b, a] for a cleverly chosen b. The drawing will help. You can do this even before proving hint
2.

Problem 2 – Dirichlet/Beta distribution (Read: Ch 11 from textbook)
Form = 2, S = {1, 2}, the Dirichlet distribution is known as the Beta distribu tion, that isDiri(θ1, θ2;α1, α2) =

Beta(θ1, θ2;α1, α2) = Γ(α)
Γ(α1)Γ(α2)θ

α1−1
1 θα2−1

2 , with α1,2 > 0 and α = α1 + α2.

[a. Change of variable – Not graded] The likelihood of a sample of size n from a Bernoulli(θ1, θ2)
distribution is given by L = P (θ1, θ2) = θn1

1 θn2
2 . Change the variables θj to ξj = ln θj for j = 1 : m and

express L as a function of ξ1:m.

Now change the variables in the Beta density to ξ1:m. Remember the chang e of variable formula in
densities! Do you need to apply it to L as well?

Calculate the expression of the posterior in the variables ξ1:m and show that it is also a Dirichlet/Beta
distribution. The parameters ξ1:m are ca lled the natural parameters of the multinomial/Bernoulli distri-
bution.

b. Let m = 2, S = {1, 2}, and D = {1, 1, 2, 1, 1}. For the following 3 Dirichlet priors, give the numerical
values of the fictitious sample siz e α, and the posterior parameters α′1,2.
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D(θ1, θ2; 10, 1), D(θ1, θ2; 10, 10), D(θ1, θ2; 0.1, 0.2). (1)

c. For each of the 3 cases above, make a plot showing the prior, posterior as functions of θ2, as well as
the location of the ML estimate θML

2 on the θ2 axis.

d. Assume now the prior is uniform. Show that the posterior of (θ1, θ2) is a Beta distribution and calculate
its parameters for the data in b. The Beta distribution is given by

Beta(θ1, θ2; a1, a2) =
Γ(a1 + a2)

Γ(a1)Γ(a2)
θa1−1

1 θa2−1
2 (2)

e. Same as c. for the uniform prior.
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