STAT 391 Homework 8 Out Thursday June 4, 2020 Due never ©Marina Meilă mmp@stat.washington.edu

Some things I would like you to remember

0 -Start with the sample space

Many difficulties can be avoided by thinking of the sample space. Below is a very short illustration, and a very long one. In both cases, the problem is essentially solved once the set of outcomes is identified.

0.1 "I have two children, and one of them is a daughter." What is the probability that the other child is also a daughter? We assume that the sex of a child being a daugher is 0.5, independent of the sex of any other child.

0.2 See lecture notes.

1 – Write the likelihood See also Homework 2 Data are sampled from a Poisson distribution $P(x) = \frac{\lambda^x}{x!}e^{-\lambda}, x \in \{0, 1, 2, ...\}$. By mistake, zeros and ones were counted together and you are given the following data

Value x	0 or 1	2	3	4	
# observed	8	6	4	2	Total $n = 20$

1.1. Write the expression of the log-likelihood l of the data as a function of λ .

1.2 Find the expression of the ML estimate of λ and the numerical value of λ^{ML} from the data above.

2 – The power of Bayes' rule

Nisqually River, Inc. sells books A,B,C on line. Each customer buys 0 or 1 copy of each title.

a. Mrs. Independence Day, the company's data mining expert, makes the assumptions that: i) a customer decides to buy a book independently of what other books (s)he buys and independently of other customers; ii) all customers buy according to the same *joint probability distribution* $\bar{P}_{ABC} = P_A P_B P_C$, with $P_A(1) = 0.6$, $P_B(1) = 0.3$, $P_C(1) = 0.4$. [For example, the probability that a customer buys A and B but not C is $\bar{P}_{ABC}(1, 1, 0) = 0.6 \times 0.3 \times (1 - 0.4)$.

Compute the probability that a customer buys all three books under \bar{P}_{ABC} , ie. compute

$$\bar{P}_{ABC}(1,1,1)$$

b. Mr. Mean Variance, her aide, insists that Mrs. Day's model is not correct. He assumes that ii) all customers buy according to the same probability distribution; but iii) Book C is bought independently from A, B but A, B are not independent of each other.

$$C \perp A, B$$
 (1)

$$A \not\perp B$$
 (2)

Denote Mr. Variance's model by $\tilde{P}_{ABC} = \tilde{P}_{AB}\tilde{P}_C$ with $\tilde{P}_C(1) = 0.4$, and \tilde{P}_{AB} :

 $\begin{vmatrix} A \\ 0 & 1 \\ \hline B &= 0 & 0.2 & 0.5 \\ 1 & 0.2 & 0.1 \end{vmatrix}$ [For example, $\tilde{P}_{ABC}(1,0,0) = 0.5 \times (1-0.4)$.] Compute the probability that a

customer buys all three books under \tilde{P} :

$$P_{ABC}(1, 1, 1)$$

c. Al Bayes, who fills out the orders, notices that in fact women buy according to model \bar{P} while non-female customers buy according to model \tilde{P} .

The next customer, Robin Hood, has ordered books A, B but not C. Using \overline{P} and \widetilde{P} from above, decide by the likelihood ratio if Robin Hood is a woman.

e. Al also knows from experience that the prior probability that a customer is a woman is 2/3.

Determine the posterior probability that Robin Hood is a woman, i.e

$$P(\text{woman}|A = 1, B = 1, C = 0)$$

f. Determine the posterior probability that Robin Hood is a woman, if Al, being forgetful, doesn't recall whether Robin ordered book C or not, but he is sure that (s)he ordered A and B.

$$P(\text{woman}|A=1, B=1)$$

3 – Heavy tails vs light tails

a topic we did not discuss this year Chapter 8.8 describes a heavy tailed distribution, the Power Law distribution. By contrast, distributions like the Normal or Exponential are called *light-tailed*. The term refers to the rate of decay of the "tails" of the distributions towards infinity. Light-tailed distributions decay exponentially, or faster; heavy-tailed distributions decay polynomially, i.e. like x^{-r} , where r > 0. The figure (with r = 2.5 below illustrates why the difference is important.

Call a *a rare outcome* an x which is k standard deviations away from the mean, or more. The figure shows on a logarithmic scale the probability of rare outcomes for the Normal vs. a Power Law distribution. You can see that, for k = 3, the rare outcomes have about the same probability, just over 10^{-3} . Think of k as the cost of a bug, size of a stock market crash, magnitude of an earthquake¹, etc. Outcomes with $k \ge 5$ are 1 in about 10 million under the normal distribution, but have a probability barely half of the outcomes with k = 3 under power law. In other words, under a normal distribution, really extreme outcomes are very rare, while under Power Law, once an outcome is "large" it can just as well be "very large".

 $^{^{1}\}mathrm{Earth}$ quakes, fortunately, have light-tailed distributions.