STAT 391

Homework 8
Out Thursday June 4, 2020
Due never
© Marina Meilă
mmp@stat.washington.edu

Some things I would like you to remember

0 - Start with the sample space

Many difficulties can be avoided by thinking of the sample space. Below is a very short illustration, and a very long one. In both cases, the problem is essentially solved once the set of outcomes is identified.
0.1 "I have two children, and one of them is a daughter." What is the probability that the other child is also a daughter? We assume that the sex of a child being a daugher is 0.5 , independent of the sex of any other child.
0.2 See lecture notes.

1 - Write the likelihood
See also Homework 2 Data are sampled from a Poisson distribution $P(x)=\frac{\lambda^{x}}{x!} e^{-\lambda}, x \in\{0,1,2, \ldots\}$. By mistake, zeros and ones were counted together and you are given the following data

Value x	0 or 1	2	3	4	
$\#$ observed	8	6	4	2	Total $n=20$

1.1. Write the expression of the log-likelihood l of the data as a function of λ.
1.2 Find the expression of the ML estimate of λ and the numerical value of $\lambda^{M L}$ from the data above.

2 - The power of Bayes' rule

Nisqually River, Inc. sells books A, B, C on line. Each customer buys 0 or 1 copy of each title.
a. Mrs. Independence Day, the company's data mining expert, makes the assumptions that: i) a customer decides to buy a book independently of what other books (s)he buys and independently of other customers; ii) all customers buy according to the same joint probability distribution $\bar{P}_{A B C}=P_{A} P_{B} P_{C}$, with $P_{A}(1)=0.6, P_{B}(1)=0.3, P_{C}(1)=0.4$. [For example, the probability that a customer buys A and B but not C is $\bar{P}_{A B C}(1,1,0)=0.6 \times 0.3 \times(1-0.4)$.
Compute the probability that a customer buys all three books under $\bar{P}_{A B C}$, ie. compute

$$
\bar{P}_{A B C}(1,1,1)
$$

b. Mr. Mean Variance, her aide, insists that Mrs. Day's model is not correct. He assumes that ii) all customers buy according to the same probability distribution; but iii) Book C is bought independently from A, B but A, B are not independent of each other.

$$
\begin{array}{lll}
C & \perp & A, B \\
A & \not \perp & B \tag{2}
\end{array}
$$

Denote Mr. Variance's model by $\tilde{P}_{A B C}=\tilde{P}_{A B} \tilde{P}_{C}$ with $\tilde{P}_{C}(1)=0.4$, and $\tilde{P}_{A B}$:

	A	
	0	1
$B=0$	0.2	0.5
1	0.2	0.1

[For example, $\tilde{P}_{A B C}(1,0,0)=0.5 \times(1-0.4)$.] Compute the probability that a
customer buys all three books under \tilde{P} :

$$
\tilde{P}_{A B C}(1,1,1)
$$

c. Al Bayes, who fills out the orders, notices that in fact women buy according to model \bar{P} while non-female customers buy according to model \tilde{P}.
The next customer, Robin Hood, has ordered books A, B but not C. Using \bar{P} and \tilde{P} from above, decide by the likelihood ratio if Robin Hood is a woman.
e. Al also knows from experience that the prior probability that a customer is a woman is $2 / 3$.

Determine the posterior probability that Robin Hood is a woman, i.e

$$
P(\operatorname{woman} \mid A=1, B=1, C=0)
$$

f. Determine the the posterior probability that Robin Hood is a woman, if Al, being forgetful, doesn't recall whether Robin ordered book C or not, but he is sure that (s)he ordered A and B.

$$
P(\operatorname{woman} \mid A=1, B=1)
$$

3 - Heavy tails vs light tails

a topic we did not discuss this year Chapter 8.8 describes a heavy tailed distribution, the Power Law distribution. By contrast, distributions like the Normal or Exponential are called light-tailed. The term refers to the rate of decay of the "tails" of the distributions towards infinity. Light-tailed distributions decay exponentially, or faster; heavy-tailed distributions decay polinomially, i.e. like x^{-r}, where $r>0$. The figure (with $r=2.5$ below illustrates why the difference is important.

Call a a rare outcome an x which is k standard deviations away from the mean, or more. The figure shows on a logarithmic scale the probability of rare outcomes for the Normal vs. a Power Law distribution. You can see that, for $k=3$, the rare outcomes have about the same probability, just over 10^{-3}. Think of k as the cost of a bug, size of a stock market crash, magnitude of an earthquake ${ }^{1}$, etc. Outcomes with $k \geq 5$ are 1 in about 10 million under the normal distribution, but have a probability barely half of the outocomes with $k=3$ under power law. In other words, under a normal distribution, really extreme outcomes are very rare, while under Power Law, once an outcome is "large" it can just as well be "very large".

[^0]
[^0]: ${ }^{1}$ Earthquakes, fortunately, have light-tailed distributions.

