Lecture Notes III: Discrete probability in practice - Small Probabilities

Marina Meilă
mmp@stat. washington.edu

Department of Statistics
University of Washington

April, 2018

Additive methods (Laplace, Dirichlet, Bayesian, ELE)

Discounting (Ney-Essen)

Multiplicative smoothing: Estimating the next outcome (Witten-Bell, Good-Turing)

Back-off or shrinkage - mixing with simpler models

Definitions and setup

We will look at estimating categorical distributions from samples, when the number of outcomes m is large.

- Let $S=\{1, \ldots m\}$ be the sample space, and $P=\left(\theta_{1}, \ldots \theta_{m}\right)$ a distribution over S.
- We draw n independent samples from P, obtaining the data set \mathcal{D}
- Define the counts $\left\{n_{j}=\# j\right.$ appears in $\left.\mathcal{D}, i=1, \ldots n\right\}$. The counts are also called sufficient statistics or histogram.
- Define the fingerprint (or histogram of histogram) of \mathcal{D} as the counts of the counts, i.e $\left\{r_{k}=\#\right.$ counts $n_{j}=k$, for $\left.k=0,1,2 \ldots\right\}$
Example $m=26$ alphabet letters

the red fox is quick $n=15$ letters	Counts n_{i}
	$\begin{aligned} & n_{j}=0: \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~g}, \mathrm{j}, \mathrm{k}, \mathrm{l}, \mathrm{~m}, \mathrm{n}, \\ & \mathrm{p}, \mathrm{v}, \mathrm{y}, \mathrm{z} \end{aligned}$
	$\mathrm{n}_{j}=1: \mathrm{d}, \mathrm{f}, \mathrm{h}, \mathrm{o}, \mathrm{q}, \mathrm{r}, \mathrm{s}, \mathrm{t}, \mathrm{u}, \mathrm{x}$
	$n_{j}=2: \mathrm{e}, \mathrm{i}$
	$n_{j}=0: \mathrm{a}, \mathrm{b}, \mathrm{c} \ldots, \mathrm{x}, \mathrm{z}$
	$\mathrm{n}_{\mathrm{j}}=1: \mathrm{f}, \mathrm{i}, \mathrm{n}, \mathrm{r}, \mathrm{w}$
ho ho who s on first $n=15$ letters	$n_{j}=2: \mathrm{s}$
	$n_{j}=3: \mathrm{h}$
	$n_{j}=4:$ 。

Fingerprint r_{k}

$$
\begin{aligned}
& r_{0}=13=|\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \ldots, \mathrm{y}, \mathrm{z}\}| \\
& r_{1}=10=|\{\mathrm{d}, \mathrm{f}, \mathrm{~h}, \ldots, \mathrm{u}, \mathrm{x}\}| \\
& r_{2}=2=|\{\mathrm{e}, \mathrm{i}\}| \\
& r_{3}=\ldots r_{n}=0 \\
& r_{0}=26-5-1-2=18 \\
& r_{1}=5=|\{\mathrm{f}, \mathrm{i}, \mathrm{n}, \mathrm{r}, \mathrm{w}\}| \\
& r_{2}=1=|\{\mathrm{s}\}| \\
& r_{3}=1=|\{\mathrm{h}\}| \\
& r_{4}=1=|\{\mathrm{o}\}|
\end{aligned}
$$

- It is easy to verify that $n_{j} \in 0: n$, hence $r_{0: n}$ may be non-zero (but $r_{n+1, n+2, \ldots}=0$), and that

$$
\begin{equation*}
m=r_{0}+r_{1}+\ldots r_{n} \quad n=0 \times r_{0}+1 \times r_{1}+\ldots k \times r_{k}+\ldots \tag{1}
\end{equation*}
$$

Smoothing on an example

- the counts $\left\{n_{j}=\# j\right.$ appears in $\left.\mathcal{D}, i=1, \ldots n\right\}$ (or sufficient statistics or histogram)
- fingerprint (or histogram of histogram) of \mathcal{D} as the counts of the counts
$\left\{r_{k}=\#\right.$ counts $n_{j}=k$, for $\left.k=0,1,2 \ldots\right\}$, and $R_{k}=\left\{j, n_{j}=k,\right\}$
Example $m=26$ alphabet letters

Data

the red fox is quick $n=15$ letters

Counts n_{j}

$n_{j}=0: a, b, c, g, j, k, l, m, n$,
p, v, y,z
$n_{j}=1: d, f, h, o, q, r, s, t, u, x$
$n_{j}=2: e, i$

Fingerprint r_{k}

$$
\begin{aligned}
& r_{0}=13=|\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \ldots, \mathrm{y}, \mathrm{z}\}| \\
& r_{1}=10=|\{\mathrm{d}, \mathrm{f}, \mathrm{~h}, \ldots, \mathrm{u}, \mathrm{x}\}| \\
& r_{2}=2=|\{\mathrm{e}, \mathrm{i}\}| \\
& r_{3}=\ldots r_{n}=0
\end{aligned}
$$

The problem with small probabilities and large m

- when θ_{i} is small n must be very large to be able to observe i w.h.p.
- when m is large most θ_{i} are small
- Hence, in a sample of size n, many outcomes j may have $n_{j}=0$, that is will not appear at all.
- type $k R_{k}=\left\{j \in S, n_{j}=k\right\}$ is the subset of outcomes in S that appear k times in \mathcal{D}
- Why are types important?
- Because $\theta_{j}^{M L}=n_{j} / n$, all $i \in$ type k will have the same estimated value $\theta_{j}^{M L}=k / n$.
- If $j, j^{\prime} \in R_{k}$, no matter what correction method you use, there is no reason to distinguish between θ_{j} and $\theta_{j^{\prime}}$. Hence $\theta_{j}=\theta_{j^{\prime}}$ whenever $j, j^{\prime} \in R_{k}$
- Let $p_{k}=\operatorname{Pr}\left[R_{k}\right]$. We have $p_{k}=r_{k} \theta_{j}$ for any $j \in R_{k}$.

Additive methods

- Idea: assume we have seen one more example of each value in S
- Algorithm: add 1 to each count and renormalize.

$$
\begin{equation*}
\theta_{j}^{\text {Laplace }}=\frac{n_{j}+1}{n+m} \text { for } i=1: m \tag{2}
\end{equation*}
$$

- Can be used also with another value, $n_{j}^{0}<1$, in place of 1 . Then, it is called Bayesian mean smoothing or Dirichlet smothing or ELE ${ }^{1}$ Can be derived from Bayesian estimation, with the Dirichlet prior. In particular, we can take $n^{0}=1, n_{j}^{0}=\frac{1}{m}$.

$$
\begin{equation*}
\theta_{j}^{\text {Bayes }}=\frac{n_{j}+n_{j}^{0}}{n+n_{0}} \text { for } i=1: m \tag{3}
\end{equation*}
$$

The "fictitious sample size" $n^{0}=\sum_{i=1}^{m} n_{j}^{0}$ reflects the strength of our belief about the θ_{j} 's; if we choose all $n_{j} \propto \frac{1}{m}$, we say that we have an uninformative prior,

[^0]
Problems with aditive smoothing

- Reduces all estimates in the same proportion
- Does not distinguish between spread and concentrated distributions.
- the unseen outcomes have the same probability no matter how the counts are distributed
- "Naive" method - DON'T USE IT

Ney-Essen discounting - tax and redistribute

- Let $r=$ the number of distinct values observed

$$
r=m-r_{0}
$$

- Idea
- substract an amount $\delta>0$ from every n_{j} that "can afford it"
- redistribute the total amount equally to all counts.

This simple method works surprisingly well in practice.

- Algorithm

$$
\begin{align*}
D & =\sum_{j} \min \left(n_{j}, \delta\right) \quad \text { total substracted } \\
n_{j}^{N E} & =n_{j}-\min \left(n_{j}, \delta\right)+D / m \quad \text { redistribute } \tag{5}\\
\theta_{j}^{N E} & =\frac{n_{j}^{N E}}{n} \text { normalize } \tag{6}
\end{align*}
$$

Typically $\delta=1$

Properties of NE smoothing

Flexibility

- Note $D \leq \delta r$, redistributed mass $\frac{D}{m} \leq \delta \frac{r}{m}$
- For m large and r small
- (probability mass is concentrated on a few values)
- D small \Rightarrow unobserved outcomes receive little probability
- For m large and r large
- $D \approx m$ (large) \Rightarrow unobserved outcomes get $n^{N E} \approx \delta$ (almost 1)
- For $\delta=1$ treats outcomes with $n_{j}=1$ and $n_{j}=0$ the same Intuition: any outcome i with $n_{j}<\delta$ is a rare outcome and should be treated in the same way, no matter how many observations it actually has.

Witten-Bell discounting - probability of a new value

- Idea:
- Look at the sequence $\left(x_{1}, \ldots x_{n}\right)$ as a binary process: either we observe a value of X that was observed before, or we observe a new one.
- Assume that of m possible values r were observed (and $m-r$ unobserved)
- Then the probability of observing a new value is $p_{0}=\frac{r}{n}$.
- Hence, set the probability of all unseen values of X to p_{0}. The other probabiliy estimates are renormalized accordingly.

$$
\theta_{j}^{W B}=\left\{\begin{array}{ll}
\frac{n_{j}}{n} \frac{1}{1+p_{0}}= & \frac{n_{j}}{n+r} \tag{7}\\
\frac{1}{m-r} \frac{p_{0}}{1+p_{0}}= & \frac{1}{m-r} \frac{r}{n+r}
\end{array} n_{j}=0\right.
$$

Witten-Bell makes sense only when some n_{j} counts are zero. If all $n_{j}>0$ then $\mathrm{W}-\mathrm{B}$ smoothing has undefined results.
WB smoothing has no parameter to choose (GOOD!)

Good-Turing - Predicting the type of the next outcome

- This method has many versions (you will see why). Powerful for large data sets.
- First Idea
- Remember $r_{k}=\#\left\{j, n_{j}=k\right\}$ the counts of the counts. Naturally, $n=\sum_{k=1}^{\infty} k r_{k}$.
- Outcome i is of type k if $n_{j}=k$. GT uses the data to estimate the probability of type k

$$
\begin{equation*}
p_{k}=\frac{k r_{k}}{n} \quad \text { for } k=1: n \tag{8}
\end{equation*}
$$

- Second Idea is to use the probabilities $p_{1}, \ldots p_{k} \ldots$ to predict the next outcome
- For example, what's the probability of seeing a new value?

It must be equal to p_{1}, because this observation will have count $n_{j}=1$ once it is observed.

- Similarly, the probability of observing a type k outcome must be about p_{k+1}.
- Third There are r_{k} outcomes j in type k, hence the probability mass for each of these is $1 / r_{k}$ of p_{k+1} which leads to (11).
- Algorithm

$$
\begin{equation*}
\text { if } n_{j}=k \quad \theta_{j}^{G T}=\frac{p_{k+1}}{r_{k}}=\frac{(k+1) r_{k+1}}{n r_{k}} \stackrel{\text { def }}{=} \frac{n_{k}^{G T}}{n} \quad \text { with } \quad n_{j}^{G T}=\frac{(k+1) r_{k+1}}{r_{k}} \tag{9}
\end{equation*}
$$

In particular if $n_{j}=0$

$$
\begin{equation*}
\theta_{j}^{G T}=\frac{p_{1}}{r_{0}} \tag{10}
\end{equation*}
$$

- Remark GT transfers the probability mass of type $k+1$ to type k
- This implies that

$$
\begin{equation*}
n_{j}^{G T} r_{k}=(k+1) r_{k+1} \text { if } n_{j}=k \tag{11}
\end{equation*}
$$

Problems with Good-Turing

- When k is large, r_{k} is small and noisy.
- Example The word "Jimmy" appears $n_{\text {Jimmy }}=8196$ times in a corpus. But there may be no word that appears 8197 times. Then, $\theta_{\text {Jimmy }}^{G T}=0$!
- Remedy: "smooth" the r_{k} values, i.e use (an estimate of) $E\left[r_{k}\right]$
- Many proposals exist
- A simple one is tois to use Good-Turing only for type 0 , and to rescale the other $\theta^{M L}$ estimates down to ensure normalization.

$$
\theta_{j}^{G T}= \begin{cases}\frac{p_{1}}{r_{0}}=\frac{r 1}{n r_{0}} & \text { if } n_{j}=0 \tag{12}\\ \theta_{j}^{M L}\left(1-\frac{r_{1}}{n}\right) & \text { if } n_{j}>0\end{cases}
$$

Comparison of the methods

Numerical values to exemplify the results: $n=1000, m=1000, r=100$

Count n_{j}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{n}_{j} \gg 1$
$\theta_{j}^{\text {ML }}$	0	$\frac{1}{n}=\frac{1}{1000}$	$\frac{n_{j}}{1000}$
$\theta_{j}^{\text {Laplace }}$	$\frac{1}{n+m}=\frac{1}{2000}$	$\frac{2}{n+m}=\frac{1}{1000}$	$\frac{n_{j}+1}{n+m}=\frac{n_{j}+1}{2000}$
$\theta_{j}^{\text {Bayes }}, n^{0}=1, n_{j}^{0}=\frac{1}{m}$	$\frac{1}{m(n+1)} \approx \frac{1}{10^{6}}$	$\frac{1+1 / m}{n+1} \approx \frac{1}{10^{3}}$	$\frac{n_{j}+1 / m}{n+1} \approx \frac{n_{j}}{1000}$
$\theta_{j}^{\text {NE }}, \delta=1$	$\frac{r}{m n}=\frac{1}{10^{4}}$	$\frac{r}{m n}=\frac{1}{10^{4}}$	$\frac{n_{j}-1+r / m}{n} \approx \frac{n_{j}}{1000}$
$\theta_{j}^{\text {WB }}$	$\frac{1}{m-r} \frac{r}{n+r}=\frac{1}{9900}$	$\frac{1}{n+r}=\frac{1}{1100}$	$\frac{n_{j}}{n+r}=\frac{n_{j}}{1100}$

Remarks

- Laplace shrinks ML estimates of large probabilities by factor of 2. Too much! (because large $\theta_{j}^{M L}$ are close to their true values)
- Bayes (with uninformative prior) affects large $\theta_{j}^{M L}$ much less than small ones. Good
- Ney-Essen smooths more when r is larger; any n_{j} is affected by less than δ.
- Ney-Essen estimates of $\theta^{N E}$ for counts of 0 and 1 are equal to a fraction of $\frac{r}{m}$ (this grows with n as r grows with n).
- In Witten-Bell, the large $\theta_{j}^{M L}$ are shrunk depending on r, but independently of m. Proportional, bad
- ... but, if we overestimate m grossly, the overestimation will only affect the $\theta_{j}^{W B}$ for the 0 counts, but none of the $\theta_{j}^{W B}$ for the values observed. (true for NE as well).

Back-off or shrinkage - mixing with simpler models
(T B Written)

Ultimate test: which method is best?

[^0]: ${ }^{1}$ In natural language processing.

