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April, 2018

Additive methods (Laplace, Dirichlet, Bayesian, ELE)

Discounting (Ney-Essen)

Multiplicative smoothing: Estimating the next outcome (Witten-Bell, Good-Turing)

Back-off or shrinkage — mixing with simpler models
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Definitions and setup
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We will look at estimating categorical distributions from samples, when the number of
outcomes m is large.

> Let S = {1,...m} be the sample space, and P = (01, ...0m) a distribution over S.

» We draw n independent samples from P, obtaining the data set D

> Define the counts {n; = #;j appears in D, i =1,...n}. The counts are also called
sufficient statistics or histogram.

> Define the fingerprint (or histogram of histogram) of D as the counts of the counts, i.e
{ r« = #countsn; = k, for k=0,1,2...}
Example m = 26 alphabet letters

Data Counts n; Fingerprint ry

j=0:a,b,c,g,j,k,1,m,n,
N e =13 = [{ab,c,....y.2}]
% the red fox is quick nj=1:d,f,h,0,q,r,s,t,u,x n i ;07: I{dff’h" -l
2 n = 15 letters nj=2:e,i =2 = |{e.1}]
g R=...rn=0
3
Z nj=0:a,b,c...,x,z nh=26—5—-1—-2=18
g nj=1:f,i,n,r,v n=5=|[{f,i,n,r,w}|
a ho ho who s on first nj=2:s r=1=|{s}|
P n = 15 letters nj=3:h rs=1=[{h}|
% nj=4:o0 r =1=[{o}]
o
o
8 . .
- > It is easy to verify that n; € 0 : n, hence ro., may be non-zero (but ryi1,42,... = 0), and
5 that
= m=r+n+...tn n=0xrn+lxn+...kxrn+... (1)




Smoothing on an example
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> the counts {n; = #;j appears in D, i = 1,...n} (or sufficient statistics or histogram)
> fingerprint (or histogram of histogram) of D as the counts of the counts
{ r« = #countsn; = k, for k =0,1,2...}, and Ry = {j, nj =k, }

Example m = 26 alphabet letters
Data Counts n; Fingerprint ry
j =0:a,b,c,g,j,k,1,m,n,

;vaOza ¢85J mn ro =13 = [{a,b,c,...,y,z}|
the red fox is quick nj=1:d,f,h,0,q,r,s,t,u,x n= éO = [{d,f,h, .. .,u,x}|
n = 15 letters nj=2:e,i r2 7|{e i}

r=...m=20
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The problem with small probabilities and large m

i

average frequency of this n

m=50=|s|

G ety
%

.1 3 8
njin n=100 samples

when 6; is small n must be very large to be able to observe i w.h.p.
when m is large most 6; are small

Hence, in a sample of size n, many outcomes j may have nj = 0, that is will not appear at
all.

type k R, = {j € S, nj = k} is the subset of outcomes in S that appear k times in D
Why are types important?
> Because GJML = nj/n, all i € type k will have the same estimated value GJML = k/n.
> If j,j’ € Rk, no matter what correction method you use, there is no reason to distinguish between
6 and 6;:. Hence 0; = 0,/ whenever j,j’ € Ry
> Let px = Pr[Ry]. We have p, = rc6; for any j € Ry.



Additive methods

April, 2018

> ldea: assume we have seen one more example of each value in S
> Algorithm: add 1 to each count and renormalize.

i+ 1
HlLap/aCe — i fori=1:m (2)
J n+m

» Can be used also with another value, n? < 1, in place of 1.

Then, it is called Bayesian mean smoothing or Dirichlet smothing or ELE!

Can be derived from Bayesian estimation, with the Dirichlet prior. In particular, we can take

=1, njl-) = %
0
nj + n:
OjBayes =2 J fori=1:m 3)

n—+ ng
The “fictitious sample size” n® = 37 nJQ reflects the strength of our belief about the

i, we say that we have an uninformative prior,

0:'s; if we choose all n; <
J J m
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LIn natural language processing.



Problems with aditive smoothing
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» Reduces all estimates in the same proportion
> Does not distinguish between spread and concentrated distributions.

> the unseen outcomes have the same probability no matter how the counts are distributed

> “Naive” method — DON'T USE IT

w
8
F
=
H
38
[
5
s
H
@
8
e
5
2
a
g
a8
o
2
S
o
o
o
=
(=]
a
i
<
[
(2]




Ney-Essen discounting — tax and redistribute
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» Let r = the number of distinct values observed
r=m-—n

> Idea

> substract an amount § > 0 from every n; that “can afford it"
> redistribute the total amount equally to all counts.

This simple method works surprisingly well in practice.

g » Algorithm

§ D = Z min(nj,d) total substracted (4)

= j

z anE = nj —min(n;,8) + D/m redistribute (5)
NE  _ .

: 0; = - normalize (6)

5

8 Typically 6 =1




Properties of NE smoothing
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Flexibility
» Note D < ér, redistributed mass % <4
» For m large and r small

> (probability mass is concentrated on a few values)
» D small = unobserved outcomes receive little probability

» For m large and r large

3~

> D = m (large) = unobserved outcomes get "t ~ & (almost 1)
» For 6 = 1 treats outcomes with nj = 1 and n; = 0 the same
Intuition: any outcome i with n; < J is a rare outcome and should be treated in the same
way, no matter how many observations it actually has.
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Witten-Bell discounting — probability of a new value
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> Look at the sequence (xi, . ..Xp) as a binary process: either we observe a value of X that was
observed before, or we observe a new one.

> Assume that of m possible values r were observed (and m — r unobserved)

> Then the probability of observing a new value is pp = £

> Hence, set the probability of all unseen values of X to pg The other probabiliy estimates are
renormalized accordingly.

no1 nj .
QWB _ n l14py n+tr nj > 0 (7)
j - 1 Po 1 r ni=0
m—r 1+pg m—r n+r J

Witten-Bell makes sense only when some n; counts are zero. If all n; > 0 then W-B smoothing
has undefined results.
WB smoothing has no parameter to choose (GOOD!)
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Good-Turing — Predicting the type of the next outcome

> This method has many versions (you will see why). Powerful for large data sets.

>

First Idea

> Remember r, = #{j, n; = k} the counts of the counts. Naturally, n = >72°, krk.
> Outcome i is of type k if nj = k. GT uses the data to estimate the probability of type k

k
pk:% fork=1:n (8)

Second ldea is to use the probabilities pi,...px ... to predict the next outcome
> For example, what's the probability of seeing a new value?
It must be equal to p1, because this observation will have count n; = 1 once it is observed.
> Similarly, the probability of observing a type k outcome must be about py1.
Third There are r, outcomes j in type k, hence the probability mass for each of these is
1/r¢ of pxy1 which leads to (11).

Algorithm
k+1 ngT k+1
if nj = k QGT:%:M‘EfL with ,,_GT:M 9)
J ri nry n J I
In particular if n; =0
P1
pcT = 22 10
=2 (10)
Remark GT transfers the probability mass of type k + 1 to type k

This implies that

nfTne = (k+1)na if nj =k (11)



Problems with Good-Turing
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» When k is large, ry is small and noisy.
> Example The word “Jimmy" appears njimmy = 8196 times in a corpus. But there may be no word
that appears 8197 times. Then, Oj;my =0!
> Remedy: “smooth” the ry values, i.e use (an estimate of) E[ry]

» Many proposals exist
> A simple one is tois to use Good-Turing only for type 0, and to rescale the other M estimates
down to ensure normalization.

a_na if nj =0
9T — [ nrg J 12
i { 9?/“(17%) ifnj >0 (12)
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Comparison of the methods
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Numerical values to exemplify the results: n = 1000, m = 1000, r = 100

Count n; 0 1 n>1
ML I _ 1 i
ej 0 n — 1000 1000
eLaplace 1 1 2 _ 1 nit+l _ m+l
J n+m — 2000 n+m — 1000 n+m — 2000
gBaves 0 _q 0 _ 1 1., 1 14+1/m 1 nj+1/m _ n;
j =S Ty m(n+I) = 10° n+l "~ 103 n+tl "~ 1000
ONE 5§ — 1 ro_ 1 ro_ 1 n=ltr/mo
j 0= mn — 104 mn — 104 n "~ 1000
QWB 1 ro_ _1 1 _ 1 nj _ nj
m—r n+r 9900 n+r 1100 n+r 1100

Rejmarks

> Laplace shrinks ML estimates of large probabilities by factor of 2. Too much! (because
large GJML are close to their true values)

> Bayes (with uninformative prior) affects large GJML much less than small ones. Good

> Ney-Essen smooths more when r is larger; any n; is affected by less than 4.
Ney-Essen estimates of OVE for counts of 0 and 1 are equal to a fraction of # (this grows
with n as r grows with n).

> In Witten-Bell, the large GJML are shrunk depending on r, but independently of m.
Proportional, bad

> ...but, if we overestimate m grossly, the overestimation will only affect the GJWB for the 0

counts, but none of the GJWB for the values observed. (true for NE as well).
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Back-off or shrinkage — mixing with simpler models
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Ultimate test: which method is best?
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m=50=|s|

i

average frequency of this n,
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Predict new data n;in n=100 samples
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