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Additive methods (Laplace, Dirichlet, Bayesian, ELE)

Discounting (Ney-Essen)

Multiplicative smoothing: Estimating the next outcome (Witten-Bell, Good-Turing)

Back-off or shrinkage – mixing with simpler models
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Definitions and setup

We will look at estimating categorical distributions from samples, when the number of
outcomes m is large.

I Let S = {1, . . .m} be the sample space, and P = (θ1, . . . θm) a distribution over S .
I We draw n independent samples from P, obtaining the data set D
I Define the counts {nj = #j appears in D, i = 1, . . . n}. The counts are also called

sufficient statistics or histogram.
I Define the fingerprint (or histogram of histogram) of D as the counts of the counts, i.e
{ rk = #counts nj = k, for k = 0, 1, 2 . . .}
Example m = 26 alphabet letters

Data Counts ni Fingerprint rk

the red fox is quick
n = 15 letters

nj = 0 :a,b,c,g,j,k,l,m,n,
p,v,y,z
nj = 1 :d,f,h,o,q,r,s,t,u,x
nj = 2 :e,i

r0 = 13 = |{a,b,c,...,y,z}|
r1 = 10 = |{d,f,h,...,u,x}|
r2 = 2 = |{e,i}|
r3 = . . . rn = 0

ho ho who s on first
n = 15 letters

nj = 0 : a,b,c...,x,z
nj = 1 : f,i,n,r,w
nj = 2 : s
nj = 3 : h
nj = 4 : o

r0 = 26− 5− 1− 2 = 18
r1 = 5 = |{f,i,n,r,w}|
r2 = 1 = |{s}|
r3 = 1 = |{h}|
r4 = 1 = |{o}|

I It is easy to verify that nj ∈ 0 : n, hence r0:n may be non-zero (but rn+1,n+2,... = 0), and
that

m = r0 + r1 + . . . rn n = 0× r0 + 1× r1 + . . . k × rk + . . . (1)
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Smoothing on an example

I the counts {nj = #j appears in D, i = 1, . . . n} (or sufficient statistics or histogram)
I fingerprint (or histogram of histogram) of D as the counts of the counts
{ rk = #counts nj = k, for k = 0, 1, 2 . . .}, and Rk = { j, nj = k, }

Example m = 26 alphabet letters
Data Counts nj Fingerprint rk

the red fox is quick
n = 15 letters

nj = 0 :a,b,c,g,j,k,l,m,n,
p,v,y,z
nj = 1 :d,f,h,o,q,r,s,t,u,x
nj = 2 :e,i

r0 = 13 = |{a,b,c,...,y,z}|
r1 = 10 = |{d,f,h,...,u,x}|
r2 = 2 = |{e,i}|
r3 = . . . rn = 0
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The problem with small probabilities and large m

I when θi is small n must be very large to be able to observe i w.h.p.
I when m is large most θi are small

I Hence, in a sample of size n, many outcomes j may have nj = 0, that is will not appear at
all.

I type k Rk = {j ∈ S , nj = k} is the subset of outcomes in S that appear k times in D
I Why are types important?

I Because θML
j = nj/n, all i ∈ type k will have the same estimated value θML

j = k/n.
I If j, j′ ∈ Rk , no matter what correction method you use, there is no reason to distinguish between
θj and θj′ . Hence θj = θj′ whenever j, j′ ∈ Rk

I Let pk = Pr [Rk ]. We have pk = rkθj for any j ∈ Rk .
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Additive methods

I Idea: assume we have seen one more example of each value in S
I Algorithm: add 1 to each count and renormalize.

θLaplacej =
nj + 1

n + m
for i = 1 : m (2)

I Can be used also with another value, n0
j < 1, in place of 1.

Then, it is called Bayesian mean smoothing or Dirichlet smothing or ELE1

Can be derived from Bayesian estimation, with the Dirichlet prior. In particular, we can take

n0 = 1, n0
j = 1

m .

θBayesj =
nj + n0

j

n + n0
for i = 1 : m (3)

The “fictitious sample size” n0 =
∑m

i=1 n
0
j reflects the strength of our belief about the

θj ’s; if we choose all nj ∝ 1
m

, we say that we have an uninformative prior,

1In natural language processing.
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Problems with aditive smoothing

I Reduces all estimates in the same proportion
I Does not distinguish between spread and concentrated distributions.

I the unseen outcomes have the same probability no matter how the counts are distributed

I “Naive” method – DON’T USE IT



S
T

A
T

3
9

1
G

o
o

d
N

o
te

:
D

is
cr

et
e

sm
a

ll
p

ro
b

a
b

ili
ti

es
A

p
ri

l,
2

0
1

8

8

Ney-Essen discounting – tax and redistribute

I Let r = the number of distinct values observed

r = m − r0

I Idea
I substract an amount δ > 0 from every nj that “can afford it”
I redistribute the total amount equally to all counts.

This simple method works surprisingly well in practice.
I Algorithm

D =
∑
j

min(nj , δ) total substracted (4)

nNEj = nj −min(nj , δ) + D/m redistribute (5)

θNEj =
nNEj

n
normalize (6)

Typically δ = 1
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Properties of NE smoothing

Flexibility

I Note D ≤ δr , redistributed mass D
m
≤ δ r

m
I For m large and r small

I (probability mass is concentrated on a few values)
I D small ⇒ unobserved outcomes receive little probability

I For m large and r large
I D ≈ m (large) ⇒ unobserved outcomes get nNE ≈ δ (almost 1)

I For δ = 1 treats outcomes with nj = 1 and nj = 0 the same
Intuition: any outcome i with nj < δ is a rare outcome and should be treated in the same
way, no matter how many observations it actually has.
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Witten-Bell discounting – probability of a new value

I Idea:
I Look at the sequence (x1, . . . xn) as a binary process: either we observe a value of X that was

observed before, or we observe a new one.
I Assume that of m possible values r were observed (and m − r unobserved)
I Then the probability of observing a new value is p0 = r

n .
I Hence, set the probability of all unseen values of X to p0. The other probabiliy estimates are

renormalized accordingly.

θWB
j =

{ nj
n

1
1+p0

=
nj
n+r

nj > 0
1

m−r
p0

1+p0
= 1

m−r
r

n+r
nj = 0

(7)

Witten-Bell makes sense only when some nj counts are zero. If all nj > 0 then W-B smoothing
has undefined results.
WB smoothing has no parameter to choose (GOOD!)



S
T

A
T

3
9

1
G

o
o

d
N

o
te

:
D

is
cr

et
e

sm
a

ll
p

ro
b

a
b

ili
ti

es
A

p
ri

l,
2

0
1

8

11

Good-Turing – Predicting the type of the next outcome

I This method has many versions (you will see why). Powerful for large data sets.
I First Idea

I Remember rk = #{j, nj = k} the counts of the counts. Naturally, n =
∑∞

k=1 krk .
I Outcome i is of type k if nj = k. GT uses the data to estimate the probability of type k

pk =
krk

n
for k = 1 : n (8)

I Second Idea is to use the probabilities p1, . . . pk . . . to predict the next outcome
I For example, what’s the probability of seeing a new value?

It must be equal to p1, because this observation will have count nj = 1 once it is observed.
I Similarly, the probability of observing a type k outcome must be about pk+1.

I Third There are rk outcomes j in type k, hence the probability mass for each of these is
1/rk of pk+1 which leads to (11).

I Algorithm

if nj = k θGTj =
pk+1

rk
=

(k + 1)rk+1

nrk

def
=

nGTk
n

with nGTj =
(k + 1)rk+1

rk
(9)

In particular if nj = 0

θGTj =
p1

r0
(10)

I Remark GT transfers the probability mass of type k + 1 to type k
I This implies that

nGTj rk = (k + 1)rk+1 if nj = k (11)
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Problems with Good-Turing

I When k is large, rk is small and noisy.
I Example The word “Jimmy” appears nJimmy = 8196 times in a corpus. But there may be no word

that appears 8197 times. Then, θGTJimmy = 0!

I Remedy: “smooth” the rk values, i.e use (an estimate of) E [rk ]
I Many proposals exist
I A simple one is tois to use Good-Turing only for type 0, and to rescale the other θML estimates

down to ensure normalization.

θ
GT
j =

{
p1
r0

= r1
nr0

if nj = 0

θML
j

(
1− r1

n

)
if nj > 0

(12)
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Comparison of the methods

Numerical values to exemplify the results: n = 1000, m = 1000, r = 100
Count nj 0 1 nj � 1

θML
j 0 1

n
= 1

1000

nj
1000

θLaplacej
1

n+m
= 1

2000
2

n+m
= 1

1000

nj+1

n+m
=

nj+1

2000

θBayesj , n0 = 1, n0
j = 1

m
1

m(n+1)
≈ 1

106
1+1/m
n+1

≈ 1
103

nj+1/m

n+1
≈ nj

1000

θNEj , δ = 1 r
mn

= 1
104

r
mn

= 1
104

nj−1+r/m

n
≈ nj

1000

θWB
j

1
m−r

r
n+r

= 1
9900

1
n+r

= 1
1100

nj
n+r

=
nj

1100
Remarks

I Laplace shrinks ML estimates of large probabilities by factor of 2. Too much! (because
large θML

j are close to their true values)

I Bayes (with uninformative prior) affects large θML
j much less than small ones. Good

I Ney-Essen smooths more when r is larger; any nj is affected by less than δ.
I Ney-Essen estimates of θNE for counts of 0 and 1 are equal to a fraction of r

m
(this grows

with n as r grows with n).
I In Witten-Bell, the large θML

j are shrunk depending on r , but independently of m.
Proportional, bad

I . . . but, if we overestimate m grossly, the overestimation will only affect the θWB
j for the 0

counts, but none of the θWB
j for the values observed. (true for NE as well).
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Back-off or shrinkage – mixing with simpler models

(T B Written)
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Ultimate test: which method is best?

Predict new data
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