STAT 391 Lecture 8 May 2020 Linear and logistic regression ©Marina Meilă mmp@stat.washington.edu

The task of **Prediction** is concerned with the relationship between two random variables, the **predictor** $X \in S_X$, and the **response** or **target** $Y \in S_Y$. The task is to predict the value of Y that "best" corresponds to a given X. Therefore, statistically speaking, we are interested in (estimating) the conditional distribution $P_{Y|X}$.

When the outcome space of Y, S_Y is a finite discrete set, prediction is called **classification**; when $S_Y \subset (-\infty, \infty)$, it is called **regression**.

1 Linear regression with a single predictor

Let $S_X = (-\infty, \infty)$. We assume a *linear model*, i.e.

$$y = \beta_0 + \beta_1 x + \epsilon, \tag{1}$$

where $\beta_{0,1} \in \mathbb{R}$ are called model **parameters** or **regression coefficients**, and ϵ is called **noise**. The noise ϵ makes the dependence of Y on X random, without it it will be deterministic. We assume that

$$\epsilon \sim Normal(0, \sigma^2),$$
 (2)

and moreover, that for each value pair (x, y) observed, the noise is independent of other observations.

We want to estimate the unknown parameters $\beta_0, \beta_1, \sigma^2$ by ML, from a data set $\mathcal{D} = \{(x^1, y^1), \dots, (x^n, y^n)\}$ sampled i.i.d. from an unknown distribution $P_{Y|X}$. Hence, we are not interested in the distribution of the $x_{1:n}$ variables, but only in the probabilistic depence of Y on X. Note that our *model* for this distribution, based on (??) and (2) is

$$P_{Y|X} = Normal(\underbrace{\beta_0 + \beta_1 X}_{\mu(X)}, \sigma^2).$$
(3)

The likelihood function is defined as

$$L(\beta_{0,1},\sigma^2) = P[y^{1:n}|x^{1:n},\beta_{0,1},\sigma^2] = \prod_{i=1}^n \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(y^i - \mu(x^i))^2}{\sigma^2}} = \frac{1}{(\sigma\sqrt{2\pi})^n} e^{-\frac{1}{2\sigma^2}\sum_{i=1}^n (y^i - \mu(x^i))^2},$$
(4)

and the log-likelihood is

$$l(\beta_{0,1},\sigma^2) = \ln P[y_{1:n}|x_{1:n},\beta_{0,1},\sigma^2] = -n\ln\sigma - n\ln(\sqrt{2\pi}) - \frac{1}{2\sigma^2} \sum_{i=1}^n (y^i - \beta_0 - \beta_1 x^i)^2$$
(5)

This reminds of the ML estimation of a normal distribution, so we proceed to first estimate the parameters β_0, β_1 of the mean.

$$\frac{\partial l}{\partial \beta_0} = \sum_{i=1}^n (y^i - \beta_0 - \beta_1 x^i) \tag{6}$$

$$\frac{\partial l}{\partial \beta_1} = \sum_{i=1}^n x^i (y^i - \beta_0 - \beta_1 x^i) \tag{7}$$

By setting the above partial derivatives to 0, we get the linear system

$$\sum_{i=1}^{n} y^{i} = n\beta_{0} - \beta_{1} \sum_{i=1}^{n} x^{i}$$
(8)

$$\sum_{i=1}^{n} x^{i} y^{i} = n\beta_{0} \sum_{i=1}^{n} x^{i} - \beta_{1} \sum_{i=1}^{n} (x^{i})^{2}, \qquad (9)$$

with solution

$$\beta_1^{ML} = \frac{n \sum_{i=1}^n x^i y^i - (\sum_{i=1}^n x^i) (\sum_{i=1}^n y^i)}{n \sum_{i=1}^n (x^i)^2 - (\sum_{i=1}^n x^i)^2}$$
(10)

$$\beta_0^{ML} = \frac{1}{n} \sum_{i=1}^n y^i - \beta_1^{ML} \frac{1}{n} \sum_{i=1}^n x^i = \bar{y} - \beta_1^{ML} \bar{x}.$$
 (11)

2 Linear regression with multiple predictors

Let X now be a vector variable, $X = (X_1, \ldots, X_m) \in \mathbb{R}^m$. We assume Y is a linear combination of all the *m* predictors, i.e.

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 \dots \beta_m x_m + \epsilon.$$
(12)

This expression can be written more compactly in vector form, if we augment the vector X with an additional component $X_0 \equiv 1$, i.e. $X \leftarrow (1, X_1, \ldots X_m) \in \mathbb{R}^{m+1}$. With this artifice, β_0 can be treated similarly with the other regression coefficients, which are all collected in the vector $\beta = [\beta_0 \beta_1 \ldots \beta_m]^T \in \mathbb{R}^{m+1}$. Now (12) becomes

$$y = \underbrace{\beta^T x}_{\mu(x)} + \epsilon. \tag{13}$$

Since the distribution of ϵ is given by (??), as before, the likelihood and loglikelihood are the same as in (4), respectively (5) with the only difference in the expression of $\mu(X)$.

$$l(\beta, \sigma^2) = \ln P[y^{1:n}|x^{1:n}, \beta, \sigma^2] = -n \ln \sigma - n \ln(\sqrt{2\pi}) - \frac{1}{2\sigma^2} \sum_{i=1}^n (y^i - \beta^T x^i)^2$$
(14)

If we ignore the first terms, which do not depend on β , we see that the parameters β that maximize the (log-)likelihood are the ones that minimize the sum of squared **residuals** $y_i - \mu(x_i)$, hence this optimization is called a **least squares** problem.

We again take partial derivatives and equate them with 0. Remember that the partial derivative w.r.t. a vector variable β is a vector called the *gradient*, and that this can be written as the vector expression

$$\frac{\partial l}{\partial \beta_j} = \sum_{i=1}^n (y^i - \beta^T x^i) x_j^i.$$
(15)

In the above, x^i is assumed to be a row vector. We can make this expression even more compact if we construct the matrix $\mathbf{X} \in \mathbb{R}^{n \times m}$ with the $x^{1:n}$ as rows, and the column vector $\mathbf{y} = [y^1 \dots y^n]^T$.

$$\frac{\partial l}{\partial \beta} = \mathbf{X}^T \mathbf{y} - \mathbf{X}^T \mathbf{X} \beta.$$
(16)

Setting the gradient to 0, we obtain the linear system $\mathbf{X}^T \mathbf{X} \boldsymbol{\beta} = \mathbf{X}^T \mathbf{y}$. If $n \geq m$, and the matrix $\mathbf{X}^T \mathbf{X}$ is non-singular, the solution is

$$\beta^{ML} = \underbrace{(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T}_{\mathbf{X}^{\dagger}} \mathbf{y}.$$
 (17)

The matrix \mathbf{X}^{\dagger} is called the **pseudoinverse** of \mathbf{X} . Once β^{ML} is obtained, we can also estimate the residuals

$$\epsilon^i = y^i - (\beta^{ML})^T x^i. \tag{18}$$

3 Statistical properties of the β^{ML} estimator

The expectation of β^{ML} is computed w.r.t. the noise distribution, assuming that the data is generated by the model (13) (or (3)) with a true parameter vector β and a true noise variance σ^2 .

$$E[\beta^{ML}] = E[\mathbf{X}^{\dagger}\mathbf{y}] = E[\mathbf{X}^{\dagger}(\mathbf{X}\beta + \epsilon)] = \underbrace{\mathbf{X}^{\dagger}\mathbf{X}}_{I_m}\beta + \mathbf{X}^{\dagger}\underbrace{E[\epsilon]}_{0} = \beta.$$
(19)

In other words, the ML estimate β^{ML} is **unbiased**.

We can also calculate the covariance of β^{ML} . Note that $\beta^{ML} - \beta = \mathbf{X}^{\dagger} \epsilon$. Hence,

$$Cov(\beta^{ML}) = E[(\beta^{ML} - \beta)(\beta^{ML} - \beta)^T] = E[(\mathbf{X}^{\dagger} \epsilon)(\mathbf{X}^{\dagger} \epsilon)^T]$$
(20)
$$E[\mathbf{X}^{\dagger} \epsilon \epsilon^T (\mathbf{X}^{\dagger})^T] = \mathbf{X}^{\dagger} E[\epsilon \epsilon^T] (\mathbf{X}^{\dagger})^T = \mathbf{X}^{\dagger} \epsilon^2 L (\mathbf{X}^{\dagger})^T e^{2T} \mathbf{X}^{\dagger} e^{2T} \mathbf{X}$$

$$= E[\mathbf{X}'\epsilon\epsilon^{-}(\mathbf{X}')^{-}] = \mathbf{X}'E[\epsilon\epsilon^{-}](\mathbf{X}')^{-} = \mathbf{X}'\sigma^{-}I_{n}(\mathbf{X}')(21)$$

$$= \sigma^2 \mathbf{X}^{\mathsf{T}} (\mathbf{X}^{\mathsf{T}})^{\mathsf{T}} \sigma^2 (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-\mathsf{T}}$$
(22)

$$= \sigma^2 (\mathbf{X}^T \mathbf{X})^{-1}. \tag{23}$$

Above, we use the fact that $\mathbf{X}^T \mathbf{X}$ is a symmetric matrix, and so is its inverse. The covariance of β^{ML} is proportional to the noise covariance.

4 Estimating σ^2

A naive way to estimate σ^2 is to average the squared residuals $(\sigma^2)^{naive} = \frac{1}{n} \sum_{i=1}^{n} (y^i - (\beta^{ML})^T x^i)^2$. We can also use the ML method, by taking the derivative of $l(\beta, \sigma^2)$ w.r.t. σ^2 (this is similar to ML estimation of σ^2 in a normal distribution).

$$\frac{\partial l}{\partial \sigma^2} = -n\frac{1}{\sigma^4} - \frac{1}{2\sigma^2} \sum_{i=1}^n (y^i - (\beta^{ML})^T x^i)^2 = 0.$$
(24)

If we solve this equation, we obtain

$$(\sigma^2)^{ML} = \frac{1}{n} \sum_{i=1}^n (y^i - (\beta^{ML})^T x^i)^2$$
(25)

which is identical to the "naive" estimator! However, just like in the case of the normal distribution, this estimator of σ^2 is also biased. By following

the same procedure as in Chapter 12, we obtain

$$E[(\sigma^2)^{ML}] = \frac{n-m}{n}\sigma^2.$$
(26)

Therefore, unless $n \ll m$, the unbiased estimator

$$\hat{sigma}^{2} = \frac{1}{n-m} \sum_{i=1}^{n} (y^{i} - (\beta^{ML})^{T} x^{i})^{2} = \frac{n}{n-m} (\sigma^{2})^{ML}$$
(27)

is recommended. (Note that here, m is the number of total parameters estimated, , i.e., the dimension of β with β_0 included.)

5 Prediction with the estimated model

Given a new x value, the ML model for $P_{Y|X}(y|x)$ is $Normal(x\beta, (\sigma^2)^{ML})$, where we recall that $x\beta = \beta_0 + \beta_1 x_1 + \ldots \beta_m x_m$. This is the **predictive distribution** for y given x.

If we want to predict a single number, given that the distribution is Gaussian, the "best" single number to predict is the mean $\mu(x) = x\beta$. [Exercise: in which ways is $\mu(x)$ "best"?] [Exercise: is $\mu(x)$ also "best" if we use the unbiased model $N(x\beta, \hat{\sigma}^2)$?]

6 Checking the residuals

TBW

7 Logistic Regression

When the outputs y are binary variable, i.e. $y \in \{0, 1\}$, fitting them with a linear model is not appropriate. **Exercise:** Why? **Logistic regression** proposes that, for each x, the model for P(Y|X) be a Bernoulli distribution, with $p(x) \stackrel{def}{=} Pr[Y = 1|X = x]$ given implicitly by the relation below.

Let β be the vector of parameters as described above (with or without a β_0 included). The let $f(x) = \beta^T x$ model the **log odds** of class 1

$$f(X) = \frac{P(Y=1|X)}{P(Y=-1|X)} = \beta^T X.$$
 (28)

Then under this linear model, p(x) is

$$\frac{p(x)}{1 - p(x)} = e^{f(x)}$$
(29)

$$Pr[Y = 1|X = x] = p(x) = \frac{e^{f}}{1 + e^{f}} = \frac{e^{\beta^{T}x}}{1 + e^{\beta^{T}x}} = \frac{1}{1 + e^{-\beta^{T}x}} (30)$$

$$Pr[Y = 0|X = x] = 1 - p(x) = \frac{e^{-\beta^{-x}}}{1 + e^{-\beta^{T}x}} = \frac{1}{1 + e^{\beta^{T}x}}$$
(31)

An alternative "symmetric" expression for p, 1 - p is

$$p = \frac{e^{f/2}}{e^{f/2} + e^{-f/2}}, \quad 1 - p = \frac{e^{-f/2}}{e^{f/2} + e^{-f/2}}.$$
 (32)

In the expression (??) one recognizes the *logistic CDF*.

One major application of logistic regression is in *classification*.

8 Estimating the parameters by Max Likelihood

The log-likelihood $l(\beta)$ is

$$l(\beta) = \ln \Pr[y^{1:n} | x^{1:n}, \beta]$$
(33)

$$= \sum_{i=1}^{n} \ln p(x^{i})^{y_{i}} (1 - p(x^{i}))^{1 - y_{i}}$$
(34)

$$= \sum_{i=1}^{n} \ln \frac{e^{-\beta^{T} x^{i} (1-y^{i})}}{1+e^{-\beta^{T} x^{i}}}$$
(35)

$$= \sum_{i=1}^{n} \left[(y^{i} - 1)\beta^{T} x^{i} - \ln \frac{1}{1 + e^{-\beta^{T} x^{i}}} \right]$$
(36)

There is no analytic formula for the maximum of this expression. Therefore, the Maximum Likelihood parameters β^{ML} will be found numerically, by gradient ascent.

We first calculate the gradient of the log-likelihood.

$$\frac{\partial l}{\partial \beta_j} = \sum_{i=1}^n \left[(y^i - 1) x_j^i - \frac{-e^{-\beta^T x^i}}{1 + e^{-\beta^T x^i}} x_j^i \right]$$
(37)

$$= \sum_{i=1}^{n} \left[(y^{i} - 1 + \underbrace{\frac{-e^{-\beta^{T} x^{i}}}{1 + e^{-\beta^{T} x^{i}}}}_{1 - p(x^{i})} \right] x_{j}^{i}$$
(38)

$$= \sum_{i=1}^{n} \left[(y^{i} - p(x^{i})] x_{j}^{i} \right]$$
(39)

This expression can be written compactly for all j = 0 : p as

$$\frac{\partial l}{\partial \beta} = \sum_{i=1}^{n} \underbrace{\left[y^{i} - p(x^{i}) \right]}_{c_{i} \in \mathbb{R}} x^{i}.$$

$$\tag{40}$$

Recall that in gradient ascent, at every step,

$$\beta \leftarrow \beta + \eta \frac{\partial l}{\partial \beta},\tag{41}$$

with $\eta > 0$ the *step size*. The expression of the gradient in (40) shows that the change in β , at each step, is a sum of vectors, each of them being a scaled version of a data point x^i . Hence, if the initial value of β is zero, the parameter vector β is at any time a *a linear combination* of the inputs x^i .

Next, we note that

$$c_i = y^i - p(x^i) = (-1)^{1-y^i} \left(1 - \Pr[y^i | x^i, \beta] \right);$$
(42)

in other words, $|c_i|$ is the difference between the *ideal* prediction probability 1 and the model's probability of the observed y^i . Hence, for the data points *i* for which the model predicts the outputs well, $|c_i|$ is close to 0. This leave the data points when the model is not accurate, to dominate in the gradient expression. We can also see that $c_i > 0$ when $y^i = 1$, and $c_i < 0$ when $y^i = 0$. In other words, each gradient step moves β in the general direction of the $y^i = 1$ points (also called **positive examples**) and away from the $y^i = 0$ points (the **negative examples**).