STAT 391 Lecture 8
 May 2020
 Linear and logistic regression
 (C)Marina Meilă
 mmp@stat.washington.edu

The task of Prediction is concerned with the relationship between two random variables, the predictor $X \in S_{X}$, and the response or target $Y \in S_{Y}$. The task is to predict the value of Y that "best" corresponds to a given X. Therefore, statistically speaking, we are interested in (estimating) the conditional distribution $P_{Y \mid X}$.

When the outcome space of Y, S_{Y} is a finite discrete set, prediction is called classification; when $S_{Y} \subset(-\infty, \infty)$, it is called regression.

1 Linear regression with a single predictor

Let $S_{X}=(-\infty, \infty)$. We assume a linear model, i.e.

$$
\begin{equation*}
y=\beta_{0}+\beta_{1} x+\epsilon, \tag{1}
\end{equation*}
$$

where $\beta_{0,1} \in \mathbb{R}$ are called model parameters or regression coefficients, and ϵ is called noise. The noise ϵ makes the dependence of Y on X random, without it it will be deterministic. We assume that

$$
\begin{equation*}
\epsilon \sim \operatorname{Normal}\left(0, \sigma^{2}\right) \tag{2}
\end{equation*}
$$

and moreover, that for each value pair (x, y) observed, the noise is independent of other observations.

We want to estimate the unknown parameters $\beta_{0}, \beta_{1}, \sigma^{2}$ by ML, from a data set $\mathcal{D}=\left\{\left(x^{1}, y^{1}\right), \ldots\left(x^{n}, y^{n}\right)\right\}$ sampled i.i.d. from an unknown distribution $P_{Y \mid X}$. Hence, we are not interested in the distribution of the $x_{1: n}$ variables, but only in the probabilistic depence of Y on X. Note that our model for this distribution, based on (??) and (2) is

$$
\begin{equation*}
P_{Y \mid X}=\operatorname{Normal}(\underbrace{\beta_{0}+\beta_{1} X}_{\mu(X)}, \sigma^{2}) . \tag{3}
\end{equation*}
$$

The likelihood function is defined as
$L\left(\beta_{0,1}, \sigma^{2}\right)=P\left[y^{1: n} \mid x^{1: n}, \beta_{0,1}, \sigma^{2}\right]=\prod_{i=1}^{n} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{\left(y^{i}-\mu\left(x^{i}\right)\right)^{2}}{\sigma^{2}}}=\frac{1}{(\sigma \sqrt{2 \pi})^{n}} e^{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y^{i}-\mu\left(x^{i}\right)\right)^{2}}$,
and the \log-likelihood is
$l\left(\beta_{0,1}, \sigma^{2}\right)=\ln P\left[y_{1: n} \mid x_{1: n}, \beta_{0,1}, \sigma^{2}\right]=-n \ln \sigma-n \ln (\sqrt{2 \pi})-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y^{i}-\beta_{0}-\beta_{1} x^{i}\right)^{2}$.
This reminds of the ML estimation of a normal distribution, so we proceed to first estimate the parameters β_{0}, β_{1} of the mean.

$$
\begin{align*}
\frac{\partial l}{\partial \beta_{0}} & =\sum_{i=1}^{n}\left(y^{i}-\beta_{0}-\beta_{1} x^{i}\right) \tag{6}\\
\frac{\partial l}{\partial \beta_{1}} & =\sum_{i=1}^{n} x^{i}\left(y^{i}-\beta_{0}-\beta_{1} x^{i}\right) \tag{7}
\end{align*}
$$

By setting the above partial derivatives to 0 , we get the linear system

$$
\begin{align*}
\sum_{i=1}^{n} y^{i} & =n \beta_{0}-\beta_{1} \sum_{i=1}^{n} x^{i} \tag{8}\\
\sum_{i=1}^{n} x^{i} y^{i} & =n \beta_{0} \sum_{i=1}^{n} x^{i}-\beta_{1} \sum_{i=1}^{n}\left(x^{i}\right)^{2} \tag{9}
\end{align*}
$$

with solution

$$
\begin{align*}
\beta_{1}^{M L} & =\frac{n \sum_{i=1}^{n} x^{i} y^{i}-\left(\sum_{i=1}^{n} x^{i}\right)\left(\sum_{i=1}^{n} y^{i}\right)}{n \sum_{i=1}^{n}\left(x^{i}\right)^{2}-\left(\sum_{i=1}^{n} x^{i}\right)^{2}} \tag{10}\\
\beta_{0}^{M L} & =\frac{1}{n} \sum_{i=1}^{n} y^{i}-\beta_{1}^{M L} \frac{1}{n} \sum_{i=1}^{n} x^{i}=\bar{y}-\beta_{1}^{M L} \bar{x} \tag{11}
\end{align*}
$$

2 Linear regression with multiple predictors

Let X now be a vector variable, $X=\left(X_{1}, \ldots X_{m}\right) \in \mathbb{R}^{m}$. We assume Y is a linear combination of all the m predictors, i.e.

$$
\begin{equation*}
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2} \ldots \beta_{m} x_{m}+\epsilon . \tag{12}
\end{equation*}
$$

This expression can be written more compactly in vector form, if we augment the vector X with an additional component $X_{0} \equiv$ 1, i.e. $X \leftarrow$ $\left(1, X_{1}, \ldots X_{m}\right) \in \mathbb{R}^{m+1}$. With this artifice, β_{0} can be treated similarly with the other regression coefficients, which are all collected in the vector $\beta=\left[\beta_{0} \beta_{1} \ldots \beta_{m}\right]^{T} \in \mathbb{R}^{m+1}$. Now (12) becomes

$$
\begin{equation*}
y=\underbrace{\beta^{T} x}_{\mu(x)}+\epsilon \tag{13}
\end{equation*}
$$

Since the distribution of ϵ is given by (??), as before, the likelihood and loglikelihood are the same as in (4), respectively (5) with the only difference in the expression of $\mu(X)$.
$l\left(\beta, \sigma^{2}\right)=\ln P\left[y^{1: n} \mid x^{1: n}, \beta, \sigma^{2}\right]=-n \ln \sigma-n \ln (\sqrt{2 \pi})-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y^{i}-\beta^{T} x^{i}\right)^{2}$.
If we ignore the first terms, which do not depend on β, we see that the parameters β that maximize the (log-)likelihood are the ones that minimize the sum of squared residuals $y_{i}-\mu\left(x_{i}\right)$, hence this optimization is called a least squares problem.

We again take partial derivatives and equate them with 0 . Remember that the partial derivative w.r.t. a vector variable β is a vector called the gradient, and that this can be written as the vector expression

$$
\begin{equation*}
\frac{\partial l}{\partial \beta_{j}}=\sum_{i=1}^{n}\left(y^{i}-\beta^{T} x^{i}\right) x_{j}^{i} \tag{15}
\end{equation*}
$$

In the above, x^{i} is assumed to be a row vector. We can make this expression even more compact if we construct the matrix $\mathbf{X} \in \mathbb{R}^{n \times m}$ with the $x^{1: n}$ as rows, and the column vector $\mathbf{y}=\left[y^{1} \ldots y^{n}\right]^{T}$.

$$
\begin{equation*}
\frac{\partial l}{\partial \beta}=\mathbf{X}^{T} \mathbf{y}-\mathbf{X}^{T} \mathbf{X} \beta \tag{16}
\end{equation*}
$$

Setting the gradient to 0 , we obtain the linear system $\mathbf{X}^{T} \mathbf{X} \beta=\mathbf{X}^{T} \mathbf{y}$. If $n \geq m$, and the matrix $\mathbf{X}^{T} \mathbf{X}$ is non-singular, the solution is

$$
\begin{equation*}
\beta^{M L}=\underbrace{\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T}}_{\mathbf{X}^{\dagger}} \mathbf{y} \tag{17}
\end{equation*}
$$

The matrix \mathbf{X}^{\dagger} is called the pseudoinverse of \mathbf{X}. Once $\beta^{M L}$ is obtained, we can also estimate the residuals

$$
\begin{equation*}
\epsilon^{i}=y^{i}-\left(\beta^{M L}\right)^{T} x^{i} \tag{18}
\end{equation*}
$$

3 Statistical properties of the $\beta^{M L}$ estimator

The expectation of $\beta^{M L}$ is computed w.r.t. the noise distribution, assuming that the data is generated by the model (13) (or (3)) with a true parameter vector β and a true noise variance σ^{2}.

$$
\begin{equation*}
E\left[\beta^{M L}\right]=E\left[\mathbf{X}^{\dagger} \mathbf{y}\right]=E\left[\mathbf{X}^{\dagger}(\mathbf{X} \beta+\epsilon)\right]=\underbrace{\mathbf{X}^{\dagger} \mathbf{X}}_{I_{m}} \beta+\mathbf{X}^{\dagger} \underbrace{E[\epsilon]}_{0}=\beta . \tag{19}
\end{equation*}
$$

In other words, the ML estimate $\beta^{M L}$ is unbiased.
We can also calculate the covariance of $\beta^{M L}$. Note that $\beta^{M L}-\beta=\mathbf{X}^{\dagger} \epsilon$. Hence,

$$
\begin{align*}
\operatorname{Cov}\left(\beta^{M L}\right) & =E\left[\left(\beta^{M L}-\beta\right)\left(\beta^{M L}-\beta\right)^{T}\right]=E\left[\left(\mathbf{X}^{\dagger} \epsilon\right)\left(\mathbf{X}^{\dagger} \epsilon\right)^{T}\right] \tag{20}\\
& =E\left[\mathbf{X}^{\dagger} \epsilon \epsilon^{T}\left(\mathbf{X}^{\dagger}\right)^{T}\right]=\mathbf{X}^{\dagger} E\left[\epsilon \epsilon^{T}\right]\left(\mathbf{X}^{\dagger}\right)^{T}=\mathbf{X}^{\dagger} \sigma^{2} I_{n}\left(\mathbf{X}^{\dagger}\right)^{T} \tag{}\\
& =\sigma^{2} \mathbf{X}^{\dagger}\left(\mathbf{X}^{\dagger}\right)^{T} \sigma^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \tag{22}\\
& =\sigma^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} . \tag{23}
\end{align*}
$$

Above, we use the fact that $\mathbf{X}^{T} \mathbf{X}$ is a symmetric matrix, and so is its inverse. The covariance of $\beta^{M L}$ is proportional to the noise covariance.

4 Estimating σ^{2}

A naive way to estimate σ^{2} is to average the squared residuals $\left(\sigma^{2}\right)^{\text {naive }}=$ $\frac{1}{n} \sum_{i=1}^{n}\left(y^{i}-\left(\beta^{M L}\right)^{T} x^{i}\right)^{2}$. We can also use the ML method, by taking the derivative of $l\left(\beta, \sigma^{2}\right)$ w.r.t. σ^{2} (this is similar to ML estimation of σ^{2} in a normal distribution).

$$
\begin{equation*}
\frac{\partial l}{\partial \sigma^{2}}=-n \frac{1}{\sigma^{4}}-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y^{i}-\left(\beta^{M L}\right)^{T} x^{i}\right)^{2}=0 \tag{24}
\end{equation*}
$$

If we solve this equation, we obtain

$$
\begin{equation*}
\left(\sigma^{2}\right)^{M L}=\frac{1}{n} \sum_{i=1}^{n}\left(y^{i}-\left(\beta^{M L}\right)^{T} x^{i}\right)^{2} \tag{25}
\end{equation*}
$$

which is identical to the "naive" estimator! However, just like in the case of the normal distribution, this estimator of σ^{2} is also biased. By following
the same procedure as in Chapter 12, we obtain

$$
\begin{equation*}
E\left[\left(\sigma^{2}\right)^{M L}\right]=\frac{n-m}{n} \sigma^{2} . \tag{26}
\end{equation*}
$$

Therefore, unless $n \ll m$, the unbiased estimator

$$
\begin{equation*}
\text { sigma }^{2}=\frac{1}{n-m} \sum_{i=1}^{n}\left(y^{i}-\left(\beta^{M L}\right)^{T} x^{i}\right)^{2}=\frac{n}{n-m}\left(\sigma^{2}\right)^{M L} \tag{27}
\end{equation*}
$$

is recommended. (Note that here, m is the number of total parameters estimated, , i.e., the dimension of β with β_{0} included.)

5 Prediction with the estimated model

Given a new x value, the ML model for $P_{Y \mid X}(y \mid x)$ is $\operatorname{Normal}\left(x \beta,\left(\sigma^{2}\right)^{M L}\right)$, where we recall that $x \beta=\beta_{0}+\beta_{1} x_{1}+\ldots \beta_{m} x_{m}$. This is the predictive distribution for y given x.

If we want to predict a single number, given that the distribution is Gaussian, the "best" single number to predict is the mean $\mu(x)=x \beta$. [Exercise: in which ways is $\mu(x)$ "best"?] [Exercise: is $\mu(x)$ also "best" if we use the unbiased model $N\left(x \beta, \hat{\sigma}^{2}\right)$?]

6 Checking the residuals

TBW

7 Logistic Regression

When the outputs y are binary variable, i.e. $y \in\{0,1\}$, fitting them with a linear model is not appropriate. Exercise: Why? Logistic regression proposes that, for each x, the model for $P(Y \mid X)$ be a Bernoulli distribution, with $p(x) \stackrel{\text { def }}{=} \operatorname{Pr}[Y=1 \mid X=x]$ given implicitly by the relation below.

Let β be the vector of parameters as described above (with or without a β_{0} included). The let $f(x)=\beta^{T} x$ model the log odds of class 1

$$
\begin{equation*}
f(X)=\frac{P(Y=1 \mid X)}{P(Y=-1 \mid X)}=\beta^{T} X \tag{28}
\end{equation*}
$$

Then under this linear model, $p(x)$ is

$$
\begin{align*}
\frac{p(x)}{1-p(x)} & =e^{f(x)} \tag{29}\\
\operatorname{Pr}[Y=1 \mid X=x]=p(x) & =\frac{e^{f}}{1+e^{f}}=\frac{e^{\beta^{T} x}}{1+e^{\beta^{T} x}}=\frac{1}{1+e^{-\beta^{T} x}}(30) \\
\operatorname{Pr}[Y=0 \mid X=x]=1-p(x) & =\frac{e^{-\beta^{T} x}}{1+e^{-\beta^{T} x}}=\frac{1}{1+e^{\beta^{T} x}} \tag{31}
\end{align*}
$$

An alternative "symmetric" expression for $p, 1-p$ is

$$
\begin{equation*}
p=\frac{e^{f / 2}}{e^{f / 2}+e^{-f / 2}}, \quad 1-p=\frac{e^{-f / 2}}{e^{f / 2}+e^{-f / 2}} \tag{32}
\end{equation*}
$$

In the expression (??) one recognizes the logistic $C D F$.
One major application of logistic regression is in classification.

8 Estimating the parameters by Max Likelihood

The log-likelihood $l(\beta)$ is

$$
\begin{align*}
l(\beta) & =\ln \operatorname{Pr}\left[y^{1: n} \mid x^{1: n}, \beta\right] \tag{33}\\
& =\sum_{i=1}^{n} \ln p\left(x^{i}\right)^{y_{i}}\left(1-p\left(x^{i}\right)\right)^{1-y_{i}} \tag{34}\\
& =\sum_{i=1}^{n} \ln \frac{e^{-\beta^{T} x^{i}\left(1-y^{i}\right)}}{1+e^{-\beta^{T} x^{i}}} \tag{35}\\
& =\sum_{i=1}^{n}\left[\left(y^{i}-1\right) \beta^{T} x^{i}-\ln \frac{1}{1+e^{-\beta^{T} x^{i}}}\right] \tag{36}
\end{align*}
$$

There is no analytic formula for the maximum of this expression. Therefore, the Maximum Likelihood parameters $\beta^{M L}$ will be found numerically, by gradient ascent.

We first calculate the gradient of the log-likelihood.

$$
\begin{align*}
\frac{\partial l}{\partial \beta_{j}} & =\sum_{i=1}^{n}\left[\left(y^{i}-1\right) x_{j}^{i}-\frac{-e^{-\beta^{T} x^{i}}}{1+e^{-\beta^{T} x^{i}}} x_{j}^{i}\right] \tag{37}\\
& =\sum_{i=1}^{n}[(y^{i}-1+\underbrace{\left.\frac{-e^{-\beta^{T} x^{i}}}{1+e^{-\beta^{T} x^{i}}}\right] x_{j}^{i}}_{1-p\left(x^{i}\right)} \tag{38}\\
& =\sum_{i=1}^{n}\left[\left(y^{i}-p\left(x^{i}\right)\right] x_{j}^{i}\right. \tag{39}
\end{align*}
$$

This expression can be written compactly for all $j=0: p$ as

$$
\begin{equation*}
\frac{\partial l}{\partial \beta}=\sum_{i=1}^{n} \underbrace{\left[y^{i}-p\left(x^{i}\right)\right]}_{c_{i} \in \mathbb{R}} x^{i} \tag{40}
\end{equation*}
$$

Recall that in gradient ascent, at every step,

$$
\begin{equation*}
\beta \leftarrow \beta+\eta \frac{\partial l}{\partial \beta} \tag{41}
\end{equation*}
$$

with $\eta>0$ the step size. The expression of the gradient in (40) shows that the change in β, at each step, is a sum of vectors, each of them being a scaled version of a data point x^{i}. Hence, if the initial value of β is zero, the parameter vector β is at any time a a linear combination of the inputs x^{i}.

Next, we note that

$$
\begin{equation*}
c_{i}=y^{i}-p\left(x^{i}\right)=(-1)^{1-y^{i}}\left(1-\operatorname{Pr}\left[y^{i} \mid x^{i}, \beta\right]\right) ; \tag{42}
\end{equation*}
$$

in other words, $\left|c_{i}\right|$ is the difference between the $i d e a l$ prediction probability 1 and the model's probability of the observed y^{i}. Hence, for the data points i for which the model predicts the outputs well, $\left|c_{i}\right|$ is close to 0 . This leave the data points when the model is not accurate, to dominate in the gradient expression. We can also see that $c_{i}>0$ when $y^{i}=1$, and $c_{i}<0$ when $y^{i}=0$. In other words, each gradient step moves β in the general direction of the $y^{i}=1$ points (also called positive examples) and away from the $y^{i}=0$ points (the negative examples).

