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The task of Prediction is concerned with the relationship between two
random variables, the predictor X € Sx, and the response or target
Y € Sy. The task is to predict the value of Y that “best” corresponds to a

given X. Therefore, statistically speaking, we are interested in (estimating)
the conditional distribution Py|y.

When the outcome space of Y, Sy is a finite discrete set, prediction is called
classification; when Sy C (—o0,c0), it is called regression.

1 Linear regression with a single predictor

Let Sx = (—o0,00). We assume a linear model, i.e.

y = Bo+ prz +e, (1)

where 3p1 € R are called model parameters or regression coefficients,
and € is called noise. The noise € makes the dependence of Y on X random,
without it it will be deterministic. We assume that

¢ ~ Normal(0,0?), (2)

and moreover, that for each value pair (z,y) observed, the noise is indepen-
dent of other observations.

We want to estimate the unknown parameters 3y, 51, 0% by ML, from a data
set D = {(z%,9'),... (2", y")} sampled i.i.d. from an unknown distribution
Py |x. Hence, we are not interested in the distribution of the z;., variables,
but only in the probabilistic depence of Y on X. Note that our model for
this distribution, based on (??) and (2) is

Pyix = Normal(B + p1X,07). (3)
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The likelihood function is defined as

Lo, a?) = Ply™a for,0?) = [[ e 8 ]
,0%) = ", Boa, 0] = e ’ = ———e¢
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and the log-likelihood is
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This reminds of the ML estimation of a normal distribution, so we proceed
to first estimate the parameters gy, 51 of the mean.
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By setting the above partial derivatives to 0, we get the linear system

Z Yy = nbo— B Z ' (8)
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with solution
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2 Linear regression with multiple predictors

Let X now be a vector variable, X = (Xi,...X,,) € R™. We assume Y is
a linear combination of all the m predictors, i.e.

y = Bo+ bBiz1 + o2 .. Bnm + € (12)



This expression can be written more compactly in vector form, if we aug-
ment the vector X with an additional component Xg = 1, ie. X <«
(1,X1,... X;n) € R™ML With this artifice, By can be treated similarly
with the other regression coefficients, which are all collected in the vector
B=1[Bop1 - Bm]t € R™*1. Now (12) becomes

= gz +e (13)
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Since the distribution of € is given by (?7?), as before, the likelihood and log-

likelihood are the same as in (4), respectively (5) with the only difference in
the expression of p(X).

1(8,0%) = InPly'™|z¥",8,06% = —nlno—nln(v/2r) ~5s ZZ — BTz

(14)
If we ignore the first terms, which do not depend on 3, we see that the
parameters  that maximize the (log-)likelihood are the ones that minimize
the sum of squared residuals y; — u(x;), hence this optimization is called a
least squares problem.

We again take partial derivatives and equate them with 0. Remember that
the partial derivative w.r.t. a vector variable 3 is a vector called the gradient,
and that this can be written as the vector expression

ol o o
o6 Z(yl — Bra")ah. (15)
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In the above, z* is assumed to be a row vector. We can make this expression
even more compact if we construct the matrix X € R™*™ with the 2" as

rows, and the column vector y = [y*...y"]T.
ol
— = XTy - XTX3. 16
95 y B (16)

Setting the gradient to 0, we obtain the linear system X7Xj3 = XTy. If
n > m, and the matrix X7 X is non-singular, the solution is
prE = (XIX) X"y (17)
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The matrix X' is called the pseudoinverse of X. Once is obtained,

we can also estimate the residuals

= yf — (BT (18)



3 Statistical properties of the "’ estimator

The expectation of ML is computed w.r.t. the noise distribution, assuming
that the data is generated by the model (13) (or (3)) with a true parameter
vector B and a true noise variance o2.

E[s"] = EX'y] = EX(X8+q] = XIX5+XTE[] = 5. (19)
I, 0

In other words, the ML estimate M~ is unbiased.

We can also calculate the covariance of ML, Note that gML — 5 = Xe.
Hence,

Cov(MF) = E[(BM" - B)(8M" = p)T] = E[(XTe)(XTe)T] (20
= EXTee!(XNT] = XTE[eeT|(XNT = XT62L,(X)T21
= 2XI(XNHTo?(XTX)IXTX(XTX)™ (22
= (XTX)™L (23
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Above, we use the fact that X7 X is a symmetric matrix, and so is its inverse.
The covariance of M1 is proportional to the noise covariance.

4 Estimating o2

A naive way to estimate o2 is to average the squared residuals (o2)"%¢ =
LS (¥t — (BME)T2)2. We can also use the ML method, by taking the
derivative of I(3,0%) w.r.t. o2 (this is similar to ML estimation of o2 in a

normal distribution).
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If we solve this equation, we obtain
n

(ML = 13y — (BME)T a2 (25)

n
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which is identical to the “naive” estimator! However, just like in the case
of the normal distribution, this estimator of o is also biased. By following



the same procedure as in Chapter 12, we obtain
n—m 2

E[(e)M] = ——0®. (26)

n
Therefore, unless n <« m, the unbiased estimator

sigma® = =03 - (M) = I @

is recommended. (Note that here,m is the number of total parameters esti-
mated, , i.e., the dimension of 8 with [y included.)

5 Prediction with the estimated model

Given a new x value, the ML model for Py x(y|z) is Normal(zf, (a2)ML),
where we recall that 8 = 8y + S1x1 + ... BmTm. This is the predictive
distribution for y given .

If we want to predict a single number, given that the distribution is Gaussian,
the “best” single number to predict is the mean u(z) = zf. [Exercise: in
which ways is p(z) “best”?] [Exercise: is p(z) also “best” if we use the
unbiased model N (z83,62)7?]

6 Checking the residuals
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7 Logistic Regression

When the outputs y are binary variable, i.e. y € {0, 1}, fitting them with
a linear model is not appropriate. Exercise: Why? Logistic regression
proposes that, for each z, the model for P(Y|X) be a Bernoulli distribution,

with p(x) = PrlY = 1|X = z| given implicitly by the relation below.

Let 8 be the vector of parameters as described above (with or without a Sy
included). The let f(z) = 872 model the log odds of class 1

£X) = P(Y = 1|X)

Py =i - X )

!



Then under this linear model, p(x) is

p(z) (@)
—— = e 29
1 — p(z) 29
ef Pl 1
Priy =1|X =z] = p(z) = 1+ef = 1+ &bl = 1 +€_BT&30)
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Prily =0/ X =z] = 1 —p(x) = = (31)
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An alternative “symmetric” expression for p, 1 — p is

ef/2 eff/2

P = ef/2—|—€—f/2’ 1_]9 - ef/2—|—@—f/2' (32)

In the expression (?7) one recognizes the logistic CDF.
One major application of logistic regression is in classification.
8 Estimating the parameters by Max Likelihood

The log-likelihood I(f) is

(B) = lnPr[ RPN (33)
= Zlnp Vi1 — p(xt))t i (34)
e Bz (1-y")

- Z L (35)
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There is no analytic formula for the maximum of this expression. Therefore,
the Maximum Likelihood parameters ™% will be found numerically, by
gradient ascent.



We first calculate the gradient of the log-likelihood.
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This expression can be written compactly for all j =0: p as

ol - i iNT i

— = [y —ph)] " (40)
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Recall that in gradient ascent, at every step,

B« B+n§é, (41)

with n > 0 the step size. The expression of the gradient in (40) shows that
the change in (, at each step, is a sum of vectors, each of them being a
scaled version of a data point x'. Hence, if the initial value of 3 is zero, the
parameter vector § is at any time a a linear combination of the inputs xt

Next, we note that
ci =y —p(a') = (=)' (1= Prly'|a’, 8]) ; (42)

in other words, |¢;| is the difference between the ideal prediction probability
1 and the model’s probability of the observed y¢. Hence, for the data points
1 for which the model predicts the outputs well, |¢;| is close to 0. This leave
the data points when the model is not accurate, to dominate in the gradient
expression. We can also see that ¢; > 0 when ' = 1, and ¢; < 0 when
y* = 0. In other words, each gradient step moves 3 in the general direction
of the y* = 1 points (also called positive examples) and away from the
y* = 0 points (the negative examples).



