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The task of Prediction is concerned with the relationship between two
random variables, the predictor X ∈ SX , and the response or target
Y ∈ SY . The task is to predict the value of Y that “best” corresponds to a
given X. Therefore, statistically speaking, we are interested in (estimating)
the conditional distribution PY |X .

When the outcome space of Y , SY is a finite discrete set, prediction is called
classification; when SY ⊂ (−∞,∞), it is called regression.

1 Linear regression with a single predictor

Let SX = (−∞,∞). We assume a linear model, i.e.

y = β0 + β1x+ ε, (1)

where β0,1 ∈ R are called model parameters or regression coefficients,
and ε is called noise. The noise ε makes the dependence of Y on X random,
without it it will be deterministic. We assume that

ε ∼ Normal(0, σ2), (2)

and moreover, that for each value pair (x, y) observed, the noise is indepen-
dent of other observations.

We want to estimate the unknown parameters β0, β1, σ
2 by ML, from a data

set D = {(x1, y1), . . . (xn, yn)} sampled i.i.d. from an unknown distribution
PY |X . Hence, we are not interested in the distribution of the x1:n variables,
but only in the probabilistic depence of Y on X. Note that our model for
this distribution, based on (??) and (2) is

PY |X = Normal(β0 + β1X︸ ︷︷ ︸
µ(X)

, σ2). (3)

1



The likelihood function is defined as

L(β0,1, σ
2) = P [y1:n|x1:n, β0,1, σ2] =

n∏
i=1

1

σ
√

2π
e−

(yi−µ(xi))2

σ2 =
1

(σ
√

2π)n
e−

1
2σ2

∑n
i=1(y

i−µ(xi))2 ,

(4)
and the log-likelihood is

l(β0,1, σ
2) = lnP [y1:n|x1:n, β0,1, σ2] = −n lnσ−n ln(

√
2π)− 1

2σ2

n∑
i=1

(yi−β0−β1xi)2.

(5)
This reminds of the ML estimation of a normal distribution, so we proceed
to first estimate the parameters β0, β1 of the mean.

∂l

∂β0
=

n∑
i=1

(yi − β0 − β1xi) (6)

∂l

∂β1
=

n∑
i=1

xi(yi − β0 − β1xi) (7)

By setting the above partial derivatives to 0, we get the linear system

n∑
i=1

yi = nβ0 − β1
n∑
i=1

xi (8)

n∑
i=1

xiyi = nβ0

n∑
i=1

xi − β1
n∑
i=1

(xi)2, (9)

with solution

βML
1 =

n
∑n

i=1 x
iyi − (

∑n
i=1 x

i)(
∑n

i=1 y
i)

n
∑n

i=1(x
i)2 − (

∑n
i=1 x

i)2
(10)

βML
0 =

1

n

n∑
i=1

yi − βML
1

1

n

n∑
i=1

xi = ȳ − βML
1 x̄. (11)

2 Linear regression with multiple predictors

Let X now be a vector variable, X = (X1, . . . Xm) ∈ Rm. We assume Y is
a linear combination of all the m predictors, i.e.

y = β0 + β1x1 + β2x2 . . . βmxm + ε. (12)
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This expression can be written more compactly in vector form, if we aug-
ment the vector X with an additional component X0 ≡ 1, i.e. X ←
(1, X1, . . . Xm) ∈ Rm+1. With this artifice, β0 can be treated similarly
with the other regression coefficients, which are all collected in the vector
β = [β0 β1 . . . βm]T ∈ Rm+1. Now (12) becomes

y = βTx︸︷︷︸
µ(x)

+ε. (13)

Since the distribution of ε is given by (??), as before, the likelihood and log-
likelihood are the same as in (4), respectively (5) with the only difference in
the expression of µ(X).

l(β, σ2) = lnP [y1:n|x1:n, β, σ2] = −n lnσ−n ln(
√

2π)− 1

2σ2

n∑
i=1

(yi−βTxi)2.

(14)
If we ignore the first terms, which do not depend on β, we see that the
parameters β that maximize the (log-)likelihood are the ones that minimize
the sum of squared residuals yi−µ(xi), hence this optimization is called a
least squares problem.

We again take partial derivatives and equate them with 0. Remember that
the partial derivative w.r.t. a vector variable β is a vector called the gradient,
and that this can be written as the vector expression

∂l

∂βj
=

n∑
i=1

(yi − βTxi)xij . (15)

In the above, xi is assumed to be a row vector. We can make this expression
even more compact if we construct the matrix X ∈ Rn×m with the x1:n as
rows, and the column vector y = [y1 . . . yn]T .

∂l

∂β
= XTy −XTXβ. (16)

Setting the gradient to 0, we obtain the linear system XTXβ = XTy. If
n ≥ m, and the matrix XTX is non-singular, the solution is

βML = (XTX)−1XT︸ ︷︷ ︸
X†

y. (17)

The matrix X† is called the pseudoinverse of X. Once βML is obtained,
we can also estimate the residuals

εi = yi − (βML)Txi. (18)
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3 Statistical properties of the βML estimator

The expectation of βML is computed w.r.t. the noise distribution, assuming
that the data is generated by the model (13) (or (3)) with a true parameter
vector β and a true noise variance σ2.

E[βML] = E[X†y] = E[X†(Xβ + ε)] = X†X︸ ︷︷ ︸
Im

β + X† E[ε]︸︷︷︸
0

= β. (19)

In other words, the ML estimate βML is unbiased.

We can also calculate the covariance of βML. Note that βML − β = X†ε.
Hence,

Cov(βML) = E[(βML − β)(βML − β)T ] = E[(X†ε)(X†ε)T ] (20)

= E[X†εεT (X†)T ] = X†E[εεT ](X†)T = X†σ2In(X†)T(21)

= σ2X†(X†)Tσ2(XTX)−1XTX(XTX)−1 (22)

= σ2(XTX)−1. (23)

Above, we use the fact that XTX is a symmetric matrix, and so is its inverse.
The covariance of βML is proportional to the noise covariance.

4 Estimating σ2

A naive way to estimate σ2 is to average the squared residuals (σ2)naive =
1
n

∑n
i=1(y

i − (βML)Txi)2. We can also use the ML method, by taking the
derivative of l(β, σ2) w.r.t. σ2 (this is similar to ML estimation of σ2 in a
normal distribution).

∂l

∂σ2
= −n 1

σ4
− 1

2σ2

n∑
i=1

(yi − (βML)Txi)2 = 0. (24)

If we solve this equation, we obtain

(σ2)ML =
1

n

n∑
i=1

(yi − (βML)Txi)2 (25)

which is identical to the “naive” estimator! However, just like in the case
of the normal distribution, this estimator of σ2 is also biased. By following
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the same procedure as in Chapter 12, we obtain

E[(σ2)ML] =
n−m
n

σ2. (26)

Therefore, unless n� m, the unbiased estimator

ˆsigma
2

=
1

n−m

n∑
i=1

(yi − (βML)Txi)2 =
n

n−m
(σ2)ML (27)

is recommended. (Note that here,m is the number of total parameters esti-
mated, , i.e., the dimension of β with β0 included.)

5 Prediction with the estimated model

Given a new x value, the ML model for PY |X(y|x) is Normal(xβ, (σ2)ML),
where we recall that xβ = β0 + β1x1 + . . . βmxm. This is the predictive
distribution for y given x.

If we want to predict a single number, given that the distribution is Gaussian,
the “best” single number to predict is the mean µ(x) = xβ. [Exercise: in
which ways is µ(x) “best”?] [Exercise: is µ(x) also “best” if we use the
unbiased model N(xβ, σ̂2)?]

6 Checking the residuals

TBW

7 Logistic Regression

When the outputs y are binary variable, i.e. y ∈ {0, 1}, fitting them with
a linear model is not appropriate. Exercise:Why? Logistic regression
proposes that, for each x, the model for P (Y |X) be a Bernoulli distribution,

with p(x)
def
= Pr[Y = 1|X = x] given implicitly by the relation below.

Let β be the vector of parameters as described above (with or without a β0
included). The let f(x) = βTx model the log odds of class 1

f(X) =
P (Y = 1|X)

P (Y = −1|X)
= βTX. (28)
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Then under this linear model, p(x) is

p(x)

1− p(x)
= ef(x) (29)

Pr[Y = 1|X = x] = p(x) =
ef

1 + ef
=

eβ
T x

1 + eβT x
=

1

1 + e−βT x
(30)

Pr[Y = 0|X = x] = 1− p(x) =
e−β

T x

1 + e−βT x
=

1

1 + eβT x
(31)

An alternative “symmetric” expression for p, 1− p is

p =
ef/2

ef/2 + e−f/2
, 1− p =

e−f/2

ef/2 + e−f/2
. (32)

In the expression (??) one recognizes the logistic CDF.

One major application of logistic regression is in classification.

8 Estimating the parameters by Max Likelihood

The log-likelihood l(β) is

l(β) = lnPr[y1:n|x1:n, β] (33)

=

n∑
i=1

ln p(xi)yi(1− p(xi))1−yi (34)

=
n∑
i=1

ln
e−β

T xi(1−yi)

1 + e−βT xi
(35)

=
n∑
i=1

[
(yi − 1)βTxi − ln

1

1 + e−βT xi

]
(36)

There is no analytic formula for the maximum of this expression. Therefore,
the Maximum Likelihood parameters βML will be found numerically, by
gradient ascent.
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We first calculate the gradient of the log-likelihood.

∂l

∂βj
=

n∑
i=1

[
(yi − 1)xij −

−e−βT xi

1 + e−βT xi
xij

]
(37)

=
n∑
i=1

(yi − 1 +
−e−βT xi

1 + e−βT xi︸ ︷︷ ︸
1−p(xi)

xij (38)

=
n∑
i=1

[
(yi − p(xi)

]
xij (39)

This expression can be written compactly for all j = 0 : p as

∂l

∂β
=

n∑
i=1

[
yi − p(xi)

]︸ ︷︷ ︸
ci∈R

xi. (40)

Recall that in gradient ascent, at every step,

β ← β + η
∂l

∂β
, (41)

with η > 0 the step size. The expression of the gradient in (40) shows that
the change in β, at each step, is a sum of vectors, each of them being a
scaled version of a data point xi. Hence, if the initial value of β is zero, the
parameter vector β is at any time a a linear combination of the inputs xi.

Next, we note that

ci = yi − p(xi) = (−1)1−y
i (

1− Pr[yi|xi, β]
)

; (42)

in other words, |ci| is the difference between the ideal prediction probability
1 and the model’s probability of the observed yi. Hence, for the data points
i for which the model predicts the outputs well, |ci| is close to 0. This leave
the data points when the model is not accurate, to dominate in the gradient
expression. We can also see that ci > 0 when yi = 1, and ci < 0 when
yi = 0. In other words, each gradient step moves β in the general direction
of the yi = 1 points (also called positive examples) and away from the
yi = 0 points (the negative examples).
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