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Abstract

We introduce a new approach to characterizing the unobserved portion of a distribution, which
provides sublinear-sample additive estimators for a class of properties that includes entropy and
distribution support size. Together with the lower bounds proven in the companion paper [29],
this settles the longstanding question of the sample complexities of these estimation problems (up
to constant factors). Our algorithm estimates these properties up to an arbitrarily small additive
constant, using O(n/ log n) samples; [29] shows that no algorithm on o(n/ log n) samples can
achieve this (where n is a bound on the support size, or in the case of estimating the support
size, 1/n is a lower bound the probability of any element of the domain). Previously, no explicit
sublinear-sample algorithms for either of these problems were known.

Additionally, our algorithm runs in time linear in the number of samples used.
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Think not, because no man sees,
Such things will remain unseen.

–Henry Wadsworth Longellow, from “The Builders”.

1 Introduction

Given samples from an unknown discrete distribution, what can we infer about the distribution?
The empirical distribution of the samples roughly captures the portion of the distribution which we
have observed, but what can we say about the unobserved portion of the distribution? Answers to
this question are, at least implicitly, central to many estimation problems fundamental to statistics.
Despite much research from both the statistics and computer science communities (originating, co-
incidentally, in independent work of Fisher [14], and Turing [16]—arguably the founding fathers of
modern statistics and computer science), this question is still poorly understood. For the two im-
portant problems of estimating the support size, and estimating the entropy of a distribution, basic
questions, such as the sample complexity of these tasks, have not been resolved. And this is not
solely a theoretical question: in contrast to many tasks for which existing algorithms or heuristics
perform well in practice (in some cases despite poor worst-case performance), for these two problems,
there seems to be no approach that is fully embraced by practitioners [10]. Despite this, much of the
recent theoretical work on these problems analyzes properties of existing heuristics. A new, practical
algorithm for these tasks may, potentially, have widespread immediate application in the many fields
for which these problems arise, including Biology, Ecology, Genetics, Linguistics, Neuroscience, and
Physics (see the discussion and bibliographies in [9, 26]).

We introduce a new approach to characterizing the unobserved portion of a distribution, which
provides sublinear-sample additive estimators for a class of properties that includes entropy and
distribution support size. Together with the lower bounds proven in the companion paper [29], this
settles the longstanding open question of the sample complexities of these estimation problems (up
to constant factors). Our algorithm estimates these properties up to an arbitrarily small additive
constant, using O(n/ log n) samples. We show in [29] that no algorithm on o(n/ log n) samples can
achieve this. Here, n is a bound on the support size.1 Previously, no explicit sublinear-sample
algorithms for either of these problems were known.2 Finally, we note that our algorithm runs in
time linear in the number of samples used.

The algorithm we exhibit estimates any statistical property which is independent of the labeling
of the elements (“symmetric”) and sufficiently smooth. Rather than directly trying to estimate a
specific property of the distribution, we instead take the canonical approach and return to the original
question “what can we infer about the true distribution” given a sublinear number of samples? Our
algorithm returns a distribution that is, with high probability, “close” in some sense to the true
distribution. Specifically, we return a distribution D with the property that if we had taken our
samples from the hypothetical D instead of from the unknown true distribution, then with high
probability the number of support elements occurring once, twice, etc. in this sample will closely
match the corresponding parameters of the actual sample. How does one find such a distribution?
Via linear programming, the computer scientist’s battle-axe—bringing this powerful tool to bear on
these problems opens up results that withstood previous approaches to constructing such estimators.
Given the distribution D returned by our algorithm, to obtain an estimate for some property, we may
simply evaluate the property on D. Unsurprisingly, this yields a very good estimate; surprisingly,
one can actually prove this.

1For the problem of estimating the distribution support size, it is typically assumed that all elements in the support
occur with probability at least 1/n, since without such a lower bound it is impossible to estimate support size.

2See [26] for a nonconstructive proof of the existence of a o(n)-sample entropy estimator. Prior to [29], the previous

lower-bounds were n/2Θ(
√

logn), from [30].
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1.1 Historical Background

The problem of estimating an unknown discrete distribution from “too few” samples has a very
rich history of study in both statistics and computer science, with early contributions from both
R.A Fisher, and Alan Turing. In the early 1940’s, R. A. Fisher was approached by a naturalist,
Corbet, who had just returned from two years of collecting butterflies in the Malay peninsula.
Corbet presented Fisher with data on his butterfly collections—specifically, he indicated the number
of species for which he had only seen a single specimen (118 species), the number of species for
which he had two specimens (74 species), three specimens (44 species), and so on. Corbet hoped
that from this data, the great statistician Fisher would be able to deduce some properties of the
true distribution of butterflies in Malay, and in particular, he wanted an estimate of the number of
new species he might find if he were to return to the Malay jungle for another 2 years. Using basic
properties of the Poisson distribution, Fisher provided a partial answer to these questions in [14].

At roughly the same time, at the height of WWII, Alan Turing and I.J. Good were working
on a similar problem in the rather different context of the pivotal British war-effort to analyze the
statistics of the German Enigma Machine ciphers. After the war, the results of their work, the Good-
Turing frequency estimation scheme were published [16]. In addition to many practical applications
of the Good-Turing estimates, there has been considerable recent work from the computer science
community analyzing variants of these estimation schemes [22, 24, 25, 31, 32]. While the high-
level goals of these estimators are related to our own, the analysis typically fixes a distribution and
considers the behavior as the number of samples taken approaches infinity, and thus is somewhat
orthogonal to the questions considered here.

The specific problem of estimating the support size of an unknown distribution (also referred to
as the problem of estimating the number of species in a population) has a very long history of study
and arises in many contexts (see [9] for several hundred references). Because arbitrarily many species
can lie in an arbitrarily small amount of probability mass, analysis of the sample complexity of this
problem is generally parameterized in terms of n, where elements of the distribution are restricted to
have probability mass at least 1/n. Tight multiplicative bounds of Ω(n/α2) for approximating this
problem to a multiplicative factor of α are given in [4, 12] though they are somewhat unsatisfying
as the worst-case instance is distinguishing a distribution with support size one from a distribution
of support size α2. The first strong lower bounds for additively approximating the support size were
given in [28], showing that for any constant δ > 0, any estimator that obtains additive error at
most (1/2 − δ)n with probability at least 2/3 requires at least n1−o(1) samples. To the best of our
knowledge, there were no improvements upon the trivial Ω(n) upper bound for this problem.

For the problem of entropy estimation, there has been recent work from both the computer
science and statistics communities. Batu et al. [5, 6, 13], Guha et al. [17], and Valiant [30] considered
the problem of multiplicatively estimating the entropy; in all these works, the estimation algorithm
has the following basic form: given a set of samples, discard the species that occur infrequently
and return the entropy of the empirical distribution of the frequently-occurring elements, adjusted
by some function of the amount of missing probability mass. In particular, no attempt is made
to understand the portion of the true distribution consisting of infrequently occurring elements.
In [26, 27], Paninski proved the existence of a sublinear sample estimator for additively approximating
the entropy to within a constant; the proof is via a direct application of the Stone-Weierstrass theorem
to the set of Poisson functions. Prior to [29], the best lower bound was n/2Θ(

√
logn), given in [30].

Additionally, there has been much work on estimating the support size (and the general problem
of estimating frequency moments) and estimating the entropy in the setting of streaming, in which
one has access to very little memory and can perform only a single pass over the data [2, 3, 8, 11,
18, 19, 20, 33].

Teleologically, perhaps the work most similar to our own is Orlitsky et al.’s investigation into what
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they term “pattern maximum likelihood” [1, 23]. Their work is prompted by the following natural
question: given a set of samples, what distribution maximizes the likelihood of seeing the observed
species frequencies, that is, the number of species observed once, twice, etc? (What Orlitsky et al.
term the pattern of a sample, we call the fingerprint, as in Definition 3.) While it seems unclear how to
prove that such a likelihood maximizing distribution would, necessarily, have similar property values
to the true distribution, at least intuitively one might hope that this is true. From a computational
standpoint, while Orlitsky et al. show that such likelihood maximizing distributions can be found
in some specific settings, the problem of finding or approximating such distributions in the general
setting seems daunting.

1.2 Definitions and Examples

We state the key definitions that will be used throughout, and provide some illustrative examples.

Definition 1. A distribution on [n] = {1, . . . , n} is a function p : [n]→ [0, 1] satisfying
∑

i p(i) = 1.
Let Dn denote the set of distributions over domain [n].

Throughout this paper, we will use n to denote the size of the domain of our distribution, and k
to denote the number of samples from it that we have access to.

We now define the notion of a symmetric property

Definition 2. A property of a distribution is a function π : Dn → R. Additionally, a property is
symmetric if, for all distributions D, and all permutations σ, π(D) = π(D ◦ σ).

Definition 3. Given a sequence of samples X = (x1, . . . , xk), the associated fingerprint, denoted
FX , is the “histogram of the histogram” of the samples. Formally, FX is the vector whose ith

component, FX(i) is the number of elements in the domain that occur exactly i ≥ 1 times in sample
X. In cases where the sample X is unambiguous, we omit the subscript.

Throughout, we will be dealing exclusively with symmetric properties. For such properties, the
fingerprint of a sample contains all the useful information about the sample: for any estimator that
uses the actual samples, there is an estimator of equal performance that takes as input only the
fingerprint of the samples (see [5, 7], for an easy proof). Note that in some of the literature the
fingerprint is alternately termed the pattern, histogram, or summary statistics of the sample.

Analogous to the fingerprint of a set of samples, is what we call the histogram of the distribu-
tion, which captures the number of domain elements that occur with each probability value. Any
symmetric property is clearly a function of the histogram of the distribution.

Definition 4. The histogram of a distribution p is a mapping h : (0, 1] → Z, where h(x) = |{i :
p(i) = x}|. Additionally, we allow generalized histograms, which do not necessarily take integral
values.

Since h(x) denotes the number of elements that have probability x, it follows that
∑

x:h(x)̸=0 h(x)
equals the support size of the distribution. The probability mass at probability x is x · h(x), thus∑

x:h(x) ̸=0 x · h(x) = 1, for any histogram that corresponds to a distribution.
We now define what it means for two distributions to be “close”; because the values of symmetric

properties depend only upon the histograms of the distributions, we must be slightly careful in
defining this distance metric so as to ensure that it will be well-behaved with respect to the properties
we are considering. In particular, “close” distributions will have similar values of entropy and support
size.
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Definition 5. For two histograms (or generalized histograms) h1, h2, we define the relative earth-
mover distance between them, R(h1, h2), as the minimum over all schemes of moving the probability
mass of the first histogram to yield the second histogram, of the cost of moving that mass, where the
per-unit cost of moving mass from probability x to y is | log(x/y)|.

Note that the statistical distance is upper bounded by relative earthmover distance.
The structure of the distribution of fingerprints intimately involves the Poisson distribution.

Throughout, we use Poi(λ) to denote the Poisson distribution with expectation λ, and for a non-

negative integer j, poi(λ, j) := λje−λ

j! , denotes the probability that a random variable distributed
according to Poi(λ) takes value j. Additionally, for integers i ≥ 0, we refer to the function poi(x, i),
viewed as a function of the variable x, as the jth Poisson function.

We now provide two clarifying examples of the above definitions:

Example 6. Consider a sequence of fish species, found as samples from a certain lake X = (a, b, a, c, c,
d, a, e, b), where each letter denotes a distinct fish species. We have FX = (2, 2, 1), indicating that
two species occurred exactly once (species d and e), two species occurred exactly twice (species b and
c), and one species occurred exactly three times (species a).

Suppose that the true distribution of fish is the following:

Pr(a) = 1/2, P r(b) = 1/4, P r(c) = Pr(d) = Pr(e) = 1/12.

The associated histogram of this distribution is h : R+ → Z defined by h(1/12) = 3, h(1/4) = 1,
h(1/2) = 1, and for all x ̸∈ {1/12, 1/4, 1/2}, h(x) = 0. If we now consider a second distribution
over {j, k, ℓ} defined by the probabilities Pr(j) = 1/2, P r(k) = 1/4, P r(ℓ) = 1/4, and let h′ be

its associated histogram, then the relative earthmover distance R(h, h′) = 1
4 | log

1/4
1/12 |, since we must

take all the mass that lies at probability 1/12 and move it to probability 1/4 in order to turn the first
distribution into one that yields a histogram identical to h′.

Example 7. Consider the uniform distribution on [n], which has histogram h such that h( 1n) = n,
and h(x) = 0 for x ̸= 1

n . Let k ← Poi(5n) be a Poisson-distributed random number, and let X be
the result of drawing k independent samples from the distribution. The number of occurrences of
each element of [n] will be independent, distributed according to Poi(5). Note that FX(i) and FX(j)
are not independent (since, for example, if FX(i) = n then it must be the case that FX(j) = 0, for
i ̸= j). A fingerprint of a typical trial will look roughly like F(i) ≈ n · poi(5, i).

Throughout, we will restrict our attention to properties that satisfy a weak notion of continuity,
defined via the relative earthmover distance.

Definition 8. A symmetric distribution property π is (ϵ, δ)-continuous if for all distributions D1, D2

with respective histograms h1, h2 satisfying R(h1, h2) ≤ δ it follows that |π(D1)− π(D2)| ≤ ϵ.

We note that both entropy and support size are easily seen to be continuous with respect to the
relative earthmover distance.

Fact 9. For a distribution p ∈ Dm, and δ > 0

• The entropy, H(p) := −
∑

i p(i) · log p(i) is (δ, δ)-continuous, with respect to the relative earth-
mover distance.

• The support size S(p) := |{i : p(i) > 0}| is (nδ, δ)-continuous, with respect to the relative
earthmover distance, over the set of distributions which have no probabilities in the interval
(0, 1

n).
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2 Results and Outline

We view the main contribution of this work to be the introduction of a novel approach to creating
estimators for symmetric distribution properties. We hope (and believe) that variants of our proposed
estimator will prove useful in practice.

Our main technical result is a canonical estimator for relative-earthmover continuous properties.
We stress that our estimator is truly canonical in that it is agnostic to the choice of property that
one is trying to estimate. In particular, the estimator works by first constructing a distribution
completely independently of the property in question, and then simply returning the evaluation of
the property on this distribution. Even if the property in question is computationally intractable to
evaluate, the first stage of our estimator still runs in time linear in the number of samples, returning
a distribution capturing the value of the property.

Theorem 1. For sufficiently large n, and any constant c > 1, given c n
logn independent samples

from D ∈ Dn, with probability at least 1− e−n.03
over the random samples, our algorithm returns a

distribution D′, representable as an O(c n
logn)-length vector, such that the relative-earthmover distance

between D and D′ satisfies

R(D,D′) ≤ O

(
log c√

c

)
.

Furthermore, our algorithm runs in time O(c n
logn).

We suspect that the log c term is an artifact of our analysis, rather than a property of the
algorithm. For entropy and support size, the following corollaries follow immediately from Theorem 1
together with Fact 9:

Corollary 10. There exists a function f : R+ → R+, with f(x) = O(x2+ϵ) for all ϵ > 0, such that
for sufficiently large n and any constant α > 0, given f(α) n

logn independent samples from D ∈ Dn,

our estimator runs in time f(α)O( n
logn) and with probability at least 1 − e−n.03

returns a value ϕ
such that

|ϕ−H(D)| < 1

α
,

where H(D) is the entropy of distribution D.

Corollary 11. There exists a function f : R+ → R+, with f(x) = O(x2+ϵ) for all ϵ > 0, such that
for sufficiently large n and any constant α > 0, given f(α) n

logn independent samples from D ∈ Dn,
with mini∈[n]:p(i)>0 p(i) ≥ 1/n, our estimator runs in time f(α)O( n

logn) and with probability at least

1− e−n.03
returns a value ϕ such that

|ϕ− S(D)| < n

α
,

where S(D) := |{i : pi > 0}| is the support size of distribution D.

2.1 Poisson Samples

Before describing the linear program and motivating intuitions behind the proof of Theorem 1, it
will be helpful to have an intuitive understanding of the distribution of the fingerprint corresponding
to a set of k samples from histogram h. In such a set of samples, the number of occurrences of
any two elements are not independent; however, as indicated in Example 7, if instead of taking k
samples, we chose k′ ← Poi(k) according to a Poisson distribution with expectation k and then take
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k′ samples, the number of occurrences of each element i ∈ [n] will be independent random variables
with distributions Poi (k · p(i)) . This independence is quite helpful when arguing about the structure
of the distribution of such fingerprints.

Since k′ is closely concentrated around k, one might hope that in terms of most properties of
interest, there is little difference between considering k-sample fingerprints and Poi(k)-sample finger-
prints. The following easy proposition (whose proof is included in the Appendix, see Proposition 21)
formalizes this intuition, and allows us to prove statements about k-sample fingerprints by considering
the structurally more simple Poi(k)-sample fingerprints.

Proposition. Given k > 30, and any set of fingerprints A, let A be the set of fingerprints that can
be obtained by adding or removing at most k.6 samples from some fingerprint in set A. Let F denote
a random k-sample fingerprint, and let F ′ denote a fingerprint obtained from choosing k′ ← Poi(k),
random samples. Then

Pr[F ∈ A] ≤ Pr[F ′ ∈ A] + e−k.1/2.

We now consider the distribution of the ith entry of a Poi(k)-sample fingerprint, F(i). Since the
number of occurrences of different domain elements are independent, F(i) is distributed as the sum
of n independent 0, 1 random variables Y1, . . . , Yn, where Pr[Yj = 1] = poi(kpj , i) is the probability
that the jth domain element occurs exactly i times in sample X. Thus

E[F(i)] =
∑
j∈[n]

poi(k · p(j), i) =
∑

x:h(x)̸=0

h(x) · poi(kx, i),

and from independence, we have good concentration about this expectation.

2.2 Outline

We informally describe the linear program, solutions to which can be regarded as histograms. Given
a fingerprint F , the linear program is constructed to recover a histogram h′ with the property that
if we were given a set of samples X from h′, for each i, E[FX(i)] ≈ F(i).

The proof of correctness of our linear program has two parts: in the first part we show that with
high probability, if the linear program is created from a set of at least Ω( n

logn) samples then it has
a feasible point that is “close” to the true distribution. In the second, more involved part of the
proof, we argue that any pair of solutions are “close”; the core of this argument is an earthmoving
construction in which we leverage properties of Chebyshev polynomials.

Given these two parts, by the triangle inequality, with high probability any solution must be
“close” to the true distribution; thus, by the relative-earthmover continuity of the properties in
question, the recovered distribution will have a similar property value to that of the true unknown
distribution.

In the remainder of this extended abstract, we summarize the intuition and general structure of
the components of the proof. For clarity, we include complete proofs in the context of a full write-up
in the appendix.

3 The Linear Program

Intuitively, given the fingerprint F of a set of samples from an unknown distribution with histogram
h, we wish to reconstruct a distribution h′ that is similar to h. For the frequently-occurring elements,
say elements whose probabilities are at least k−1+a, for some small constant a ∈ (0, 1), we can simply
let h′ agree with the empirical distribution, namely setting h′(j/k) = F(j). For the portion of h′
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below probability k−1+a, we would like the fingerprint expectations for samples from h′ to roughly
agree with the observed fingerprints F(j) in this regime (roughly, for j ≤ k · k−1+a = ka).

To see why this makes sense, consider a high-probability element i (with p(i) > k−1+a), and
note that we expect to see it roughly ka ≫ log k times in our sample, and thus we can expect good
concentration around this expectation. In contrast, for the portion of h below probability k−1+a, we
instead rely on the concentration of each fingerprint entry, F(j), about its expectation.

To avoid the issues which may arise near the threshold between the “low probability” and “high
probability” regimes , we choose the location of this threshold so as to have relatively little probability
mass in the nearby region.

Given a k-sample fingerprint F , choose c ∈ [1, 2] such that the total “mass” in F between
frequencies cka and cka + 4k.6a is at most 4k−.4a. Namely,

⌈cka+4k.6a⌉∑
j=⌈cka⌉

jF(j) ≤ 4k1−.4a.

Note that such a choice of c can be found, for otherwise the total number of samples accounted for
by fingerprint entries in the interval [ka, 2ka] would exceed k.

We now formally define our linear program. Let a = 1/50.

Definition 12. Given a k-sample fingerprint F , bounds A := ck−1+a, B := 4k−1+.6a, and real
number γ := k−3/2, the linear program consists of variables vx ≥ 0 for all x ≤ A + B/2 in the set
X := {γ, 22γ, 32γ, 42γ, . . . , A+B/2}, subject to the following three conditions:

1.
∑

x∈X:x≥A xvx ≤ 16k−. 4a

2.
∑

x∈X xvx +
∑

j≥k(A+B)
j
kF(j) = 1

3. For all integers i ≤ k(A+B/4),∑
x∈X

vxpoi(kx, i) ∈
[
F(i)− 4k.6+a,F(i) + 4k.6+a

]
.

We consider a solution of this linear program to be the low-probability portion of a generalized
histogram. In words, the first condition guarantees that there is relatively little probability mass
near the “threshhold” probability A ≈ k−1+a. The second condition guarantees that if we adjoin
the empirical distribution from F above the threshhold probability to the linear program solution,
the total probability mass will be 1. The third condition guarantees that if we let Y be a set of
Poi(k) samples from the distribution corresponding to this “histogram”, for each positive integer
i ≤ k(A+B/4) ≈ ka, E[FY (i)] ≈ F(i), up to a slight margin of error.

We remark that we carefully chose the set X of probabilities for which we solve. If we instead
take the set X to be a very fine mesh—for example { 1

k2
, 2
k2
, . . . , 1}—several of the proofs would

simplify, but then the computation time to solve the resulting linear program would be O(k7). We
instead opt to take a coarse quadratically-spaced mesh so as to minimize the number of variables for
which we solve. Perhaps coincidentally, while our approach seems to require at least k1/4 variables
in the LP, we use |X| = Θ(k

1
4
+a) ≤ k1/3.5 variables, and thus the LP can be solved in time linear in

k, the number of samples[21].
Given a solution to the linear program v, the definition below extends v to yield the histogram

hv, which we refer to as the histogram associated to the solution v. Roughly, to obtain hv, we start
with v and first adjoin the empirical distribution for probabilities above A + B, then round each
value down to the nearest integer. Finally, to compensate for the decrease in mass resulting from
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the rounding, we scale the support by a factor of 1 + ϵ (while keeping the values of the histogram
fixed) thereby increasing the total mass in the histogram by a factor of (1 + ϵ), where ϵ is chosen so
as to make the total probability mass equal 1 after the rounding. We formalize this process below:

Definition 13. Let X = {γ, 22γ, 32γ, 42γ, . . . , A + B/2} be the set of probabilities for which the
linear program solves. Given a k-fingerprint F and a solution v to the associated linear program, the
corresponding histogram hv is derived from v according to the following process in which generalized
histogram h′ is constructed, then rounded to create hv.

1. set h′(∗) = 0 and hv(∗) = 0.

2. for all x ∈ X, let h′(x) := vx.

3. for all integers j ≥ k(A+B), let h′(j/k) := F(j).

4. for all probabilities x : h′(x) ̸= 0, set hv((1 + ϵ)x) := ⌊h′(x)⌋, where ϵ :=
∑

x∈X x(vx−⌊vx⌋)
1−

∑
x∈X x(vx−⌊vx⌋) .

Note that the recovered histogram hv is, in fact a histogram, since hv : (0, 1]→ Z, and, because
of the last step,

∑
y:hv(y) ̸=0 yh

v(y) = 1.

Algorithm:. The Estimator
Given a set of k samples having fingerprint F:

• Construct the linear program of Definition 12 corresponding to F .

• Find a solution v to the the linear program. If no solution exists, output

FAIL.

• Output histogram hv associated to solution v, as defined in Definition 13.

The correctness of our estimator is captured in the following theorem, which implies Theorem 1:

Theorem 2. For a constant δ ∈ (0, 1], consider a sample consisting of k independent samples from
a distribution h of support size at most δk log k. With probability at least 1 − e−k.04 , the linear
program of Definition 12 has a solution and furthermore, for any solution to the linear program, v,
the associated histogram hv constructed from v in Definition 13 satisfies

R(h, hv) = O(
√
δ ·max{1, | log δ|}).

The proof of Theorem 2 has two parts. In the first part, we show that, with the claimed prob-
ability, the linear program has a feasible point v, whose associated histogram hv is close in relative
earthmover distance to the true distribution, h. In the second part, we argue that for any two so-
lutions v, w, their associated histograms are close. By the triangle inequality, these two parts prove
the theorem.

We construct the feasible point v′ in two stages, the first discretizes the true histogram h; the
second makes small adjustments based on F so as to satisfy the second condition of the linear program
– that the “total weight” including the probability mass in the empirical distribution derived from
the fingerprint above probability A+B is 1. We will then show that with high probability, the first
and third conditions of the linear program are also satisfied by v′.

The discretization (in Step 1 below) proceeds by linear interpolation. That is, given probability
mass at probability y, we find consecutive elements of X, that sandwich y, that is, xi, xi+1 such
that xi ≤ y ≤ xi+1, and distribute the histogram entry at y linearly between vxi and vxi+1 . We
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note that such interpolation preserves both total probability mass, and the sum of the entries in
the histogram. As mentioned above, if we were willing to sacrifice running time, a simple nearest-
neighbor discretization to a much more finely spaced set X would suffice.

For a solution v to the linear program, let v(i) denote vxi . We construct v′ as follows:

1. (a) Initialize v′(∗) = 0

(b) For each y < A + B/2 such that h(y) > 0, let i be an index for which y ∈ [xi, xi+1], or
i = 0 if y < x1

(c) Modify v′ by increasing v′(i)← v′(i)+h(y) xi+1−y
xi+1−xi

, and v′(i+1)← v′(i+1)+h(y) y−xi

xi+1−xi

2. (a) Compute how much the second condition of the linear program is violated: let w =

(
∑

i xiv
′(i)) +

(∑
i≥k(A+B)

i
kF(i)

)
− 1

(b) If w < 0, increase v′A+B/2 ← v′A+B/2 +
|w|

A+B/2

(c) Otherwise if w > 0, decrease v′ arbitrarily (while still keeping it nonnegative) so as to
satisfy the second condition of the linear program.

At least intuitively, we expect each fingerprint entry to be close to its expectation, and the high-
probability portion of the empirical distribution to be similar to the high-probability portion of h,
and thus v′ will be in the feasible region with high probability. In addition, since v′ was constructed
from h, we expect its associated histogram hv

′
to be close in relative earthmover distance to h. This

intuition is formalized in the following proposition (see Proposition 23 in the appendix for a proof):

Proposition. For sufficiently large k, given a k-sample fingerprint F from a distribution of support
size at most k1.1, then with probability at least 1 − e−k.04 the associated linear program given in
Definition 12 has a feasible point v′ whose associated histogram hv

′
is at most 17k−. 4a far in relative-

earthmover distance from h, the actual histogram of the distribution.

3.1 All Solutions are Good Solutions

We now argue that with high probability over the set of samples, for any pair of solutions v, w,
to a linear program corresponding to a set of k samples from a distribution of support at most
n = δk log k, their associated histograms satisfy R(hv, hw) ≤ O(

√
δ ·max{1, | log δ|}). Theorem 2 will

then follow, via the triangle inequality, from the proposition above. To prove that the histograms
yielded from a pair of solutions are close, we construct an earthmoving scheme that leverages the
fact that the fingerprint expectations of hw and hv are close.

Before describing the intuition behind our construction, we start by defining a very natural class
of earthmoving schemes.

Definition 14. For a given k, a β-bump earthmoving scheme is defined by a sequence of positive real
numbers {ci}, the bump centers, and a sequence of functions {fi} : (0, 1]→ R such that

∑∞
i=0 fi(x) =

1 for each x, and each function fi may be expressed as a linear combination of Poisson functions,
fi(x) =

∑∞
j=0 aijpoi(kx, j), such that

∑∞
j=0 |aij | ≤ β.

Given a generalized histogram h, the scheme works as follows: for each x such that h(x) ̸= 0,
and each integer i > 0, move xh(x) · fi(x) probability mass from x to ci. We denote the histogram
resulting from this scheme by (c, f)(h).

Definition 15. For given n, k, a bump earthmoving scheme (c, f) is ϵ-good if for any generalized
histogram h, the relative earthmover distance between h and (c, f)(h) is at most ϵ.
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Perhaps the most natural bump earthmoving scheme—which we will end up using a refinement
of—is where fi(x) = poi(kx, i) and ci = i

k , where for i = 0, ci is chosen, say, as 1
2k to avoid a

logarithm of 0 when evaluating relative earthmover distance. This is a valid earthmoving scheme
since

∑∞
i=0 fi(x) = 1 for any x.

The motivation for this construction is the fact that, for any i, the amount of probability mass
that ends up at ci in (c, f)(h) is exactly ci times the expectation of the ith fingerprint in a Poi(k)-
sample from h. Thus if we apply this earthmover scheme to two histograms derived from solutions
to the linear program, their fingerprint expectations will closely match, and we would be left with a
pair of histograms h1, h2 such that R(h1, h2) is small.

The problem with this “Poisson bump” earthmoving scheme is that it has bad relative earthmover
distance, particularly towards the origin. This is due to the fact that most of the mass that starts
at a probability below 1

k will end up in the zeroth bump, no matter if it has probability nearly 1
k , or

the rather lower 1
n . The situation gets significantly better for higher Poisson functions: most of the

mass of Poi(i) lies within relative distance O( 1√
i
) of i. We will therefore construct a scheme that

uses Poisson functions poi(kx, i) for i ≥ log k, but takes great care to construct “narrower” bumps
below this region.

The main tool of this construction is the Chebyshev polynomials. For each integer i ≥ 0, the ith
Chebyshev polynomial, denoted Ti(x), is the polynomial of degree i such that Ti(cos(y)) = cos(i · y).
Thus, up to a change of variables, any linear combination of cosine functions up to frequency s may
be reexpressed as the same linear combination of the first s Chebyshev polynomials. Given this,
constructing a frugal earth-moving scheme is an exercise in trigonometric constructions.

Lemma 16. For n > k, letting δ be such that n = δk log k, there exists an O(
√
δ ·max{1, | log δ|})-

good k0.3-bump earthmoving scheme

In fact, we will construct a single scheme for all δ.

Definition 17. The Chebyshev earthmoving scheme is defined in terms of k as follows. Let s =
1
5 log k. For i ≥ s, let fi(x) = poi(kx, i) and ci =

i
k .

Define g(y) =
∑s−1

j=−s cos(jy). Define g′(y) = g(y) + g(y − π
s ) and, for i ∈ {0, . . . , s − 1} define

g′′i (y) = g′(y− iπ
s )+g′(y+ (i+1)π

s ). Let ti(x) be the linear combination of Chebyshev polynomials so that

ti(cos(y)) = g′′i (y). We thus define the final s bumps to be fi(x) =
1
4s ti(1 −

xk
2s )

∑s−1
j=0 poi(xk, j), for

i ∈ {0, . . . , s−1}. That is, fi(x) is related to g′′i (y) by the coordinate transformation x = 2s
k (1−cos(y)),

and scaling by 1
4s

∑s−1
j=0 poi(xk, j). For these bumps, define ci =

2s
k (1− cos( (i+1)π

s )).

4 A Final Remark

The vast majority of statistical estimators, including many of those proposed for the problem of
estimating the entropy of a distribution, can be expressed as the computation of a dot product with
the fingerprint of the samples, F . In particular, these estimators are linear, in that they calculate a
vector of coefficients a1, . . . , ak, and then return the estimate ϕ :=

∑
i aiF(i).

From this vantage point, our estimator makes the leap from harnessing the power of linear algebra,
to harnessing the power of linear programming. In addition to the more obvious directions for future
investigation, an intriguing question is whether this additional power is necessary; curiously, the
nonconstructive proof of Paninski [27] shows the existence of a sublinear-sample linear estimator.
Can a linear estimator achieve sample complexity O( n

logn)?
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A Defining the Linear Program

Intuitively, given the fingerprint F of a set of samples from an unknown distribution with histogram
h, we wish to reconstruct a distribution h′ that is similar to h. For the frequently-occurring elements,
say elements whose probabilities are at least k−1+a, for some small constant a ∈ (0, 1), we can simply
let h′ agree with the empirical distribution, namely setting h′(j/k) = F(j). For the portion of h′

below probability k−1+a, we would like the fingerprint expectations for samples from h′ to roughly
agree with the observed fingerprints F(j) in this regime (roughly, for j ≤ k · k−1+a = ka).

To see why this makes sense, consider a high-probability element i (with p(i) > k−1+a), and
note that we expect to see it roughly ka ≫ log k times in our sample, and thus we can expect good
concentration around this expectation. In contrast, for the portion of h below probability k−1+a, we
instead rely on the concentration of each fingerprint entry, F(j), about its expectation.

To avoid the issues which may arise near the threshold between the “low probability” and “high
probability” regimes , we choose the location of this threshold so as to have relatively little probability
mass in the nearby region.

Given a k-sample fingerprint F , choose c ∈ [1, 2] such that the total “mass” in F between
frequencies cka and cka + 4k.6a is at most 4k−.4a. Namely,

⌈cka+4k.6a⌉∑
j=⌈cka⌉

jF(j) ≤ 4k1−.4a.

Note that such a choice of c can be found, for otherwise the total number of samples accounted for
by fingerprint entries in the interval [ka, 2ka] would exceed k.

We now formally define our linear program. Let a = 1/50.

Definition 18. Given a k-sample fingerprint F , bounds A := ck−1+a, B := 4k−1+.6a, and real
number γ := k−3/2, the linear program consists of variables vx ≥ 0 for all x ≤ A + B/2 in the set
X := {γ, 22γ, 32γ, 42γ, . . . , A+B/2}, subject to the following three conditions:

1.
∑

x∈X:x≥A xvx ≤ 16k−. 4a

2.
∑

x∈X xvx +
∑

j≥k(A+B)
j
kF(j) = 1

3. For all integers i ≤ k(A+B/4),∑
x∈X

vxpoi(kx, i) ∈
[
F(i)− 4k.6+a,F(i) + 4k.6+a

]
.

We consider a solution of this linear program to be the low-probability portion of a generalized
histogram. In words, the first condition guarantees that there is relatively little probability mass
near the “threshhold” probability A ≈ k−1+a. The second condition guarantees that if we adjoin
the empirical distribution from F above the threshhold probability to the linear program solution,
the total probability mass will be 1. The third condition guarantees that if we let Y be a set of
Poi(k) samples from the distribution corresponding to this “histogram”, for each positive integer
i ≤ k(A+B/4) ≈ ka, E[FY (i)] ≈ F(i), up to a slight margin of error.

We remark that we carefully chose the set X of probabilities for which we solve. If we instead take
the set X to be a very fine mesh—for example { 1

k2
, 2
k2
, . . . , 1}—several of the proofs would simplify,

but then the computation time to solve the resulting linear program would be O(k7). We instead opt
to take a coarse quadratically-spaced mesh so as to minimize the number of variables for which we
solve. Perhaps coincidentally, while our approach seems to require at least k1/4 variables in the LP,
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we are able to show that fewer than k1/3.5 variables suffice, and thus the LP can be solved in time
linear in k, the number of samples[21].

Given a solution to the linear program v, the definition below extends v to yield the histogram
hv, which we refer to as the histogram associated to the solution v. Roughly, to obtain hv, we start
with v and first adjoin the empirical distribution for probabilities above A + B, then round each
value down to the nearest integer. Finally, to compensate for the decrease in mass resulting from
the rounding, we scale the support by a factor of 1 + ϵ (while keeping the values of the histogram
fixed) thereby increasing the total mass in the histogram by a factor of (1 + ϵ), where ϵ is chosen so
as to make the total probability mass equal 1 after the rounding. We formalize this process below:

Definition 19. Let X = {γ, 22γ, 32γ, 42γ, . . . , A + B/2} be the set of probabilities for which the
linear program solves. Given a k-fingerprint F and a solution v to the associated linear program, the
corresponding histogram hv is derived from v according to the following process in which generalized
histogram h′ is constructed, then rounded to create hv.

1. set h′(∗) = 0 and hv(∗) = 0.

2. for all x ∈ X, let h′(x) := vx.

3. for all integers j ≥ k(A+B), let h′(j/k) := F(j).

4. for all probabilities x : h′(x) ̸= 0, set hv((1 + ϵ)x) := ⌊h′(x)⌋, where ϵ :=
∑

x∈X x(vx−⌊vx⌋)
1−

∑
x∈X x(vx−⌊vx⌋) .

Note that the recovered histogram hv is, in fact a histogram, since hv : (0, 1]→ Z, and, because
of the last step,

∑
y:hv(y) ̸=0 yh

v(y) = 1.
The following trivial proposition guarantees that the final rounding and scaling does not alter

the histogram by much in the relative earthmover metric.

Proposition 20. Given a histogram hv associated to a solution v to the linear program, let h′,
as in Definition 19 denote the generalized histogram obtained prior to rounding, ie h′(x) = vx for
x ≤ A+B, and h′(j/k) = F(j) for integers j ≥ k(A+B). Then

R(hv, h′) ≤ k−1/2.

Proof. Consider the earthmoving scheme for obtaining hv from h′, in which the probability mass
x⌊hv(x)⌋ at probability x is moved to probability (1 + ϵ)x, and then the tiny bit of remaining
probability mass, x(hv(x)−⌊hv(x)⌋), is moved anywhere, so as to obtain h′. We round at most |X| ≤
2k1/4+a/4 of the entries of h′, and the total probability mass that is changed in each rounding is at
most A+B/2 ≤ 2k−1+a, so the total reduction in mass in the rounding step is at most 4k−3/4+2a, and
thus ϵ ≤ k−.6. The cost of the first stage of our earth moving scheme is thus at most log(1+ϵ) ≤ k−.6.
In the second stage, the amount of remaining mass is precisely

∑
x∈X x(vx−⌊vx⌋) ≤ 4k−3/4+2a, and

thus we can move this mass to any probability above k−3/2 at cost at most 4k−3/4+2a log(k3/2) ≤ k−.6,
for sufficiently large k.

Algorithm:. The Estimator
Given a set of k samples, with fingerprint F:

• Construct the linear program of Definition 18 corresponding to F .

• Find a solution v to the the linear program. If no solution exists, output

FAIL.

• Output histogram hv associated to solution v, as defined in Definition 19.
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The correctness of our estimator is captured in the following theorem, from which Theorem 1
follows:

Theorem 3. For a constant δ ∈ (0, 1], consider a sample consisting of k independent samples from
a distribution h of support size at most δk log k. With probability at least 1 − e−k.04 , the linear
program of Definition 18 has a solution and furthermore, for any solution to the linear program, v,
the associated histogram hv constructed from v in Definition 19 satisfies

R(h, hv) = O(
√
δ ·max{1, | log δ|}).

We note that that factor of max(1, | log δ|) in the statement of Theorem 3 is, likely, an artifact of
our analysis, and perhaps can be removed with slightly tighter analysis.

The proof of Theorem 3 has two parts. In the first part, we show that, with the claimed prob-
ability, the linear program has a feasible point v, whose associated histogram hv is close in relative
earthmover distance to the true distribution, h. In the second part, we argue that for any two so-
lutions v, w, their associated histograms are close. By the triangle inequality, these two parts prove
the theorem.

We now prove an easy lemma which will enable us to prove Theorem 3 by arguing about Poi(k)-
sample fingerprints, instead of simply k-sample fingerprint. As noted above, in a Poi(k)-sample,
the number of occurrences of each support element will be independent (and Poisson distributed),
allowing us to apply standard Chernoff bounds to various quantities. Intuitively, the distribution of
a k-sample fingerprint should be very similar to that of a Poi(k)-sample fingerprint. The following
easy proposition makes this intuition rigorous.

Proposition 21. Given k > 30, and any set of fingerprints A, let A be the set of fingerprints that can
be obtained by adding or removing at most k.6 samples from some fingerprint in set A. Let F denote
a random k-sample fingerprint, and let F ′ denote a fingerprint obtained from choosing k′ ← Poi(k),
random samples. Then

Pr[F ∈ A] ≤ Pr[F ′ ∈ A] + e−k.1/2.

Proof. By the bound on the Poisson tail probabilities given in Corollary 32, Pr[|k′ − k| > k.6] ≤
e−k.1/2. Thus for any set B, Pr[F ′ ∈ B] and Pr

[
F ′ ∈ B|k′ ∈ [k − k.6, k + k.6]

]
will differ by at

most e−k.1/2. Given that k lies in [k − k.6, k + k.6], by a trivial coupling argument in which the
first min(k, k′) samples are common to both the k-sample and the k′-sample, we conclude that
Pr[F ∈ A] ≤ Pr[F ′ ∈ A] + e−k.1/2, where A is the set of fingerprints obtained by adding or removing
at most k.6 samples from some fingerprint in set A.

The following corollary will prove convenient, and illustrates the application of the above result:

Corollary 22. Fix an integer k > 30. Given a distribution D with histogram h, and a k-sample
fingerprint f yielded by taking k samples from D, for any integer i let pi :=

∑
x:h(x)̸=0 h(x)poi(xk, i)

denote the expected ith fingerprint entry. Then

Pr(|F(i)− pi| > 2k.6) ≤ 2e−k.1/2.

Proof. From Proposition 21, we consider taking k′ ← Poi(k) samples from D, and note that the
number of occurrences of each element are independent random variables, since k′ is taken from
a Poisson distribution. Let Si,j denote the boolean random variable representing whether the jth
element of the support is sampled exactly i times, and let Si :=

∑
j Si,j . By elementary Chernoff

bounds Pr(|Si − E[Si]| ≥ k.6) ≤ e−k.2/4.
Since adding or removing at most k.6 samples can change Si by at most k.6, we conclude that

Pr(|F(i)− pi| ≥ 2k.6) ≤ e−k.2/4 + e−k.1/2 ≤ 2e−k.1/2, as desired.
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B A Feasible Point

In this section we show that with high probability, the linear program of Definition 18 has a feasible
point, v′, whose associated histogram hv

′
is close to h in relative-earthmover distance. We explicitly

construct such a solution v′ from the true histogram h. That v′ is in the feasible region follows from
our sufficiently dense choice of the set X of probabilities for which to solve, together with elementary
concentration inequalities. We have the following proposition:

Proposition 23. For sufficiently large k, given a k-sample fingerprint F from a distribution of
support size at most k1.1, then with probability at least 1− e−k.04 the associated linear program given
in Definition 18 has a feasible point v′ whose associated histogram hv

′
is at most 17k−. 4a far in

relative-earthmover distance from h, the actual histogram of the distribution.

To prove the proposition, we explicitly construct a potential solution, v′, which is very similar
to the portion of the true histogram h below probability A+B/2, but has support consisting of the
probabilities for which the linear program solves. Additionally, we will make sure that v′ has the
appropriate mass (ie the second condition of the LP is satisfied). In Lemmas 24 and 25 we show that
with high probability, v′ satisfies the first and third conditions of the linear program, respectively, and
thus v′ is in the feasible region of the linear program. By Proposition 20 and the triangle inequality,
the final rounding does not change the relative earthmover distance by much, and thus it suffices to
analyze the generalized histogram obtained from v′ prior to rounding.

We construct the feasible point v′ in two stages, the first discretizes the true histogram h; the
second makes small adjustments based on F so as to satisfy the second condition of the linear program
– that the “total weight” including the probability mass in the empirical distribution derived from
the fingerprint above probability A+B is 1. We will then show that with high probability, the first
and third conditions of the linear program are also satisfied by v′.

The discretization (in Step 1 below) proceeds by linear interpolation. That is, given probability
mass at probability y, we find consecutive elements of X, that sandwich y, that is, xi, xi+1 such
that xi ≤ y ≤ xi+1, and distribute the histogram entry at y linearly between vxi and vxi+1 . We
note that such interpolation preserves both total probability mass, and the sum of the entries in
the histogram. As mentioned above, if we were willing to sacrifice running time, a simple nearest-
neighbor discretization to a much more finely spaced set X would suffice.

For a solution v to the linear program, let v(i) denote vxi . We construct v′ as follows:

1. (a) Initialize v′(∗) = 0

(b) For each y < A + B/2 such that h(y) > 0, let i be an index for which y ∈ [xi, xi+1], or
i = 0 if y < x1

(c) Modify v′ by increasing v′(i)← v′(i)+h(y) xi+1−y
xi+1−xi

, and v′(i+1)← v′(i+1)+h(y) y−xi

xi+1−xi

2. (a) Compute how much the second condition of the linear program is violated: let w =

(
∑

i xiv
′(i)) +

(∑
i≥k(A+B)

i
kF(i)

)
− 1

(b) If w < 0, increase v′A+B/2 ← v′A+B/2 +
|w|

A+B/2

(c) Otherwise if w > 0, decrease v′ arbitrarily (while still keeping it nonnegative) so as to
satisfy the second condition of the linear program.

To show that with high probability the first condition is satisfied, we argue that since A was
chosen so as to have relatively little mass in fingerprints i ∈ [kA, k(A+B)], then with high probability,
there could not have been much more than twice this mass in h in the probability interval [A,A+B].
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Additionally, with high probability the constructed v′ after Step 1 has mass close to 1, and thus in
Step 2, little mass is added to v′A+B/2.

Lemma 24. With probability at least 1 − 4e−k.1/2, the constructed solution v′ satisfies the first
condition of the linear program;

∑
i≤A+B/2 xiv

′(i) ≤ 16k−.4a.

Proof. First, we argue that with high probability the mass of h in the probability range [A,A+ B]
is at most 10k−.4a. We will then argue that the total amount of mass added in Step 2 at probability
A+B/2 is, with high probability, at most 6k−.4a.

Since the median of Poi(λ) ∈ [λ, λ + 1], and the tail bounds of Corollary 32 show that for λ <
k(A+B/2), Pr[X ← Poi(λ) > k(A+B)] ≤ e−k.1a/2 and for λ > k(A+B/2), Pr[X ← Poi(λ) < kA)] ≤
e−k.1a/2, which we can crudely bound by 1/100 for sufficiently large k, we conclude that given a k′ ←
Poi(k)-sample fingerprint, the expected mass in the fingerprint in the range [kA, k(A+B)] is at least∑

y∈[A,A+B]:h(y)̸=0 yh(y)(1/2− 2/100− c), where c is the expected amount of mass in the fingerprint
between λ and λ+1, which we can crudely bound by 1/100, for sufficiently large k. Thus the expected
mass in the fingerprint in the range [kA, k(A+B)] is at least (.47)

∑
y∈[A,A+B]:h(y)̸=0 yh(y).

Assume for the sake of contradiction that
∑

y∈[A,A+B]:h(y) ̸=0 yh(y) ≥ 10k−.4a, and thus the ex-

pected number of samples in the fingerprint in the range [kA, k(A+B)] is at least (10 · .47)k1−.4a
. By

elementary Chernoff bounds, with probability at most e−k.2/2 the number of samples in this range
will be less than its expectation by at least k.6. We will now apply Proposition 21, and note that the
addition of k.6 samples can alter the mass in the fingerprint above frequency H by at most k.6H/k.
For large k, since (10 · .47)k1−.4a + 4k.6+a ≥ 4k1−.4a, by Proposition 21, given fingerprint F ,

Pr[
∑

i∈[kA,k(A+B)]

iF(i) < 4k1−.4a] ≤ e−k.2/2 + e−k.1/2 ≤ 2e−k.1/2.

Thus with probability at least 1− 2e−k.1/2,
∑

y∈[A,A+B]:h(y) ̸=0 yh(y) ≤ 10k−.4a.

We now bound the amount of extra mass that is added to v′ at probability A+B/2 in Step 2. To
do this, we first show that the expected amount of mass in F from frequencies below kA is, with high
probability, not too much more than the amount of mass in the histogram h up to probability B.
Then, we show that with high probability, the amount of mass in the fingerprint up to frequency kA
is not much more than this expectation. Together with the bound that the fingerprint has relatively
little mass in [kA, k(A+B)], we conclude that with high probability, the fingerprint above frequency
k(A+B) has roughly the amount of mass it should, and thus Step 2 will only add at most a modest
amount of mass.

Consider taking a k′ ← Poi(k)-sample fingerprint. The probability of an element of probability
> B being sampled fewer than kA times, by Corollary 32 is at most e−k.1a/2, and thus the total
mass in the expected fingerprint in frequencies below kA from elements of probability at least B is
at most ke−k.1a/2 ≤ k.6, for sufficiently large k. By Chernoff bounds and Proposition 21,

Pr[
∑
i≤kA

iF(i)/k ≥
∑

y≤A+B:h(y) ̸=0

yh(y) + 4k−.4+a] ≤ 2e−k.1/2.

Together with the bound on the amount of mass observed in F in the frequency range [kA, k(A+B)],
we conclude that with probability at least 1−2e−k.1/2, the total amount of mass that must be added
in Step 2 is at most 4k−.4+a + 4k−.4a ≤ 5k−.4a, from which the claim follows.

We now argue that with high probability, the third condition of the linear program is satisfied by
the constructed vector v′. The proof has three parts: first we show that the process of discretizing
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in Step 1, in which the true histogram h is modified so as to have support at the probabilities
γ, 22γ, 32γ, . . . does not alter the fingerprint ‘expectations’ (where ‘expectation’ is in quotations to
indicate that we mean the formal expression

∑
i v

′(i)poi(kxi, j), which is well-defined even though v′

has not been rounded into a true histogram). Next, we argue that Step 2, in which v′ is modified so to
have weight 1−w where w =

∑
i≥k(A+B) iF(i), does not alter these ‘expectations’, because with high

probability, prior to Step 2 v′ has nearly the correct amount of mass. Thus we have established that
the fingerprint expectations corresponding to v′ are, with high probability, similar to the fingerprint
expectations of the true histogram h. Finally, a union bound over Chernoff bounds shows that with
high probability, the observed fingerprints F(i) will all be close to their expectations, and, thus, will
be close to the ‘expectations’ of v′ by the triangle inequality.

Lemma 25. With probability at least 1 − 10kae−k.1/2, every nonnegative integer j ≤ k(A + B/4)
satisfies |

∑
i v

′(i)poi(xik, j)− f(j)| ≤ 4k.6+a.

Proof. Consider v′ as it is at the end of Step 1: for each y such that h(y) > 0, we have “replaced” value
h(y) at probability y with the pair of values h(y) xi+1−y

xi+1−xi
, h(y) y−xi

xi+1−xi
respectively at the corresponding

discretized probabilities xi and xi+1, and we aim to bound

h(y)

∣∣∣∣( xi+1 − y

xi+1 − xi
poi(xik, j) +

y − xi
xi+1 − xi

poi(xi+1k, j)

)
− poi(yk, j)

∣∣∣∣ (1)

We note the basic calculus fact that for an arbitrary twice-differentiable function g : R→ R and real
numbers a < y < b, the linear interpolation b−y

b−ag(a) +
y−a
b−a g(b) approximates g(y) to within 1

8(b −
a)2maxz∈[a,b] |g′′(z)|. Thus Equation 1 is bounded by h(y)18(xi+1− xi)

2maxz∈[xi,xi+1]

∣∣∣ d2

dz2
poi(zk, j)

∣∣∣.
By Proposition 30 we see that

∣∣∣ d2

dz2
poi(zk, j)

∣∣∣ ≤ 2k2min{1, 1
zk}, yielding a bound on Equation 1 of

h(y)
k2

4
(xi+1 − xi)

2min{1, 1

xik
}.

Since γ := k−3/2,

max
i:xi≤1/k

(
k2

4
(xi+1 − xi)

2min{1, 1

xik
}
)

= max
i:xi≤1/k

(
k2

4
(xi+1 − xi)

2

)
≤ (2k1/4 + 1)2

4k

≤ 4k−1/2.

Similarly,

max
i:xi≥1/k

(
k2

4
(xi+1 − xi)

2min{1, 1

xik
}
)

= max
i:xi≥1/k

(
k

4xi
(xi+1 − xi)

2

)
≤ k−1/2(2i+ 1)2

4i2

≤ 4k−1/2.

Thus for any integer j,

|
∑

y<A+B/2

h(y)poi(yk, j)−
∑
i

v′(i)poi(xik, j)| ≤ k(4k−1/2) = 4k1/2.
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Next, we argue that the weight of v′ before Step 2 is very close to what it should be, and thus
the expectations are changed only slightly during Step 2. First note that if we take a Poi(k)-sample
fingerprint F ′, the expected mass above frequency k(A+B) is at most

∑
y>A+B/2:h(y)̸=0 yh(y) + T ,

where T is the expected mass contributed by the portion of h below A+B/2, which we can bound as
kPr[X ← poi(k(A+B/2)) > k(A+B)], which by the tail bound on Poisson distributions of Fact 31
and our choice of A,B, is at most 2ke−k.1a/2, which we can bound by 1 for sufficiently large k. Thus by
crudely applying the elementary multiplicative Chernoff bounds, the probability of seeing more than
k.5 elements of the support whose true probabilities are at most A+B/2 at least k(A+B) times is at
most e−k.5 . By Proposition 21, Pr[

∑
i>k(A+B) i·F(i)/k >

∑
y>A+B/2:h(y)̸=0 yh(y)+k−.4+a+k−.5+a] ≤

e−k.5 + 2ek
.1/2 < 3ek

.1/2.
Thus with at least this probability, after Step 1, v′ will have mass at most 1 − w + k−.4+a +

k−.5+a ≤ 1 − w + 2k−.4+a, where w =
∑

i≥k(A+B) iF(i). If the mass is greater than 1 − w, then
by arbitrarily decreasing the mass, the total change to the expected fingerprint will be at most
2kk−.4+a = 2k.6+a, as desired. If the mass is less than 1 − w, then by adding the extra mass
at probability A + B/2, this can effect the expectation of F(i), for i ≤ k(A + B/4 by at most
k · poi(k(A+B/2), ⌊k(A+B/4)⌋) ≤ 2ke−k.1/2 ≤ k.5, for sufficiently large k.

Combining the contributions to the error from discretizing h in Step 1 and from rearranging
the mass in Step 2, we get that for each j ≤ k(A + B/4), with probability at least 1 − 3e−k.1/2,
|
∑

y:h(y) ̸=0 h(y)poi(ky, j) −
∑

i v
′(i)poi(kxi, j)| ≤ 2k.6+a. To conclude, by Corollary 22, for each

j ≤ k(A + B/4), |F(j) − E[F(j)]| ≤ 2k.6 with probability at least 1 − 2e−k.1/2, and thus taking a
union bound over the at most k(A+B/4) fingerprint entries in this region, we get our claim.

Proof of Proposition 23. By Lemmas 24 and 25, the constructed vector v′ satisfies the first and third
conditions of the linear program with probability at least 1 − 11kae−k.1/2. By construction, it also
satisfies the second condition, thus with at least this probability, it is in the feasible region of the
linear program.

We now argue that the histogram hv
′
associated to the vector v′ is close in relative-earthmover

distance to the original histogram h. As above, let h′ denote the histogram prior to the rounding
step. Proposition 20 guarantees that R(h′, hv

′
) ≤ k−1/2, and thus |R(h, hv

′
)− R(h, h′)| ≤ k−1/2, by

the triangle inequality. We show this distance is small by arguing that below probability A+B/2, the
two histograms are very similar by construction, and that discretizing h in Step 1 of our construction
of v′ does not change the histogram much in relative-earthmover distance, and then in Step 2 of the
construction, only a small amount of mass is adjusted, again resulting in a small change in earthmover
distance. Above probability A+B, with high probability all the weight in h′ at probability z/k can
be sent to probability (z ± z.6)/k in h–essentially because each element of the fingerprint, with high
probability, has true probability close to its observed probability.

For probabilities below A + B/2, our earthmoving scheme starts with h, discretizes (Step 1 of
the construction of v′), then adjusts the mass if necessary (Step 2 of the construction). We now
consider the cost of the discretization step. Since the support is at most k1.1, at most k−.2 mass in h
can lie at probabilities below k−1.3. For the mass at probability at least k−1.3 = γ(k.1)2, the relative
earthmover cost is at most log((k.1 + 1)2/(k.1)2) ≤ 2k−.1. For the mass between probabilities k−3/2

and k−1.3, the relative earthmover cost of discretization is at most k−.4 log(22/1) ≤ 2k−.4. For the
mass in h at probabilities below γ, note that there can be at most mass mz = k1.1z at probability
z. The cost of moving this mass to any higher probability is at most mz log(1/z) ≤ k1.1z log(1/z).
Setting z = k−c, and noting that for large k, k1.1 log(k) ≤ k1.2, we have that this cost is at most
ck1.2−c ≤ k1.2−.9c, for k > 40, and since c ≥ 3/2, Since the total mass in this region is at most 1,
the cost of moving the mass in this region anywhere is at most k1.2−.9(3/2) ≤ k−.1. Thus the total
relative-earthmover cost of discretizing h to create v′ is at most 4k−.1.
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In Step 2 of the construction of v′, as was shown in the proof of Lemma 25, with probability at
least 1− 11kae−k.1/2, Step 2 decreases the mass in v′ in probabilities less than A+B/2 by at most
2k−.4+a. The relative-earthmover cost of moving this mass to a probability less than A + B is at
most 2k−.4+a| log(γ/(A+B))| = 2k−.4+a(3/2a) log(2) ≤ 2k−.4+2a, for sufficiently large k.

We now consider the earthmoving scheme for probabilities above A + B. Consider an element
of the support of probability k−1+α, and let X be the random variable representing the number of
occurrences of that element in a k-sample fingerprint; by Chernoff bounds Pr[|X − kα| > k.6α] ≤
2e−k.2α/4. Taking a union bound over all elements of the support that have probability at least
A+B/2 shows that with probability at most 1− k1.1e−k.2a/4 > 1− e−k.1a (for large k) all the mass
in the observed fingerprint with index above k(A + B) can be accounted for by mass in h above
A+ B/2, and thus there is an earth-moving scheme for equating h and h′ in which the entire mass
of h′ above probability A+B is zeroed by an earthmover scheme where mass at probability kb−1 is
moved within the range [kb−1− k.6b−1, kb−1 + k.6b−1], and thus the cost per unit mass is bounded by

log
(

kb−1

kb−1−k.6b−1

)
≤ 2k−.4b, and thus the disparity in h and h′ above probability A+B can be zeroed

at relative earthmover cost at most 2 · k−.4a.
Next, we account for the mass in h in the probability range [A + B/2, A + B]. In the proof of

Lemma 24 we showed that with probability at least 1 − 2e−k.1/2, the mass in the probability range
[A,A + B] is at most 10k−.4a, and this mass will, at worst, need to be moved from probability
A to A + B, at constant cost per unit mass. Adding up these contributions we have R(h, h′) ≤
17k−min(.1,. 4a), from which the claim follows.

C All Solutions are Good Solutions

In this section, we now argue that with high probability over the set of samples, for any solution v
to the linear program, the associated histogram hv is close to the true histogram h. The previous
section (Proposition 23) establishes that with high probability, the linear program will have at least
one solution v whose corresponding histogram hv is close to the true histogram h. Specifically, with
probability at least 1 − e−k.04 , such a v exists with the property that R(h, hv) ≤ 17k−.4a. To prove
Theorem 3, we must now argue that for any pair of solutions v, w, their associated histograms satisfy
R(hv, hw) ≤ O(

√
δ ·max{1, | log δ|}), from which the theorem will follows by the triangle inequality.

To prove this, in the following section, we construct an earthmoving scheme that leverages the fact
that the fingerprint expectations of hw and hv are close.

C.1 The Bumps

Before describing the intuition behind our construction, we start by defining a very natural class of
earthmoving schemes.

Definition 26. For a given k, a β-bump earthmoving scheme is defined by a sequence of positive real
numbers {ci}, the bump centers, and a sequence of functions {fi} : (0, 1]→ R such that

∑∞
i=0 fi(x) =

1 for each x, and each function fi may be expressed as a linear combination of Poisson functions,
fi(x) =

∑∞
j=0 aijpoi(kx, j), such that

∑∞
j=0 |aij | ≤ β.

Given a generalized histogram h, the scheme works as follows: for each x such that h(x) ̸= 0,
and each integer i > 0, move xh(x) · fi(x) probability mass from x to ci. We denote the histogram
resulting from this scheme by (c, f)(h).

Definition 27. For given n, k, a bump earthmoving scheme (c, f) is ϵ-good if for any generalized
histogram h, the relative earthmover distance between h and (c, f)(h) is at most ϵ.
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Perhaps the most natural bump earthmoving scheme—which we will end up using a refinement
of—is where fi(x) = poi(kx, i) and ci = i

k , where for i = 0, ci is chosen, say, as 1
2k to avoid a

logarithm of 0 when evaluating relative earthmover distance. This is a valid earthmoving scheme
since

∑∞
i=0 fi(x) = 1 for any x.

The motivation for this construction is the fact that, for any i, the amount of probability mass
that ends up at ci in (c, f)(h) is exactly ci times the expectation of the ith fingerprint in a Poi(k)-
sample from h. Thus if we apply this earthmover scheme to two histograms derived from solutions
to the linear program, their fingerprint expectations will closely match, and we would be left with a
pair of histograms h1, h2 such that R(h1, h2) is small.

The problem with this “Poisson bump” earthmoving scheme is that it has bad relative earthmover
distance, particularly towards the origin. This is due to the fact that most of the mass that starts
at a probability below 1

k will end up in the zeroth bump, no matter if it has probability nearly 1
k , or

the rather lower 1
n . The situation gets significantly better for higher Poisson functions: most of the

mass of Poi(i) lies within relative distance O( 1√
i
) of i. We will therefore construct a scheme that

uses Poisson functions poi(kx, i) for i ≥ log k, but takes great care to construct “narrower” bumps
below this region.

The main tool of this construction is the Chebyshev polynomials. For each integer i ≥ 0, the ith
Chebyshev polynomial, denoted Ti(x), is the polynomial of degree i such that Ti(cos(y)) = cos(i · y).
Thus, up to a change of variables, any linear combination of cosine functions up to frequency s may
be reexpressed as the same linear combination of the first s Chebyshev polynomials. Given this,
constructing a frugal earth-moving scheme is an exercise in trigonometric constructions.

Lemma 28. For n > k, letting δ be such that n = δk log k, there exists an O(
√
δ ·max{1, | log δ|})-

good k0.3-bump earthmoving scheme

In fact, we will construct a single scheme for all δ.

Definition 29. The Chebyshev earthmoving scheme is defined in terms of k as follows. Let s =
1
5 log k. For i ≥ s, let fi(x) = poi(kx, i) and ci =

i
k .

Define g(y) =
∑s−1

j=−s cos(jy). Define g′(y) = g(y) + g(y − π
s ) and, for i ∈ {0, . . . , s − 1} define

g′′i (y) = g′(y− iπ
s )+g′(y+ (i+1)π

s ). Let ti(x) be the linear combination of Chebyshev polynomials so that

ti(cos(y)) = g′′i (y). We thus define the final s bumps to be fi(x) =
1
4s ti(1 −

xk
2s )

∑s−1
j=0 poi(xk, j), for

i ∈ {0, . . . , s−1}. That is, fi(x) is related to g′′i (y) by the coordinate transformation x = 2s
k (1−cos(y)),

and scaling by 1
4s

∑s−1
j=0 poi(xk, j). For these bumps, define ci =

2s
k (1− cos( (i+1)π

s )).

Proof of Lemma 28. We first show that the scheme of Definition 29 is in fact a k0.3-bump earthmoving
scheme.

Since
∑s−1

i=0 g
′′
i (y) =

∑s−1
i=−s g

′(y− iπ
s ), and since g′(y) is a linear combination of cosines at integer

frequencies j, shifted by all possible multiples of jπ
s , we note that all but the j = 0 term will be

canceled out; when j = 0, cos(jy) = 1, which term occurs twice in g′(y), and hence 4s times in
the sum, to yield a total of

∑s−1
i=0 g

′′
i (y) = 4s. Thus, correspondingly,

∑s−1
i=0 ti(x) = 4s, and hence∑s−1

i=0 fi(x) =
∑s−1

j=0 poi(xk, j). Since these s Poisson functions are exactly those missing from the
Poisson bumps for i ≥ s, we have

∑∞
i=0 fi(x) =

∑∞
i=0 poi(xk, i) = 1, as desired.

We next check that each fi may be expressed as
∑∞

j=0 aijpoi(kx, j) for aij satisfying
∑∞

j=0 |aij | ≤
k0.3. For i ≥ s, we may trivially let aii = 1 and for all j ̸= i, let aij = 0. For i < s, we first consider
decomposing g′′i (y) into a linear combination of cos(jy), for j ∈ {0, . . . , s}. Since cos(−jy) = cos(jy),
g consists of 1 copy of cos(sy), two copies of cos(jy) for each j between 0 and s, and one copy of
cos(0y); g′ shifts some of these to introduce sine components, but these are canceled out in the
formation of g′′i , which is a symmetric function for each i. Thus each g′′i may be regarded as a linear
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combination
∑s

j=0 cos(yj)bij where the sth term has coefficient at most 4, and all the remaining
terms have coefficients at most 8. Next, we note that under the coordinate transformation x =
2s
k (1−cos(y)), the function cos(yj) becomes the Chebyshev polynomial Tj(1− xk

2s ). We note that each
term αℓ(xk)

ℓ from this polynomial will ultimately be multiplied by
∑s

m=0−1poi(xk,m) (we leave out

the 1
4s term until later). We reexpress this as xℓ

∑s−1
m=0

xme−x

m! =
∑s+ℓ−1

m=ℓ poi(xk,m) m!
(m−ℓ)! . We have

thus expressed our function as a linear combination of Poisson functions. As we aim to bound the
sum of the coefficients of these Poisson functions, we consider this now:

∑s+ℓ−1
m=ℓ

m!
(m−ℓ)! which we note

equals 1
l+1

(s+ℓ)!
s! since, in general,

∑j
m=i

(
m
i

)
=

(
j+1
i+1

)
. Expressing Tj(z) as

∑j
i=0 βijz

i, we note that,

since we evaluate Chebyshev polynomials at 1− xk
2s , a term βijz

i becomes βij
∑i

ℓ=0

(
i
ℓ

)
1

(2s)ℓ
xℓ, which,

by the previous calculation, contributes βij
∑i

ℓ=0

(
i
ℓ

)
1

(2s)ℓ
1

l+1
(s+ℓ)!

s! to the total Poisson coefficients.

We note that since ℓ ≤ i ≤ s, we have s + ℓ ≤ 2s, from which we see 1
(2s)ℓ

(s+ℓ)!
s! ≤ 1. We thus

bound βij
∑i

ℓ=0

(
i
ℓ

)
1

(2s)ℓ
1

l+1
(s+ℓ)!

s! ≤ βij
∑i

ℓ=0

(
i
ℓ

)
= βij2

i. Thus, in sum, we desire, for any j ≤ s, to

bound
∑j

i=0 βij2
i, where βij are the coefficients of the jth Chebyshev polynomial. We note that

since Chebyshev polynomials have coefficients whose signs repeat in the pattern (+, 0,−, 0), we may
evaluate this sum exactly as |Tj(2i)|, for i =

√
−1. Explicitly, |Tj(2i)| = 1

2

[
(2−

√
5)j + (2 +

√
5)j

]
≤

(2+
√
5)j . To yield our final bound on the Poisson coefficients, recall that, before multiplying by 1

4s ,
we have a factor at most 4 on the sth term, and factors at most 8 on each term for j < s, yielding
that, for s > 1, Definition 29 is a (2 +

√
5)s-bump earthmoving scheme.

We now turn to the main thrust of the argument, showing that the scheme is O(
√
δ)-good, where

n = δk log k, and δ ≥ 1
log k .

We first consider the cost of the portion of the scheme associated with bumps fi for i ≥ s,
specifically, the relative earthmover cost of moving poi(xk, i) mass from x to i

k , summed over i ≥ s.

By definition of relative earthmover distance, the cost of moving mass from x to i
k is | log xk

i |,
which, since log y ≤ y− 1, we bound by xk

i − 1 when i < xk and i
xk − 1 otherwise. We thus split the

sum into two parts.
For i ≥ ⌈xk⌉ we have poi(xk, i)( i

xk − 1) = poi(xk, i− 1) − poi(xk, i). This expression telescopes
when summed over i ≥ max{s, ⌈xk⌉} to yield poi(xk,max{s, ⌈xk⌉} − 1) = O( 1√

s
).

For i ≤ ⌈xk⌉ − 1 we have, since i ≥ s, that poi(xk, i)(xki − 1) ≤ poi(xk, i)((1 + 1
s )

xk
i+1 − 1) = (1 +

1
s )poi(xk, i+1)−poi(xk, i). The 1

s term sums to at most 1
s , and the rest telescopes to poi(xk, ⌈xk⌉)−

poi(xk, s) = O( 1√
s
).

Thus in total, fi for i ≥ s contributes O( 1√
s
) to the relative earthmover cost, per unit of weight

moved.
We now turn to the bumps fi(x) for i < s. The simplest case is when x is outside the region that

corresponds to the cosine of a real number – that is, when xk ≥ 4s. It is straightforward to show
that fi(x) is very small in this region. We note the general expression for Chebyshev polynomials:

Tj(x) =
1
2

[
(x−

√
x2 − 1)j + (x+

√
x2 − 1)j

]
, whose magnitude we bound by |2x|j . Further, since

2x ≤ 2
ee

x, we bound this by (2e )
je|x|j , which we apply when |x| > 1. Recall the definition fi(x) =

1
4s ti(1 −

xk
2s )

∑s−1
j=0 poi(xk, j), where ti is the polynomial defined so that ti(cos(y)) = g′′i (y), that

is, ti is a linear combination of Chebyshev polynomials of degree at most s and with coefficients
summing in magnitude to at most 8s. Since xk > s, we may bound

∑s−1
j=0 poi(xk, j) ≤ s · poi(xk, s).

Further, since z ≤ ez−1 for all z, letting z = x
4s yields x ≤ 4s · e

x
4s

−1, from which we may bound

poi(xk, s) = (xk)se−xk

s! ≤ e−xk

s! (4s · e
xk
4s

−1)s = 4sss

es·e3xk/4s! ≤ 4se−3xk/4. We combine this with the above

bound on the magnitude of Chebyshev polynomials, Tj(z) ≤ (2e )
je|z|j ≤ (2e )

se|z|s, where z = (1− xk
2s )

yields Tj(z) ≤ ( 2
e2
)se

xk
2 . Thus fi(x) ≤ (8s)s

4s 4se−3xk/4( 2
e2
)se

xk
2 = 2s( 8

e2
)se−

xk
4 . Since xk

4 ≥ s by
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definition of this case, fi is exponentially small in both x and s; the total cost of this earthmoving
scheme, per unit of weight above 4s

k is obtained by multiplying this by the logarithmic relative
distance the weight has to move, and summing over the s values of i < s, yielding something that
remains exponentially small, and thus trivially our goal of O( 1√

s
).

To bound the cost in the remaining case, when xk ≤ 4s and i < s, we work with the trigonometric
functions g′′ℓ , instead of tℓ directly. For y ∈ (0, π], consider the relative earthmover cost of, for
each ℓ, moving g′′ℓ (y) mass from 2s

k (1 − cos(y)) to 2s
k (1 − cos( ℓπs )), that is,

∑s
ℓ=1 |g′′ℓ (y)(log(1 −

cos(y)) − log(1 − cos( ℓπs ))|. To simplify the analysis, we compare log(1 − cos(y)) with 2 log y when

y ∈ (0, π], noting that their derivatives respectively are sin(y)
1−cos(y) and 2

y , and we claim that the
second expression is always greater. To compare the two expressions, cross-multiply and take the
difference, to yield y sin y − 2 + 2 cos y, which we show is always at most 0 by noting that it is 0
when y = 0 and has derivative y cos y − sin y, which is negative since cot y ≤ 1

y . Thus we have that

| log(1− cos(y))− log(1− cos( ℓπs ))| ≤ 2| log y − log ℓπ
s |; we use this bound in all but the last step of

the analysis.
We now turn to bounding the relative earthmover cost. We note that since cos(y) = ℜ(eiy),

for i =
√
−1, we may express g(y) as the real part of the sum of 2s terms of a geometric series

to compute g(y) = ℜ
(

eiy
2s−1

(eiy−1)eiys

)
= ℜ

(
eiys−e−iys

eiy−1

)
. We have that eiys − e−iys = 2i sin(ys), and

ℑ( 1
eiy−1

) = −1
2 cot(

y
2 ), yielding that g(y) = sin(ys) cot(y2 ); while this expression is undefined for

y = 0, we note that g(0) = 2s.
Since sin(ys) = − sin((y − π

s )s), we have that g′(y) = sin(ys)
[
cot(y2 )− cot(y2 −

π
2s)

]
. Since the

cotangent is concave between 0 and π
2 and thus has decreasing derivative, we may bound cot(y2 ) −

cot(y2 −
π
2s) in terms of the derivative of cotangent at the left endpoint, y

2 −
π
2s , which we compute

as cot′(y2 −
π
2s) = − 1

cos2( y
2
− π

2s
)
= 1

cos(y−π
s
)−1 ; thus cot(y2 ) − cot(y2 −

π
2s) ≤

π
2s

1
cos(y−π

s
)−1 . We may

crudely bound this by noting that, for y ∈ [0, π], cos(y) ≤ 1 − 2( yπ )
2, yielding that, for y ∈ (πs , π],

|g′(y)| ≤ π3

4s
1

(y−π
s
)2
. By symmetry, for y ∈ [−π + π

s , 0), we have |g′(y)| = O( 1
sy2

). In general, since

g′ is the sum of 4s (shifted) cosine functions, g′(y) ≤ 4s, which we will use instead of the previous
bounds when y ∈ [−π

s , 2
π
s ], combining the previous bounds to O( 1

sy2
) otherwise.

We next bound g′′i (y) = g′(y− iπ
s ) + g′(y+ (i+1)π

s ), applying our bound on g′(y) to yield g′′i (y) =

O( 1
s(y− iπ

s
)2
) for y ∈ [0, (i−1)π

s ] ∪ [ (i+2)π
s , π], and g′′i (y) ≤ 8s for y ∈ ( (i−1)π

s , (i+2)π
s ).

We may now bound the relative earthmover distance. We ignore the term
∑s−1

j=0 poi(xk, j) as it
is always at most 1.
Case 1: ys

π ≥ 1.

To bound 1
4s

∑s−1
i=0 |g′′i (y)(log y− log (i+1)π

s )|, we use each of the three bounds for g′′i just derived.

In the middle region, when y ∈ ( (i−1)π
s , (i+2)π

s ), we note that |(log y − log iπ
s )| = O( 1

sy ), which we

combine with the term 1
4s and the bound of g′′i (y) ≤ 8s in this region to yield O( 1

sy ).

For the high region, when i ≥ sy
π + 2, we have bounded g′′i (y) = O( 1

s(y− iπ
s
)2
), which yields

1
4s

∑s−1
i≥ sy

π
+2 |g

′′
i (y)(log y − log (i+1)π

s )| = 1
4sO(

∑∞
i≥ sy

π
+2

s
| sy
π
−i|2 | log

sy
π − log i|), which is easily seen to

be O(
log(1+ sy

π
)

sy ), since
∫∞
z+1

log i−log z
(i−z)2

di = (z+1) log(z+1)−z log z
z = O( log(z+1)

z ). The same bounds hold

for the region i ≤ sy
π − 1.

Case 2: ys
π < 1.

To bound 1
4s

∑s−1
i=0 |g′′i (y)(log

ys
π − log(i + 1))|, we note that log ys

π < 0 and log(i + 1) ≥ 0, and

hence split the sum into two terms. To bound 1
4s

∑s−1
i=0 |g′′i (y) log(i + 1)|, we note that for i = 0

the logarithm is 0, for i = 1, we bound g′′i (y) ≤ 8s to yield a constant bound on this term (when
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multiplied by 1
4s), and when i ≥ 2 we bound g′′i (y) = O( 1

si2
), to yield 1

4s

∑s−1
i=0 |g′′i (y) log(i + 1)| =

O(1) +
∑s−1

i=2
log(i+1)

i2
= O(1).

Since
∑

i |g′′i (y)| ≤ 8s, we bound the remaining term as 1
4s

∑s−1
i=0 |g′′i (y) log

ys
π | = O(log ys

π , yielding
a total bound on the relative earthmover distance in this case of O(1+ | log ys

π |). Since for z ∈ (0, 1),
| log z| < 1

z , we may bound this by O( 1
ys).

Having concluded the case analysis, recall that we have been using the change of variables x =
2s
k (1 − cos(y)). Since 1 − cos(y) = O(y2), we have xk = O(sy2). Thus the fact that the preceding

case analysis yielded a bound of max{1,log sy}
sy implies that we may express this as O(max{1,log sxk}√

sxk
),

our final bound on the per-unit cost of moving weight from location x ≤ 4s
k , under bumps fi for

i < s.
For a distribution with (generalized) histogram h, the cost of moving earth on this region, for

bumps fi where i < s is thus O(
∑

x:h(x)̸=0 h(x) ·x ·
max{1,log sxk}√

sxk
). Because max{1,log z}

z is a decreasing

function, for x ≥ 1
n = 1

5δsk , we have that
max{2,log sxk}√

sxk
) ≤ max{2,− log 5δ}

√
5δ. Since

∑
x:h(x) ̸=0 h(x)·

x = 1, we thus have a bound of O(max{1,− log δ}
√
δ) for this region. Otherwise, when x ≤ 1

n ,

since x · max{1,log sxk}√
sxk

is an increasing function, it is maximized when x = 1
n . Since the remaining

term, h(x), sums to at most n, by assumption, we thus have, as above, a bound for this region of
max{1,log skx}√

skx
= O(max{1,− log δ}

√
δ), which is the desired bound. As we have already bounded the

relative earthmover cost for bumps fi, i ≥ s at least this tightly, this concludes the proof.

C.2 Proof of Theorem 3

We are now equipped to prove Theorem 3.

Proof of Theorem 3. By Proposition 23, with probability at least 1− e−k.04 the linear program has
a solution v whose associated histogram hv satisfies R(h, hv) ≤ 17k−.4a. We now argue that for any
pair of solutions v, w, their associated histograms satisfy R(hw, hw

′
) ≤ O(

√
δ ·max{1, | log δ|}), from

which the theorem will follows by the triangle inequality.
Consider a pair of histograms hv, hw derived from the solution to the linear program, and let

hv
′
, hw

′
represent the generalized histograms that yielded, respectively, hv and hw prior to the round-

ing step in Definition 19. By Proposition 20, R(hv, hv
′
) ≤ k−1/2, R(hw, hw

′
) ≤ k−1/2, and thus by the

triangle inequality, it suffices to consider the pair hv
′
, hw

′
. We now exhibit an earth-moving scheme.

Consider applying the earth-moving scheme of Definition 29 to each of the generalized his-
tograms hv

′
and hw

′
, yielding the pair of generalized histograms h1, h2. By Lemma 28, R(h1, hv

′
) ≤

O(max(1, | log δ|)
√
δ, and similarly for R(h2, hw

′
). Additionally, all of the probability mass in h1, h2

lies at the “bump” centers ci. For each ci ≤ A, we now consider how much probability mass lies at
ci in each of the two histograms.

From Definition 29 we have

h1(ci) :=
∑

x:hv′ (x) ̸=0

xhv
′
(x)fi(x) =

∑
x:hv′ (x)̸=0

xhv
′
(x)

∑
j

aijpoi(kx, j).
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Since
∑

j |aij | ≤ β ≤ k.3 by Lemma 28 we have:

|h1(ci)− h2(ci)| = |

∑
j

aij
∑

x:hv′ (x)̸=0

xhv
′
(x)poi(kx, j)

−
∑

j

aij
∑

x:hw′
(x) ̸=0

xhw
′
(x)poi(kx, j)

 |
≤

∑
j

|aij |

| ∑
x:hv′ (x)̸=0

xhv
′
(x)poi(kx, j)−

∑
x:hw′

(x)̸=0

xhw
′
(x)poi(kx, j)|


≤ k.3 · 9k.6+a ≤ k.9+a,

where the last line comes from the third condition of our linear program, which guarantees that∑
x<A+B/2:hv′ (x)̸=0 xh

1(x)poi(kx, j) ∈ [F(j)−4k.6+a,F(j)+4k.6+a], and the fact that the contribution

from probability x ≥ A + B/2 to the expectation of the jth fingerprint entry for j < kA can be
trivially crudely bounded by k.5 (using the tail bounds in Fact 31, for example).

Thus the total residual mass for ci ≤ A + B/4 that can not be canceled is at most
∑

ci≤A+B/4

ci |h1(ci) − h2(ci)| ≤ 2ka · (k.9+a2k−1+a) ≤ 4k−.1+3a, where we used the fact that clog k = log k
k , and

for i ≥ log k, ci = i/k, thus |{i : ci ≤ A+B/4}| ≤ k(A+B). Since c0 = Θ( 1
k log k ), we can move this

residual mass anywhere, at relative-earthmover cost at most 4k−.09+3a, for sufficiently large k.
We now consider the relative earthmover cost above probability A + B/4. This is easy–there is

little probability mass in the probability range [A+B/4, A+3B/4], and above probability A+3B/4
h1 and h2 are identical, except for the probability mass brought to region from probabilities below
A+B/2 by our earth-moving scheme. Furthermore, throughout this range the “bumps” are Poisson
bumps, namely 1-bumps. Rigorously, we bound the total probability mass that our earthmoving
scheme brings into the range [A+B/4, A+ 3B/4] from probabilities below A and above B by, say,
k−1 for sufficiently large k, by our tail bound for Poisson distributions given in Corollary 32. Thus
the total mass in the range [A+B/4, A+3/4B] in h1 and h2 is at most k−. 4a+k−1, and thus we can
move this mass anywhere within this range at cost at most 2k−. 4a. To conclude, the entire disparity
in h1, h2 above probability A+ 3B/4 comes from the probability mass in hv

′
, hw

′
below probability

A+B/2, and thus, as above, we can bound this mass by k−1, and thus this contributes a negligible
amount to the total earthmover distance between h1 and h2 (namely at most k−1 log k < k−1/2 for
large k).

Putting the pieces together, by the triangle inequality:

R(hv, hw) ≤ R(hv
′
, hw

′
) + k−1/2

≤ R(h1, h2) +O(
√
δ ·max{1, | log δ|}) + k−1/2

≤ 5k−.09+3a +O(
√
δ ·max{1, | log δ|})

= O(
√
δ ·max{1, | log δ|}).

D Properties of Poissons

In this section we collect the useful facts about the Poisson distribution, and the “Poisson functions,”
that are used throughout the paper.

D.1 Second Derivative of Poisson Functions

Proposition 30. Letting poixx(x, j) denote the second derivative of the jth Poisson function, for
all x > 0, j ≥ 0 we have |poixx(x, j)| ≤ min{2, 2x}.
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Proof. Since poi(x, j) , xje−x

j! , we have poixx(x, j) = (xj − 2jxj−1 + j(j − 1)xj−2) e
−x

j! .

Case 1: j = 0 or 1. We have from the above expression that poixx(x, 0) = e−x, which is easily
seen to be less than min{2, 2x}. Similarly, for j = 1 we have poixx(x, 1) = (x − 2)e−x, where, for
x ∈ (0, 1) we have that |(x− 2)e−x| ≤ 2e−x ≤ 2. For x ≥ 1, we must show that |(x− 2)e−x| ≤ 2

x , or
equivalently, |12x

2 − x| ≤ ex. Since |12x
2 − x| ≤ 1

2x
2 + x, and this last expression is just two terms

from the power series of ex, all of whose terms are positive, it is thus bounded by ex as desired.
Case 2: x < 1 and j ≥ 2.

In this case we must show |poixx(x, j)| ≤ 2. For j ≥ 2, we note that we may simplify the above

expression for poixx(x, j) to ((x − j)2 − j)x
j−2e−x

j! . Noting that for x ∈ (0, 1) we have xj−2 ≤ 1 and

e−x < 1, we may bound the absolute value of this last expression by |(x−j)2−j|
j! . Since (x − j)2 ≥ 0

and −j ≤ 0, we may bound this expression as max
{

(x−j)2

j! , j
j!

}
; since we have j ≥ 2 and x ∈ (0, 1),

we note that (x−j)2

j! ≤ j2

j! ≤ 2, and j
j! ≤ 1, as desired.

Case 3: x ≥ 1 and j ≥ 2.

We reexpress |poixx(x, j)| as
∣∣∣(1− j

x)
2 − j

x2

∣∣∣·poi(x, j), which we may bound by max{(1− j
x)

2, j
x2 }·

poi(x, j).
We consider the second term first. For j > x+ 1, consider the ratio of the expression j

x2 poi(x, j)
for consecutive values of j:

j

j − 1

xj(j − 1)!

xj−1j!
=

x

j − 1

and note that this is always at most 1. Thus j
x2 poi(x, j) attains its maximum (over j) for j ≤ x+1.

We may thus bound j
x2 poi(x, j) by taking j ≤ x + 1 and noting that, since poi(x, j) ≤ 1 we have

j
x2 poi(x, j) ≤ x+1

x2 ≤ 2
x as desired.

We now consider the first term, (1− j
x)

2poi(x, j) and show that it attains its maximum for j in

the interval [x− 2
√
x, x+2

√
x+1]. Consider the ratio of (1− j

x)
2poi(x, j) to (1− j−1

x )2poi(x, j− 1):

(1− j
x)

2

(1− j−1
x )2

e−xxj(j − 1)!

e−xxj−1j!
=

(
x− j

x− j + 1

)2 x

j
(2)

We now show that this ratio is at most 1 for j ≥ x + 2
√
x + 1, and at least 1 for j ≤ x− 2

√
x + 1,

thereby showing that (1− j
x)

2poi(x, j) attains its maximum in the interval j ∈ [x−2
√
x, x+2

√
x+1].

We note that both x−j
x−j+1 and x

j are decreasing functions of j, outside the interval [x, x + 1], so it

suffices to check the claim for j = x+ 2
√
x+ 1 and j = x− 2

√
x+ 1. We have(

x− (x+ 2
√
x+ 1)

x− (x+ 2
√
x+ 1) + 1

)2
x

x+ 2
√
x+ 1

=
(2
√
x+ 1)2

(2
√
x+ 2)2

≤ 1

and (
x− (x− 2

√
x+ 1)

x− (x− 2
√
x+ 1) + 1

)2
x

x− 2
√
x+ 1

=
(2
√
x− 1)2

(2
√
x− 2)2

≥ 1

Thus (1 − j
x)

2poi(x, j) attains its maximum for j in the interval [x − 2
√
x, x + 2

√
x + 1]. We

note that on the sub-interval [x − 2
√
x, x + 2

√
x], we have (1 − j

x)
2 ≤ (2

√
x

x )2 ≤ 4
x , and that, for

x ≥ 1, poi(x, j) ≤ 1
e , implying that (1 − j

x)
2poi(x, j) ≤ 2

x as desired. Finally, for the remainder of

the interval, we have, since x ≥ 1 that (1− j
x)

2 ≤ (2
√
x+1)2

x2 ≤ 9
x . On this sub-interval j > x+ 2

√
x,

and thus we have, since x ≥ 1 and j is an integer, that j ≥ 4. Since poi(x, j) is maximized with

respect to x when x = j, this maximum has value jje−j

j! , which, by Stirling’s approximation, is at

most 1√
2πj

< 2
9 (for j ≥ 4). Combining these two bounds yields the desired bound of 2

x .
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D.2 Tail Bounds for Poisson Distributions

Fact 31. (From [15]) For λ > 0, and an integer n ≥ 0, if n ≤ λ,

n∑
i=0

poi(λ, i) ≤ poi(λ, n)

1− n/λ
,

and for n ≥ λ,
∞∑
i=n

poi(λ, i) ≤ poi(λ, n)

1− λ/(n+ 1)
.

Corollary 32. For λ > 30, let X ← Poi(λ),

Pr[|X − λ| > λ.6] ≤ e−
λ.1

2 .

Proof. We first show that the claim holds for Pr[X > λ+ λ.6]. By Stirling’s approximation, we have

n! ≥
√
nnn

en , and thus Fact 31 yields Pr[X ≥ a] ≤ λae−λea√
aaa(1−λ/a)

. Letting a := λ + λ.6 and simplifying

slightly we get:

Pr[X ≥ λ+ λ.6] ≤
√

(λ+ λ.6)eλ
.6−(λ+λ.6) log(1+λ−.4)

λ.6

≤ eλ
.6−(λ+λ.6) log(1+λ−.4).

Considering the Taylor expansion of log(1 + x), and noting that for x > 0, log(1 + x) ≥ x − x2/2,
and thus log(1 + λ−.4) ≥ λ−.4 − λ−.8/2, we have:

Pr[X ≥ λ+ λ.6] ≤ eλ
.6−(λ+λ.6)(λ−.4−λ−.8/2)

≤ e(1/2)λ
.2−λ.2+(1/2)λ−.2

≤ e−
λ.2−λ−.2

2 .

For λ > 30, λ.2 − λ−.2 > λ.1, yielding the claimed bound. We now apply an analogous argument to
Pr[X < λ− λ.6], again using Fact 31.

Pr[X < λ− λ.6] ≤ λ.4e−λ.6−(λ−λ.6) log(1−λ−.4)√
(λ+ λ.6)

≤ e−λ.6−(λ−λ.6) log(1−λ−.4).

Using the fact that for x ∈ (0, .2], log(1− x) > −x− 5
8x

2, we get

Pr[X < λ− λ.6] ≤ e−λ.6−(λ−λ.6)(−λ−.4− 5
8
λ−.8)

≤ e−
3λ.2+5λ−.2

8 .

Since 3λ.2+5λ−.2

8 > λ.1/2, the claimed bound holds.

For completeness, we state the elementary Chernoff bounds that we use throughout:

Fact 33. Let X1, . . . , Xn be independent 0, 1 random variables, with Pr[Xi = 1] = pi. Let X :=
∑

Xi,
and µ :=

∑
pi Then:

• Pr[X < (1− δ)µ] ≤ e−µδ2/2.

• For δ ≤ 2e− 1, Pr[X > (1 + δ)µ] ≤ e−µδ2/4, and for δ > 2e− 1, Pr[X > (1 + δ)µ] ≤ 2−µδ.
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