Lecture VII: Classic and Modern Data Clustering - Part I

Marina Meilă mmp@stat.washington.edu

> Department of Statistics University of Washington

November, 2020

Paradigms for clustering

Parametric clustering algorithms (K given) Cost based / hard clustering

Basic algorithms

K-means clustering and the quadratic distortion Model based / soft clustering

Issues in parametric clustering Selecting K

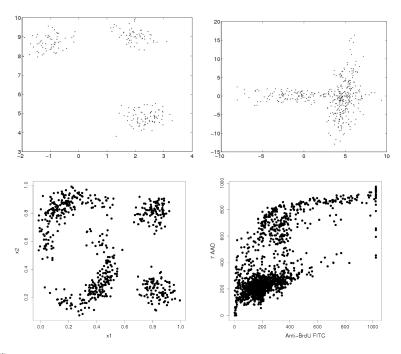
Reading: 14.3Ch 11.[1], 11.2.1-3, 11.3, Ch 25

What is clustering? Problem and Notation

- ▶ Informal definition Clustering = Finding groups in data
- Notation $\mathcal{D} = \{\mathbf{x}_1, \mathbf{x}_2, \dots \mathbf{x}_n\}$ a data set n = number of data points K = number of clusters (K << n) $\Delta = \{C_1, C_2, \dots, C_K\}$ a partition of \mathcal{D} into disjoint subsets k(i) = the label of point i $\mathcal{L}(\Delta) = \text{cost (loss) of } \Delta$ (to be minimized)
- Second informal definition Clustering = given n data points, separate them into K clusters
- ► Hard vs. soft clusterings
 - Hard clustering Δ: an item belongs to only 1 cluster
 - ► Soft clustering $\gamma = \{\gamma_{ki}\}_{k=1:K}^{i=1:n}$ $\gamma_{ki} = \text{the degree of membership of point } i \text{ to cluster } k$

$$\sum_{k} \gamma_{ki} = 1 \quad \text{for all}$$

(usually associated with a probabilistic model)



Paradigms

Depend on type of data, type of clustering, type of cost (probabilistic or not), and constraints (about K, shape of clusters)

▶ Data = vectors $\{x_i\}$ in \mathbb{R}^d

Parametric Cost based [hard] (K known) Model based [soft]

Non-parametric Dirichlet process mixtures [soft] (K determined Information bottleneck [soft] by algorithm) Modes of distribution [hard]

Gaussian blurring mean shift[?] [hard]

▶ Data = similarities between pairs of points $[S_{ij}]_{i,j=1:n}$, $S_{ij} = S_{ji} \ge 0$ Similarity based clustering

Graph partitioning spectral clustering [hard, K fixed, cost based]

typical cuts [hard non-parametric, cost based]

Affinity propagation [hard/soft non-parametric]

Classification vs Clustering

	Classification	Clustering
Cost (or Loss) L	Expectd error	many! (probabilistic or not)
	Supervised	Unsupervised
Generalization	Performance on new	Performance on current
	data is what matters	data is what matters
K	Known	Unknown
"Goal"	Prediction	Exploration Lots of data to explore!
Stage	Mature	Still young
of field		

Parametric clustering algorithms

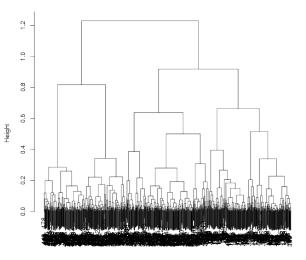
- Cost based
 - Single linkage (min spanning tree)Min diameter
 - - Fastest first traversal (HS initialization)
 - K-medians
 - K-means
- ► Model based (cost is derived from likelihood)
 - ► EM algorithm
 - ► "Computer science" /" Probably correct" algorithms

Single Linkage Clustering

Algorithm Single-Linkage

Input Data $\mathcal{D} = \{x_i\}_{i=1:n}$, number clusters K

- 1. Construct the Minimum Spanning Tree (MST) of \mathcal{D}
- 2. Delete the largest K-1 edges
- ▶ **Cost** $\mathcal{L}(\Delta) = -\min_{k,k'} \operatorname{distance}(C_k, C_{k'})$ where $\operatorname{distance}(A, B) = \underset{x \in A, \ y \in B}{\operatorname{argmin}} ||x - y||$
- ▶ Running time $\mathcal{O}(n^2)$ one of the very few costs \mathcal{L} that can be optimized in polynomial time
- Sensitive to outliers!



Observations

Minimum diameter clustering

 $\textbf{Cost } \mathcal{L}(\Delta) = \max_{k} \max_{i,j \in C_k} ||x_i - x_j||$

diameter

- Mimimize the diameter of the clusters
- Optimizing this cost is NP-hard
- Algorithms
 - ▶ Fastest First Traversal [?] a factor 2 approximation for the min cost For every \mathcal{D} , FFT produces a Δ so that

$$\mathcal{L}^{opt} \leq \mathcal{L}(\Delta) \leq 2\mathcal{L}^{opt}$$

rediscovered many times

Algorithm Fastest First Traversal

Input Data $\mathcal{D} = \{x_i\}_{i=1:n}$, number clusters Kdefines centers $\mu_{1:K} \in \mathcal{D}$

(many other clustering algorithms use centers)

- **1**. pick μ_1 at random from \mathcal{D} 2. for k = 2 : K
- $\mu_k \leftarrow \underset{\mathcal{D}}{\operatorname{argmax}} \operatorname{distance}(x_i, \{\mu_{1:k-1}\})$
- 3. for i = 1: n (assign points to centers)

K-medians clustering

- ▶ Cost $\mathcal{L}(\Delta) = \sum_k \sum_i i \in C_k ||x_i \mu_k|| \text{ with } \mu_k \in \mathcal{D}$
 - (usually) assumes centers chosen from the data points (analogy to median) Exercise Show that in 1D $\underset{\text{argmin}}{\operatorname{argmin}} \sum_i |x_i \mu|$ is the median of $\{x_i\}$
 - optimizing this cost is NP-hard
 - ▶ has attracted a lot of interest in theoretical CS (general from called "Facility location"

Integer Programming Formulation of K-medians

 $u_{ii} = 1$ iff point i in cluster with center x_i (0 otherwise), $y_i = 1$ iff point j is cluster center (0 otherwise)

$$\begin{array}{ll} \underset{u,y}{\min} & \sum_{ij} d_{ij} u_{ij} \\ \text{s.t.} & \sum_{j} u_{ij} = 1 \quad \text{point } i \text{ is in exactly 1 cluster for all } i \\ & \sum_{j} y_{j} \leq k \quad \text{there are at most } k \text{ clusters} \\ & u_{ij} \leq y_{j} \quad \text{point } i \text{ can only belong to a center for all } i, j \end{array}$$

Linear Programming Relaxation of K-medians

▶ Define d_{ii} , $y_i = 1$, u_{ii} as before, but y_i , $u_{ii} \in [0, 1]$

$$\begin{array}{lll} \text{(LP)} & \min\limits_{\substack{u,y\\ \text{s.t.}}} & \sum_{ij} d_{ij} u_{ij} \\ & \text{s.t.} & \sum_{j} u_{ij} = 1 \\ & \sum_{j} y_{j} \leq k \\ & u_{ij} \leq y_{j} \end{array}$$

Algorithm K-Medians (variant of [?]) **Input** Data $\mathcal{D} = \{x_i\}_{i=1:n}$, number clusters K

- 1. Solve (LP)
- obtain fractionary "centers" $y_{1:n}$ and "assignments" $u_{1:n,1:n}$
- 2. Sample K centers $\mu_1 \dots \mu_K$ by
 - ▶ $P[\mu_k = \text{pointj}] \propto y_j$ (without replacement)
- 3. Assign points to centers (deterministically)

$$k(i) = \underset{k}{\operatorname{argmin}} ||x_i - \mu_k||$$

- Guarantees (Agarwal)
 - ▶ Given tolerance ε , confidence δ , $K' = K(1 + \frac{1}{\varepsilon}) \ln \frac{n}{K}$, $\Delta_{K'}$ obtained by K-medians with K'centers

$$\mathcal{L}(\Delta_{K'}) \leq (1 + \varepsilon)\mathcal{L}_{K}^{opt}$$

K-means clustering

Algorithm K-Means[?]

Input Data $\mathcal{D} = \{x_i\}_{i=1:n}$, number clusters Ktialize centers $\mu_1, \mu_2, \dots \mu_K \in \mathbb{R}^d$ at random terate until convergence

1. for i = 1 : n (assign points to clusters \Rightarrow new clustering)

$$k(i) = \underset{k}{\operatorname{argmin}} ||x_i - \mu_k||$$

2. for k = 1 : K (recalculate centers)

$$\mu_k = \frac{1}{|C_k|} \sum_{i \in C_k} x_i \tag{1}$$

- Convergence
 - \triangleright if \triangle doesn't change at iteration m it will never change after that
 - convergence in finite number of steps to local optimum of cost L (defined next)
 - therefore, initialization will matter

The K-means cost

$$\mathcal{L}(\Delta) = \sum_{k=1}^{K} \sum_{i \in C_k} ||x_i - \mu_k||^2$$
 (2)

- ► K-means solves a least-squares problem
- \blacktriangleright the cost $\mathcal L$ is called quadratic distortion

Proposition The K-means algorithm decreases $\mathcal{L}(\Delta)$ at every step.

Sketch of proof

- ightharpoonup step 1: reassigning the labels can only decrease $\mathcal L$
- ▶ step 2: reassigning the centers μ_k can only decrease $\mathcal L$ because μ_k as given by (1) is the solution to

$$\mu_k = \min_{\mu \in \mathbb{R}^d} \sum_{i \in C} ||x_i - \mu||^2$$
 (3)

Equivalent and similar cost functions

The distortion can also be expressed using intracluster distances

$$\mathcal{L}(\Delta) = \sum_{k=1}^{K} \frac{1}{n_k} \sum_{i,j \in C_k} ||x_i - x_j||^2$$
 (4)

Correlation clustering is defined as optimizing the related criterion

$$\mathcal{L}(\Delta) = \sum_{k=1}^K \sum_{i,j \in C_k} ||x_i - x_j||^2$$

This cost is equivalent to the (negative) sum of (squared) intercluster distances

$$\mathcal{L}(\Delta) = -\sum_{k=1}^{K} \sum_{i \in C_k} \sum_{j \notin C_k} ||x_i - x_j||^2 + \text{constant}$$
 (5)

Proof of (6) Replace μ_k as expressed in (1) in the expression of \mathcal{L} , then rearrange the terms

Proof of (5)
$$\sum_{k} \sum_{i,j \in C_k} ||x_i - x_j||^2 = \underbrace{\sum_{i=1}^n \sum_{j=1}^n ||x_i - x_j||^2}_{\text{independent of } \Delta} - \sum_{k} \sum_{i \in C_k} \sum_{j \notin C_k} ||x_i - x_j||^2$$

The K-means cost in matrix form – the assignment matrix

 \triangleright \mathcal{L} as sum of squared intracluster distances

$$\mathcal{L}(\Delta) = \sum_{k=1}^{K} \frac{1}{|C_k|} \sum_{i,j \in C_k} ||x_i - x_j||^2$$
 (6)

Define the assignment matrix associated with Δ by $Z(\Delta)$ Let $\Delta = \{C_1 = \{1, 2, 3\}, C_2 = \{4, 5\}\}$

$$Z^{\mathit{unnorm}}(\Delta) = egin{bmatrix} C_1 & C_2 \ 1 & 0 \ 1 & 0 \ 0 & 1 \ 0 & 1 \end{bmatrix} \mathsf{point}\; i \qquad Z(\Delta) = egin{bmatrix} C_1 & C_2 \ 1/\sqrt{3} & 0 \ 1/\sqrt{3} & 0 \ 1/\sqrt{3} & 0 \ 0 & 1/\sqrt{2} \ 0 & 1/\sqrt{2} \end{bmatrix}$$

Then Z is an orthogonal matrix (columns are orthornormal) and

$$\mathcal{L}(\Delta) = \operatorname{trace} Z^T D Z$$
 with $D_{ij} = ||x_i - x_j||^2$ (7)

Let $\mathcal{Z} = \{ Z \in \mathbb{R}^{n \times K}, K \text{ orthonormal } \}$

Proof of (7) Start from (2) and note that trace $Z^TAZ = \sum_k \sum_{i,j \in C_k} Z_{ik} Z_{jk} A_{ij} = \sum_k \sum_{i,j \in C_k} \frac{1}{|C_k|} A_{ij}$

19

The K-means cost in matrix form – the co-ocurrence matrix

$$n = 5, \ \Delta = (1, 1, 1, 2, 2),$$

$$X(\Delta) = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 & 0 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 & 0 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

- 1. $X(\Delta)$ is symmetric, positive definite, > 0 elements
- 2. $X(\Delta)$ has row sums equal to 1
- 3. trace $X(\Delta) = K$

$$||X(\Delta)||_F^2 = \langle X, X \rangle = K$$

 $X(\Delta) = Z(\Delta)Z^T(\Delta)$

$$2\mathcal{L}(\Delta) = \sum_{k=1}^{K} \frac{1}{|C_k|} \sum_{i,j \in C_k} ||x_i - x_j||^2 = \frac{1}{2} \langle D, X(\Delta) \rangle$$

with $D_{ij} = ||x_i - x_j||^2$

Spectral and convex relaxations

$$\begin{split} \mathcal{L}(\Delta) &=& \frac{1}{2} \left\langle D, X(\Delta) \right\rangle, \quad D = \text{ squared distance matrix } \in \mathbb{R}^{n \times n} \\ \mathcal{X} &=& \left\{ X \in \mathbb{R}^{n \times n}, \; X \succeq 0, X_{ij} \geq 0, \; \text{trace} \, X = K, \; X1 = 1 \, \right\} \\ \mathcal{Z} &=& \left\{ Z \in \mathbb{R}^{n \times K}, \; K \; \text{ orthonormal } \right\} \end{split}$$

Spectral relaxation of the K-means problem

$$\min_{Z \in \mathcal{Z}} \operatorname{trace} Z^T D Z$$

This is solved by an eigendecomposition $Z^* = \text{top } K$ eigenvectors of D

Convex relaxation of the K-means problem

$$\min_{X \in \mathcal{X}} \langle D, X \rangle$$

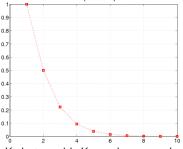
This is a Semi-Definite Program (SDP) Minimizing \mathcal{L}

- By K-means clustering Δ, local optima
- ▶ By convex/spectral relaxation matrix Z, X, global optimum

- ightharpoonup K-means cost $\mathcal{L}(\Delta) = \min_{\mu_{1:K}} \sum_k \sum_{i \in C_k} ||x_i \mu_k||^2$
- ightharpoonup K-medians cost $\mathcal{L}(\Delta) = \min_{\mu_{1:K}} \sum_{k} \sum_{i \in C_k} ||x_i \mu_k||$
- ▶ Correlation clustering cost $\mathcal{L}(\Delta) = \sum_k \sum_{i,j \in C_k} ||x_i x_j||^2$
- ▶ min Diameter cost $\mathcal{L}^2(\Delta) = \max_k \max_{i,j \in C_k} ||x_i x_j||^2$

Initialization of the centroids $\mu_{1:K}$

- ▶ Idea 1: start with K points at random
- ► Idea 2: start with *K* data points at random What's wrong with chosing *K* data points at random?



Probl K out of K1

The probability of hitting all $\,K\,$ clusters with $\,K\,$ samples approaches 0 when $\,K>5\,$

- ▶ Idea 3: start with K data points using Fastest First Traversal [] (greedy simple approach to spread out centers)
- ▶ Idea 4: k-means++ [] (randomized, theoretically backed approach to spread out centers)
- ► Idea 5: "K-logK" Initialization (start with enough centers to hit all clusters, then prune down to K)

For EM Algorithm [], for K-means [?]

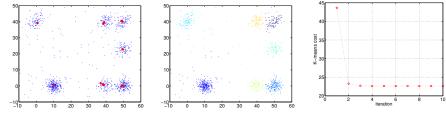
The "K-logK" initialization

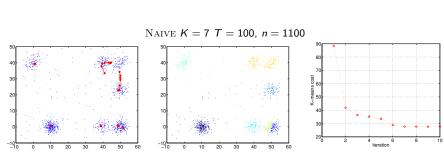
The K-logK Initialization (see also [?])

- 1. pick $\mu_{1:K'}^0$ at random from data set, where $K' = O(K \log K)$ (this assures that each cluster has at least 1 center w.h.p)
- 2. run 1 step of K-means
- 3. remove all centers μ_k^0 that have few points, e.g $|C_k| < \frac{n}{nK'}$
- 4. from the remaining centers select K centers by Fastest First Traversal
 - 4.1 pick μ_1 at random from the remaining $\{\mu_{1:K'}^0\}$
 - 4.2 for k=2: K, $\mu_k \leftarrow \underset{\mu_{kl}}{\operatorname{argmax}} \min_{j=1:k-1} ||\mu_{k'}^0 \mu_j||$, i.e next μ_k is furthest away from the already chosen centers
- 5. continue with the standard K-means algorithm

K-means clustering with K-logK Initialization

Example using a mixture of 7 Normal distributions with 100 outliers sampled uniformly K-LogK K = 7, T = 100, n = 1100, c = 1





Coresets approach to K-medians and K-means

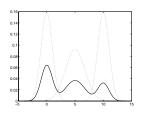
▶ A weighted subset of \mathcal{D} is a (K, ε) coreset iff for any $\mu_{1:K}$,

$$|\mathcal{L}(\mu_{1:K}, A) - \mathcal{L}(\mu_{1:K}; \mathcal{D})| \le \varepsilon \mathcal{L}(\mu_{1:K}; \mathcal{D})$$

- ▶ Note that the size of A is not K
- Finding a coreset (fast) lets use find fast algorithms for clustering a large D
 - "fast" = linear in n, exponential in ε^{-d} , polynomial in K
- ► Theorem[?], Theorem 5.7 One can compute an $(1+\varepsilon)$ -approximate K-median of a set of n points in time $\mathcal{O}(n+K^5\log^9 n+gK^2\log^5 n)$ where $g=e^{[C/\varepsilon\log(1+1/\varepsilon)]^{d-1}}$ (where d is the dimension of the data)
 - ► Theorem[?], Theorem 6.5 One can compute an (1+arepsilon)-approximate K-means of a set of n points in time $\mathcal{O}(n+K^5\log^9 n+K^{K+2}\varepsilon^{-(2d+1)}\log^{K+1}n\log^K\frac{1}{2}).$

Model based clustering: Mixture models

Mixture in 1D



Mixture in 2D

► The mixture density

$$f(x) = \sum_{k=1}^{K} \pi_k f_k(x)$$

- $f_k(x)$ = the components of the mixture
 - each is a density • f called mixture of Gaussians if $f_k = Normal_{\mu_k, \Sigma_k}$
- \bullet π_k = the mixing proportions,
- $\sum_{k} = 1^{K} \pi_{k} = 1, \ \pi_{k} \geq 0.$

▶ model parameters $\theta = (\pi_{1:K}, \mu_{1:K}, \Sigma_{1:K})$

The degree of membership of point i to cluster k

$$\gamma_{ki} \stackrel{\text{def}}{=} P[x_i \in C_k] = \frac{\pi_k f_k(x)}{f(x)} \text{ for } i = 1:n, k = 1:K$$

(8)

depends on x_i and on the model parameters

26

Criterion for clustering: Max likelihood

- ▶ denote $\theta = (\pi_{1:K}, \mu_{1:K}, \Sigma_{1:K})$ (the parameters of the mixture model)
- ▶ Define likelihood $P[\mathcal{D}|\theta] = \prod_{i=1}^n f(x_i)$
- ► Typically, we use the log likelihood

$$I(\theta) = \ln \prod_{i=1}^{n} f(x_i) = \sum_{i=1}^{n} \ln \sum_{k} \pi_k f_k(x_i)$$
 (9)

- denote $\theta^{ML} = \operatorname{argmax} I(\theta)$
- \bullet θ^{ML} determines a soft clustering γ by (8)
- \blacktriangleright a soft clustering γ determines a θ (see later)
- Therefore we can write

$$\mathcal{L}(\gamma) = -I(\theta(\gamma))$$

28

Algorithms for model-based clustering

Maximize the (log-)likelihood w.r.t θ

- directly (e.g by gradient ascent in θ)
- by the EM algorithm (very popular!)
- ▶ indirectly, w.h.p. by "computer science" algorithms

w.h.p = with high probability (over data sets)

29

The Expectation-Maximization (EM) Algorithm

Algorithm Expectation-Maximization (EM)

Input Data $\mathcal{D} = \{x_i\}_{i=1:n}$, number clusters K

tialize parameters $\pi_{1:K} \in \mathbb{R}, \ \mu_{1:K} \in \mathbb{R}^d, \ \Sigma_{1:K} \in \mathbb{R}^{d \times d}$ at random¹ terate until convergence

E step (Optimize clustering) for i = 1 : n, k = 1 : K

$$\gamma_{ki} = \frac{\pi_k f_k(x)}{f(x)}$$

M step (Optimize parameters) set $\Gamma_k = \sum_{i=1}^n \gamma_{ki}, \ k=1:K$ (number of points in cluster k)

$$\pi_k = \frac{\Gamma_k}{n}, \quad k = 1 : K$$

$$\mu_k = \sum_{i=1}^{n} \frac{\gamma_{ki}}{r_i} x_i$$

$$\mu_k = \sum_{i=1}^n \frac{\gamma_{ki}}{\Gamma_k} x_i$$

$$\Sigma_k = \frac{\sum_{i=1}^n \gamma_{ki} (x_i - \mu_k) (x_i - \mu_k)^T}{\Gamma_k}$$

- \blacktriangleright $\pi_{1:K}, \mu_{1:K}, \Sigma_{1:K}$ are the maximizers of $I_c(\theta)$ in (13)
- $\sum_{k} \Gamma_{k} = n$

 $^{^{1}\}Sigma_{k}$ need to be symmetric, positive definite matrices

The EM Algorithm – Motivation

Define the indicator variables

$$z_{ik} = \begin{cases} 1 & \text{if } i \in C_k \\ 0 & \text{if } i \notin C_k \end{cases} \tag{10}$$

denote $\bar{z} = \{z_{ki}\}_{k=1:K}^{i=1:n}$

► Define the complete log-likelihood

$$I_c(\theta, \bar{z}) = \sum_{i=1}^n \sum_{k=1}^K z_{ki} \ln \pi_k f_k(x_i)$$
 (11)

- \triangleright $E[z_{ki}] = \gamma_{ki}$

$$E[I_c(\theta, \bar{z})] = \sum_{i=1}^n \sum_{k=1}^K E[z_{ki}] [\ln \pi_k + \ln f_k(x_i)]$$
 (12)

$$= \sum_{i=1}^{n} \sum_{k=1}^{K} \gamma_{ki} \ln \pi_k + \sum_{i=1}^{n} \sum_{k=1}^{K} \gamma_{ki} \ln f_k(x_i)]$$
 (13)

▶ If γ_{kl} known, π_k, μ_k, Σ_k can be obtained by separately maximizing the terms of $E[I_c]$ (Maximization)

Brief analysis of EM

$$Q(\theta, \gamma) = \sum_{i=1}^{n} \sum_{k=1}^{K} \gamma_{ki} \ln \underbrace{\pi_{k} f_{k}(x_{i})}_{\theta}$$

- each step of EM increases $Q(\theta, \gamma)$
- Q converges to a local maximum
- \blacktriangleright at every local maxi of Q, θ \leftrightarrow γ are fixed point
- ▶ $Q(\theta^*, \gamma^*)$ local max for $Q \Rightarrow I(\theta^*)$ local max for $I(\theta)$
- under certain regularity conditions $\theta \longrightarrow \theta^{ML}$ [?]
- ▶ the E and M steps can be seen as projections [?]
- Exact maximization in M step is not essential.
 Sufficient to increase Q.
 This is called Generalized EM

Probablistic alternate projection view of EM[?]

- ▶ let z_i = which gaussian generated i? (random variable), $X = (x_{1:n}), Z = (z_{1:n})$
- ▶ Redefine *Q*

$$Q(\tilde{P}, \theta) = \mathcal{L}(\theta) - KL(\tilde{P}||P(Z|X, \theta))$$

where $P(X, Z|\theta) = \prod_{i} \prod_{k} P[z_i = k] P[x_i|\theta_k]$

 $\tilde{P}(Z)$ is any distribution over Z,

$$KL(P(w)||Q(w)) = \sum_{w} P(w) \ln \frac{P(w)}{Q(w)}$$
 the Kullbach-Leibler divergence

Then.

- ▶ E step $\max_{\tilde{\rho}} Q \Leftrightarrow KL(\tilde{P}||P(Z|X,\theta))$
- ▶ M step $\max_{\theta} Q \Leftrightarrow KL(P(X|Z, \theta^{old})||P(X|\theta))$
- ▶ Interpretation: KL is "distance", "shortest distance" = projection

The M step in special cases

▶ Note that the expressions for $\mu_k, \Sigma_k = \text{expressions}$ for μ, Σ in the normal distribution, with data points x_i weighted by $\frac{\gamma_{ki}}{\Gamma_i}$

	M step
general case	$\Sigma_k = \sum_{i=1}^n \frac{\gamma_{ki}}{\Gamma_k} (x_i - \mu_k) (x_i - \mu_k)^T$
$\Sigma_k = \Sigma$ "same shape & size" clusters	$\Sigma \leftarrow \sum_{i=1}^{n} \sum_{k=1}^{K} \gamma_{ki} (x_i - \mu_k) (x_i - \mu_k)^T$
$\Sigma_k = \sigma_k^2 I_d$ "round" clusters	$\sigma_k^2 \leftarrow \frac{\sum_{i=1}^n \gamma_{ki} x_i - \mu_k ^2}{d\Gamma_k}$
$\Sigma_k = \sigma^2 I_d$ "round, same size" clusters	$\sigma^2 \leftarrow \frac{\sum_{i=1}^n \sum_{k=1}^K \gamma_{ki} x_i - \mu_k ^2}{nd}$

Exercise Prove the formulas above

▶ Note also that K-means is EM with $\Sigma_k = \sigma^2 I_d$, $\sigma^2 \to 0$ Exercise Prove it

More special cases [?] introduce the following description for a covariance matrice in terms of volume, shape, alignment with axes (=determinant, trace, e-vectors). The letters below mean: I=unitary (shape, axes), E=equal (for all k), V=unequal

- EII: equal volume, round shape (spherical covariance)
- VII: varying volume, round shape (spherical covariance)
- EEI: equal volume, equal shape, axis parallel orientation (diagonal covariance)
- VEI: varying volume, equal shape, axis parallel orientation (diagonal covariance)
- EVI: equal volume, varying shape, axis parallel orientation (diagonal covariance)
- VVI: varying volume, varying shape, equal orientation (diagonal covariance)

 EEE: equal volume, equal shape, equal orientation (ellipsoidal covariance)
 - EEE: equal volume, equal shape, equal orientation (ellipsoidal covariance)

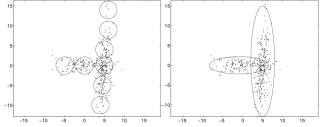
 EEV: equal volume, equal shape, varying orientation (ellipsoidal covariance)
 - VEV: varying volume, equal shape, varying orientation (ellipsoidal covariance)
- VEV: varying volume, equal shape, varying orientation (ellipsoidal covariance)

 VVV: varying volume, varying shape, varying orientation (ellipsoidal covariance)
- VVV: varying volume, varying shape, varying orientation (ellipsoidal covariance

(from [?])

EM versus K-means

- ▶ Alternates between cluster assignments and parameter estimation
- Cluster assignments γ_{ki} are probabilistic
- Cluster parametrization more flexible



- Converges to local optimum of log-likelihood Initialization recommended by K-logK method []
- ▶ Modern algorithms with guarantees (for e.g. mixtures of Gaussians)
 - Random projections
 - Projection on principal subspace [?]
 - ► Two step EM (=K-logK initialization + one more EM iteration) []

"Computer science" algorithms for mixture models

- Assume clusters well-separated
 - e.g $||\mu_k \mu_l|| \geq C \max(\sigma_k, \sigma_l)$
 - with $\sigma_k^2 = \max \text{ eigenvalue}(\Sigma_k)$
- ▶ true distribution is mixture
 - of Gaussians
 - of log-concave f_k 's (i.e. In f_k is concave function)
- ▶ then, w.h.p. (n, K, d, C)
 - we can label all data points correctly
 - ightharpoonup \Rightarrow we can find good estimate for θ

Even with (S) this is not an easy task in high dimensions

Because $f_k(\mu_k) \to 0$ in high dimensions (i.e there are few points from Gaussian k near μ_k)

(S)

The Vempala-Wang algorithm[?]

Idea

Let $\mathcal{H} = \operatorname{span}(\mu_{1:K})$ Projecting data on ${\cal H}$

ightharpoonup \approx preserves $||x_i - x_i||$ if $k(i) \neq k(j)$

- $\triangleright \approx \text{ reduces } ||x_i x_j|| \text{ if } k(i) = k(j)$
- ightharpoonup density at μ_k increases

(Proved by Vempala & Wang, 2004[?]) $\mathcal{H} \approx K$ -th principal subspace of data

Algorithm Vempala-Wang (sketch)

- 1. Project points $\{x_i\} \in \mathbb{R}^d$ on K-1-th principal subspace $\Rightarrow \{y_i\} \in \mathbb{R}^K$
- 2. do distance-based "harvesting" of clusters in $\{y_i\}$

Other "CS" algorithms

- ▶ [?] round, equal sized Gaussian, random projection
- ▶ [?] arbitrary shaped Gaussian, distances
- ▶ [?] log-concave, principal subspace projection

Example Theorem (Achlioptas & McSherry, 2005) If data come from K Gaussians, $n >> K(d + \log K)/\pi_{min}$, and

$$||\mu_k - \mu_I|| \ge 4\sigma_k \sqrt{1/\pi_k + 1/\pi_I} + 4\sigma_k \sqrt{K \log nK + K^2}$$

then, w.h.p. $1 - \delta(d, K, n)$, their algorithm finds true labels

Good

- theoretical guarantees
- no local optima
- suggest heuritics for EM K-means
 - project data on principal subspace (when d >> K)

But

- \triangleright strong assuptions: large separation (unrealistic), concentration of f_k 's (or f_k known), Kknown
- try to find perfect solution (too ambitious)

A fundamental result

The Johnson-Lindenstrauss Lemma For any $\varepsilon \in (0,1]$ and any integer n, let d' be a positive integer such that $d' \geq 4(\varepsilon^2/2 - \varepsilon^3/3)^{-1} \ln n$. Then for any set \mathcal{D} of n points in \mathbb{R}^d , there is a map $f: \mathbb{R}^d \to \mathbb{R}^{d'}$ such that for all $u, v \in V$,

$$(1-\varepsilon)||u-v||^2 \le ||f(u)-f(v)||^2 \le (1+\varepsilon)||u-v||^2 \tag{14}$$

Furthermore, this map can be found in randomized polynomial time.

- \triangleright note that the embedding dimension d' does not depend on the original dimension d, but depends on n, ε
- [?] show that: the mapping f is linear and that w.p. $1 \frac{1}{n}$ a random projection (rescaled) has this property
- ▶ their proof is elementary Projecting a fixed vector v on a a random subspace is the same as projecting a random vector v on a fixed subspace. Assume $v = [v_1, \dots, v_d]$ with $v \sim \text{i.i.d.}$ and let $\tilde{v} = \text{projection of } v \text{ on axes } 1:d'$. Then $E[||\tilde{v}||^2 = d'E[v_i^2] = \frac{d'}{d}E[||v||^2]$. The next step is to show that the variance of $||\tilde{v}||^2$ is very small when d' is sufficiently large.

A two-step EM algorithm [?]

Assumes K spherical gaussians, separation $||\mu_k^{true} - \mu_{k'}^{true}|| \ge C\sqrt{d}\sigma_k$

- 1. Pick $K' = \mathcal{O}(K \ln K)$ centers μ_k^0 at random from the data
- 2. Set $\sigma_k^0 = \frac{d}{2} \min_{k \neq k'} ||\mu_k^0 \mu_{k'}^0||^2$, $\pi_k^0 = 1/K'$
- 3. Run one E step and one M step $\Longrightarrow \{\pi_k^1, \mu_k^1, \sigma_k^1\}_{k=1:K'}$
- 4. Compute "distances" $d(\mu_k^1, \mu_{k'}^1) = \frac{||\mu_k^1 \mu_{k'}^1||}{\sigma_k^1 \sigma_k^1}$
- 5. Prune all clusters with $\pi_k^1 \leq 1/4K'$
- 6. Run Fastest First Traversal with distances $d(\mu_k^1, \mu_{k'}^1)$ to select K of the remaining centers. Set $\pi_{k}^{1} = 1/K$.
- 7. Run one E step and one M step $\Longrightarrow \{\pi_{\nu}^2, \mu_{\nu}^2, \sigma_{\nu}^2\}_{k=1:K}$

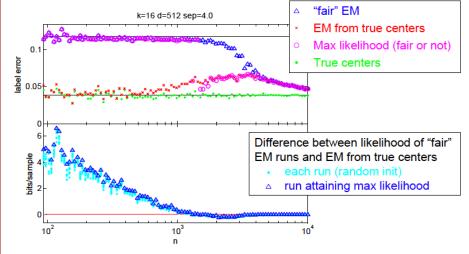
eorem. For any $\delta,arepsilon>0$ if d large, n large enough, separation $C\geq d^{1/4}$ the <code>Two step EM</code> algorithm obtains centers μ_k so that

$$||\mu_k - \mu_k^{true}|| \le ||\operatorname{mean}(C_k^{true}) - \mu_k^{true}|| + \varepsilon \sigma_k \sqrt{d}$$

Experimental exploration [?]

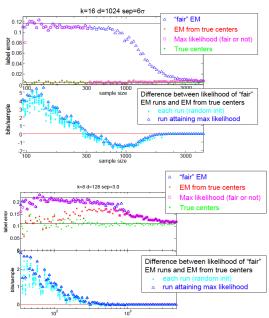
- ► High d
- ▶ True model: centers μ_k^* at corners of hypercube, $\Sigma_k^* = \sigma I_d$ spherical equal covariances, $\pi_k^* = 1/K$
- ▶ n, K, separation variable
- lacktriangle Algorithm: EM with Power initialization and projection on (K-1)-th principal subspace

Experimental exploration [?] (2)



figures from [?]

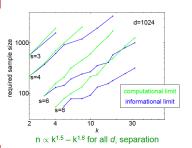
Experimental exploration [?] (3)



figures from [?]

Experimental exploration [?] (4)

▶ Practical limits vs theoretical limits



Dasgupta 1999	s > 0.5d½	$n = \Omega(k^{\log^2 1/\delta})$	Random projection, then mode finding
Dagupta Schulamn 2000	$s = \Omega(d^{1/4})$ (large d)	n = poly(k)	2 round EM with Θ(k·logk) centers
Arora Kannan 2001	$s = \Omega(d^{1/4} \log d)$		Distance based
Vempala Wang 2004	$s = \Omega(k^{1/4} \log dk)$	$n = \Omega(d^3k^2log(dk/s\delta))$	Spectral projection, then distances

General mixture of Gaussians: [Kannan Salmasian Vempala 2005] $s=\Omega(k^{5/2}log(kd)), \quad n=\Omega(k^2d\cdot log^5(d))$ [Achliopts McSherry 2005] $s>4k+o(k), \quad n=\Omega(k^2d)$

Selecting K

- ▶ Run clustering algorithm for $K = K_{min} : K_{max}$
 - lacktriangledown obtain $\Delta_{\mathit{K}_{\mathit{min}}}, \ldots \Delta_{\mathit{K}_{\mathit{max}}}$ or $\gamma_{\mathit{K}_{\mathit{min}}}, \ldots \gamma_{\mathit{K}_{\mathit{max}}}$
 - choose best Δ_K (or γ_K) from among them
- lackbox Typically increasing $K\Rightarrow \operatorname{cost} \mathcal{L}$ decreases
 - (\mathcal{L} cannot be used to select K)
 - $lackbox{Need to "penalize" \mathcal{L} with function of number parameters}$

Selecting *K* for mixture models

The BIC (Bayesian Information) Criterion

- ▶ let θ_K = parameters for γ_K
- ▶ let $\#\theta_K$ =number independent parameters in θ_K
 - ightharpoonup e.g for mixture of Gaussians with full Σ_k 's in d dimensions

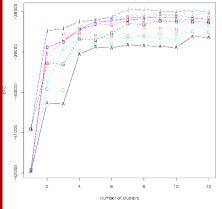
$$\#\theta_K = \underbrace{K-1}_{\pi_{1:K}} + \underbrace{Kd}_{\mu_{1:K}} + \underbrace{Kd(d-1)/2}_{\Sigma_{1:K}}$$

define

$$BIC(\theta_K) = I(\theta_K) - \frac{\#\theta_K}{2} \ln n$$

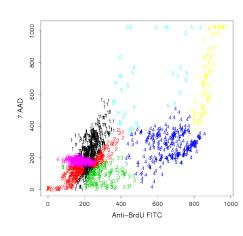
- ▶ Select K that maximizes $BIC(\theta_K)$
- lacktriangledown selects true K for $n o\infty$ and other technical conditions (e.g parameters in compact set)
- ightharpoonup but theoretically not justified (and overpenalizing) for finite n

Number of Clusters vs. BIC EII (A), VII (B), EEI (C), VEI (D), EVI (E), VVI (F), EEE (G), EEV (H), VEV (I), VVV (J)

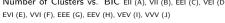


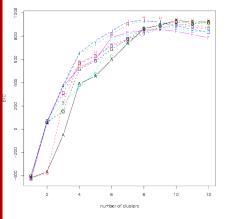
(from [?])

EEV, 8 Cluster Solution

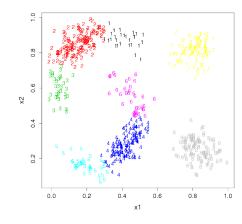


Number of Clusters vs. BIC EII (A), VII (B), EEI (C), VEI (D),





EEV, 8 Cluster Solution



(from [?])