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Lecture VII: Classic and Modern Data Clustering — Part |
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Paradigms for clustering

Parametric clustering algorithms (K given)
Cost based / hard clustering

Basic algorithms
K-means clustering and the quadratic distortion
Model based / soft clustering

Issues in parametric clustering
Selecting K

Reading: 14.3Ch 11.[1], 11.2.1-3, 11.3, Ch 25



What is clustering? Problem and Notation

November, 2020

> Informal definition Clustering = Finding groups in data
> Notation D = {xi, X2, ... Xn} a data set

n = number of data points
K = number of clusters (K << n)
A = {G,G,...,Ck} a partition of D into disjoint subsets
k(i) = the label of point i
L(A) = cost (loss) of A (to be minimized)

> Second informal definition Clustering = given n data points, separate them into K
clusters
» Hard vs. soft clusterings
> Hard clustering A: an item belongs to only 1 cluster
> Soft clustering v = {vki }ics%
vk = the degree of membership of point i to cluster k

Z’yk; =1 foralli
Kk

(usually associated with a probabilistic model)
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(from [7])
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Paradigms

Depend on type of data, type of clustering, type of cost (probabilistic or not), and constraints
(about K, shape of clusters)
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» Data = vectors {x;} in RY
Parametric Cost based [hard)]
(K known) Model based [soft]

Non-parametric  Dirichlet process mixtures [soft]
(K determined  Information bottleneck [soft]
by algorithm) Modes of distribution [hard]
Gaussian blurring mean shift[?] [hard]
> Data = similarities between pairs of points [Sj]; j=1.n, Sj = Sji > 0 Similarity based
clustering

Graph partitioning spectral clustering [hard, K fixed, cost based]

typical cuts [hard non-parametric, cost based]
Affinity propagation  [hard/soft non-parametric]
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Classification vs Clustering
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Classification Clustering
Cost (or Loss) £ Expectd error many! (probabilistic or not)
Supervised Unsupervised
Generalization Performance on new Performance on current
data is what matters data is what matters
K Known Unknown
“Goal” Prediction Exploration Lots of data to explore!
Stage Mature Still young

of field
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Parametric clustering algorithms

» Cost based

> Single linkage (min spanning tree)
»> Min diameter

> Fastest first traversal (HS initialization)

November, 2020

> K-medians
> K-means

> Model based (cost is derived from likelihood)
> EM algorithm
> “Computer science” /" Probably correct” algorithms
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Single Linkage Clustering
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Algorithm Single-Linkage

Input Data D = {x;};=1.,, number clusters K
1. Construct the Minimum Spanning Tree (MST) of D
2. Delete the largest K — 1 edges

> Cost L(A) = —miny ;s distance(Cy, Cxs)
where distance(A, B) = argmin ||x — y||
x€EA,yEB

> Running time O(n?) one of the very few costs £ that can be optimized in polynomial time
> Sensitive to outliers!
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Minimum diameter clustering
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> Cost L(A) = max, max ||x; — x|
ij€Cx
—————
diameter
> Mimimize the diameter of the clusters
» Optimizing this cost is NP-hard
» Algorithms
> Fastest First Traversal [?] — a factor 2 approximation for the min cost
For every D, FFT produces a A so that
L < L(A) < 2L%

> rediscovered many times
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Algorithm Fastest First Traversal
Input Data D = {x;}i=1.n, number clusters K
defines centers uy.x € D
(many other clustering algorithms use centers)
1. pick p1 at random from D
2. for k=2:K

i+ argmax distance(x;, {p1:k—1})
D

November, 2020

3. for i =1: n (assign points to centers)
k(i) = k if pk is the nearest center to x;
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K-medians clustering

> Cost L(A) = >, > i € Cillxi — pkl| with py € D
> (usually) assumes centers chosen from the data points (analogy to median)
Exercise Show that in 1D argmin Y, |xi — | is the median of {x;}
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"
> optimizing this cost is NP-hard

> has attracted a lot of interest in theoretical CS (general from called “Facility location”

£
s
a
1
=
3
2
1]
o
s
2
&
=]
£
3
-]
]
2
°
£
s
2
@
a
=
o
>
o)
5
2
]
3
3
B
2
]
4
3
o
o
o
-
>
)
=
<
B
7




Integer Programming Formulation of K-medians

> Define djj = [|xi — xj||,
ujj = 1 iff point i in cluster with center x; (0 otherwise),
yj = 1 iff point j is cluster center (0 otherwise)

November, 2020

min Zij djjujj

uy

s.t. Zj uj = 1 point i is in exactly 1 cluster foralli
ijj < k there are at most k clusters
uj <y point i can only belong to a center forall /, j

Linear Programming Relaxation of K-medians

> Define djj, y; = 1, ujj as before, but y;, uj € [0, 1]

(LP) Iznyn > dipuij
st D uj
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Algorithm K-Medians (variant of [?])
Input Data D = {x;}i=1.n, number clusters K
1. Solve (LP)

November, 2020

obtain fractionary “centers” yi., and “assignments” u1. 1.5
2. Sample K centers 1 ... ux by

> Pluk = pointj] o< y; (without replacement)
3. Assign points to centers (deterministically)

k(i) = argl{nin [Ixi — gkl

> Guarantees (Agarwal)

> Given tolerance ¢, confidence §, K’ = K(1+ 1)In 2, Ay/ obtained by K-medians with K’
centers
L(Bgr) < Q+e)L
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K-means clustering

Algorithm K-Means|?]

Input Data D = {x;};=1.,, number clusters K

ialize centers py, o, ... ux € RY at random
erate until convergence

1. for i = 1: n (assign points to clusters = new clustering)

k(i) = argmin ||x; — pu|

2. for k = 1: K (recalculate centers)

1
Mk = T Z Xi
Kl iecy
» Convergence
> if A doesn't change at iteration m it will never change after that

> convergence in finite number of steps to local optimum of cost £ (defined next)
> therefore, initialization will matter

(©)



The K-means cost
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K
L) = > Ik — il 2

k=1i€Cy

» K-means solves a least-squares problem
> the cost L is called quadratic distortion

Proposition The K-means algorithm decreases £(A) at every step.

Sketch of proof

> step 1: reassigning the labels can only decrease £
> step 2: reassigning the centers ji; can only decrease £
because p as given by (1) is the solution to

pe = min Y T — plf? ®3)

d
HeRT e,
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Equivalent and similar cost functions
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» The distortion can also be expressed using intracluster distances
K1
2
L) =Y — 3 Ik -l )
k=1 "k jjec,
» Correlation clustering is defined as optimizing the related criterion
K
2
La) =3 > lxi—xll
k=1ijECk

» This cost is equivalent to the (negative) sum of (squared) intercluster distances

K
L(A) = — Z Z Z [|x; — xj||? + constant (5)

k=1i€CxjZCk
Proof of (6) Replace pix as expressed in (1) in the expression of L, then rearrange the terms

n n
2
Proof of (5) 55, S jcc, [l — 512 = D23 1 = xilP = Sy Sice, See, I — 31

i=1 j=1

N ——
independent of A
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The K-means cost in matrix form — the assignment matrix

» L as sum of squared intracluster distances
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1

K
L(A) Z I Z lIxi = ;112 (6)
k=1 Jeq

>
> Define the assignment matrix associated with A by Z(A)
Let A = {C ={1,2,3}, G = {4,5}}

G G G G
10 1/? 0
unnorm — ]‘ 0 — ]‘/ 3 0
z (A) = 1 0 point i Z2(A) = 1/\/§ 0
0 1 0 1/V2
0 1 0 1/4/2

Then Z is an orthogonal matrix (columns are orthornormal) and
L(A) = traceZTDZ with Dy = ||x; — XJ||2 (7)
Let Z = {Z € R"™K, K orthonormal }

Proof of (7) Start from (2) and note that trace Z7AZ = 3, Z,jeck Zy ZyAjj = 32 Zijeck ﬁAff
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The K-means cost in matrix form — the co-ocurrence matrix
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n=5 A=(1,1,1,2,2), X(A) =

O O wl-wl-wl-
O O wlI-wWI-WI-
O O wl-wl-wl-
NI O O O
NI O O O

1. X(A) is symmetric, positive definite, > 0 elements
2. X(A) has row sums equal to 1
3. trace X(A) = K

IX(A)2 = (X.X) = K
X(B) = Z(0)Z7(A)

K
20(8) = 3o 1d 3 Ik —5lP = 5(0.X(2))

with Dj = ||x; 7XJ'||2

£
s
o
I
S
3]
2
a
]
s
b
5
[
£
3
°
o
2
-
2
s
@
7
a
&
(o]
>
2
=
3
5
3
=
B
2
o
z
5
o
o
o
=
>
®
=
<
=
n




Spectral and convex relaxations
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1
L(A) —(D, X(A) D squared distance matrix €

Y {X eR X = 0,X;; >0, traceX = K, X1 =1}

nX K ¢
, K orthonormal }

Spectral relaxation of the K-means problem

min trace ZT DZ
ZeZ
This is solved by an eigendecomposition Z* = top K eigenvectors of D

Convex relaxation of the K-means problem

in (D, X
)ryelg((,>

This is a Semi-Definite Program (SDP)
Minimizing £
» By K-means — clustering A, local optima
> By convex/spectral relaxation — matrix Z, X, global optimum
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Symmetries between costs
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v

K-means cost £(A) = minuy ¥ Yiee, Il — sl
K-medians cost L(A) = ming >4 > iec, X — pxl]

v

v

Correlation clustering cost L(A) = 32,37, icc, IIxi — xi|?

> min Diameter cost £L2(A) = max, max;jcc, ||xi — x;||?
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Initialization of the centroids p1.x

> Idea 1: start with K points at random
> Idea 2: start with K data points at random

What's wrong with chosing K data points at random?
Prob[ K out of K |

November, 2020

0.1 ]

0 2 4 6 8 10
The probability of hitting all K clusters with K samples approaches 0 when K > 5
> Idea 3: start with K data points using Fastest First Traversal [] (greedy simple approach
to spread out centers)
> |dea 4: k-means++ [| (randomized, theoretically backed approach to spread out centers)
> Idea 5: “K-logK” Initialization (start with enough centers to hit all clusters, then prune
down to K)
For EM Algorithm [], for K-means [?]

£
s
a
1
=
3
2
1]
o
s
2
&
=]
£
3
<
]
2
°
£
s
2
@
a
=
o
>
o)
5
2
]
3
3
B
2
]
4
s
o
o
o
-
>
)
=
<
B
7




The “K-logK" initialization

The K-logK Initialization (see also [?])
1. pick ,u,(l)_K, at random from data set, where K/ = O(K log K)
(this assures that each cluster has at least 1 center w.h.p)
2. run 1 step of K-means
3. remove all centers ,u.?( that have few points, e.g [Cy| < &7
4. from the remaining centers select K centers by Fastest First Traversal
4.1 pick py at random from the remaining {[.LE:K,}

November, 2020

42 for k =2: K, px + arg{)nax minj_y.x_1 ||y2, — wjll, i.e next py is furthest away from the
Hoypr
already chosen centers

5. continue with the standard K-means algorithm
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K-means clustering with K-logK Initialization

Example using a mixture of 7 Normal distributions with 100 outliers sampled uniformly

K-LocK K =7, T =100, n=1100, c =1
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Coresets approach to K-medians and K-means
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> A weighted subset of D is a (K, ¢) coreset iff for any p1.x,
[L(p1:K, A) — L(p1:k; D) < eL(p1:x; D)

> Note that the size of A is not K
> Finding a coreset (fast) lets use find fast algorithms for clustering a large D
» “fast” = linear in n, exponential in s_d, polynomial in K

> Theorem[?], Theorem 5.7
One can compute an (1 + €)-approximate K-median of a set of n points in time
O(n + K%log® n + gK? log® n) where g = el€/= log(1+1/¢)] ™
data)

> Theorem[?], Theorem 6.5
One can compute an (1 + e?—approximate K-means of a set of n points in time
O(n+ K®log? n+ KK+2g=(2d+1) |ogK+1 gk %)

(where d is the dimension of the
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Model based clustering: Mixture models
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Mixture in 1D
» The mixture density

_ K
¥ ) Fx) = > mefi(x)
1 k=1
;ﬂ 0.14f
g o » fi(x) = the components of the mixture
© o > each is a density
g oo > f called mixture of Gaussians if fi = Normal,, v,
£ 0o » 7, = the mixing proportions,
S K
$ ot =1 =1, m >0.
2 0 g i s » model parameters 0 = (71.x, pU1:Kk, T1:K)
§ » The degree of membership of point i to cluster k
s
] i fe(x .
: ’yk,-défP[x,-ECk]:L”forl:l:n,k:l:K
S Mixture in 2D f(x)
E (8)
o
z 2 > depends on x; and on the model parameters
o
S .
2 0
&




Criterion for clustering: Max likelihood
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v

denote 6 = (m1.k, p1:k, X1:x) (the parameters of the mixture model)
Define likelihood P[D|6] = [/, f(xi)
Typically, we use the log likelihood

10) = n[]f() = D > mefi(xi) (9)
i=1 i=1 k

denote oML = argglaxl(e)

vy

v

v

OML determines a soft clustering v by (8)
a soft clustering v determines a 0 (see later)
Therefore we can write

vy

L(y) = —1(8(7))
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Algorithms for model-based clustering

Maximize the (log-)likelihood w.r.t 0

November, 2020

> directly - (e.g by gradient ascent in 6)
> by the EM algorithm (very popular!)
» indirectly, w.h.p. by "computer science” algorithms

w.h.p = with high probability (over data sets)
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The Expectation-Maximization (EM) Algorithm

Algorithm Expectation-Maximization (EM)
Input Data D = {x;};=1.,, number clusters K

ialize parameters m.x € R, p1.x € RY, Y. € RY%9 at random?!
erate until convergence

E step (Optimize clustering) fori=1:n, k=1: K

) mific(x)
Yki f(X)
M step (Optimize parameters) set ', = 3.7, ki, k = 1: K (number of points in cluster k)
Ik
g = —, k=1:K
n
N
Kk = X
%
- i il = )06 — )"
k

Tk

> Tk, H1:K, 21:k are the maximizers of Ic(6) in (13)
> Zk Mk =n

15, need to be symmetric, positive definite matrices
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The EM Algorithm — Motivation

> Define the indicator variables
o 1 ifie G
Zik =V 0 ifigCy
denote z = {z4}iZL"
> Define the complete Iog-llkellhood

n K
lc(‘97 Z) = Z Z Zi In ﬂ'kfk(X,')
i=1 k=1
> Elzii] = vui
» Then

E[l-(0,2)]

n K
D> 0> Elzillinmi + In fil(x)]
k=1

i=1

n K n K
SO il me+ DD i Infi(xi)]
k=1

i=1 i=1 k=1

(10)

(11)

(12)

(13)



> If 6 known, 7 can be obtained by (8)
(Expectation)

> If vk known, 7y, ik, Xk can be obtained by separately maximizing the terms of E[lc]
(Maximization)
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Brief analysis of EM

vyVyVYVYYVYYyYyY

n K

0, i In i (xi
QMO ) = DD vuiInmifi(xi)

i=1 k=1

each step of EM increases Q(6,~)

Q converges to a local maximum

at every local maxi of Q, 6 <> ~ are fixed point
Q(0*,~*) local max for Q = /(6*) local max for /(0)
under certain regularity conditions § — ML [7]

the E and M steps can be seen as projections [?]

Exact maximization in M step is not essential.
Sufficient to increase Q.
This is called Generalized EM



Probablistic alternate projection view of EM[?]

> let z; = which gaussian generated i? (random variable), X = (x1.n), Z = (z1:n)
» Redefine Q

November, 2020

Q(P,6) = L(6) — KL(P||P(Z|X,0)
where P(X, Z|0) =T1; 1, Plzi = k]P[xi|0«]
B(Z) is any distribution over Z,

KL(P(W)[|Q(w)) = ¥, P(w) In G} the Kullbach-Leibler divergence

Then,
> E step maxz Q & KL(P||P(Z|X,6)
> M step maxg Q & KL(P(X|Z,6°)||P(X|6))
> Interpretation: KL is “distance”, “shortest distance” = projection
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The M step in special cases

November, 2020

> Note that the expressions for uyx, Xy = expressions for u, ¥ in the normal distribution,
with data points x; weighted by ?—‘;’
M step
general case = S 0 )0 — )T
Y, =% s Sy kg ki — ) (i — ) T
n
“same shape & size" clusters
_ 2 2 =y il i — el
Yk = opla op =R
“round” clusters
_ 2 2 S SRy vl i — el P
Yy = o°ly 0% — L nd

“round, same size" clusters

Exercise Prove the formulas above

> Note also that K-means is EM with ¥, = ¢2/y, o2

— 0 Exercise Prove it
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More special cases [?] introduce the following description for a covariance matrice in terms of volume, shape, alignment with axes (=determinant, trace,
e-vectors). The letters below mean: I=unitary (shape, axes), E=equal (for all k), V=unequal

Ell: equal volume, round shape (spherical covariance)

VII: varying volume, round shape (spherical covariance)

EEl: equal volume, equal shape, axis parallel orientation (diagonal covariance)
VEI: varying volume, equal shape, axis parallel orientation (diagonal covariance)
EVI: equal volume, varying shape, axis parallel orientation (diagonal covariance)
VVI: varying volume, varying shape, equal orientation (diagonal covariance)
EEE: equal volume, equal shape, equal orientation (ellipsoidal covariance)

EEV: equal volume, equal shape, varying orientation (ellipsoidal covariance)
VEV: varying volume, equal shape, varying orientation (ellipsoidal covariance)
VVV: varying volume, varying shape, varying orientation (ellipsoidal covariance)

YYVYVYVVVVYVY

(from [?])
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EM versus K-means

> Alternates between cluster assignments and parameter estimation
> Cluster assignments ~yy; are probabilistic
> Cluster parametrization more flexible

15

» Converges to local optimum of log-likelihood
Initialization recommended by K-logK method []

> Modern algorithms with guarantees (for e.g. mixtures of Gaussians)
» Random projections
> Projection on principal subspace [?]
> Two step EM (=K-logK initialization + one more EM iteration) []



" Computer science” algorithms for mixture models

» Assume clusters well-separated (S)
> eg ||l — wll = Cmax(ok, o)
> with o} = max eigenvalue(Xy)

> true distribution is mixture

November, 2020

> of Gaussians
> of log-concave f;'s (i.e. Infy is concave function)

> then, w.h.p. (n,K,d, C)
> we can label all data points correctly
> = we can find good estimate for 6
Even with (S) this is not an easy task in high dimensions
Because fx(pk) — 0 in high dimensions (i.e there are few points from Gaussian k near pux)
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The Vempala-Wang algorithm|[?]

Idea

November, 2020

Let # = span(yi1.x)

Projecting data on H
> = preserves ||x; — x;j|| if k(i) # k(j)
> = reduces ||x; — x;|| if k(i) = k(j)
> density at ju increases

(Proved by Vempala & Wang, 2004[?]) H ~ K-th principal subspace of data

Algorithm Vempala-Wang (sketch)
1. Project points {x;} € RY on K — 1-th principal subspace = {y;} € RX
2. do distance-based " harvesting” of clusters in {y;}
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Other "CS" algorithms

November, 2020

> [?] round, equal sized Gaussian, random projection
> [?] arbitrary shaped Gaussian, distances
> [?] log-concave, principal subspace projection

Example Theorem (Achlioptas & McSherry, 2005) If data come from K Gaussians,
n>> K(d + log K)/mmin, and

ek — will > 4ok\/1/m + 1/ + 4oi/ K log nK + K2

then, w.h.p. 1 —§(d, K, n), their algorithm finds true labels
Good

> theoretical guarantees

> no local optima
> suggest heuritics for EM K-means

> project data on principal subspace (when d >> K)
But
» strong assuptions: large separation (unrealistic), concentration of f's (or fx known), K

known
> try to find perfect solution (too ambitious)
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A fundamental result

The Johnson-Lindenstrauss Lemma For any ¢ € (0,1] and any integer n, let d’ be a positive
integer such that d’ > 4(¢2/2 —£3/3)~ Inn. Then for any set D of n points in RY, there is a

map f : RY — R4 such that for all u,vevV,
(1= )llu—vI? <If(u) = FW)II? < (L +e)lJu—v|[? (14)

Furthermore, this map can be found in randomized polynomial time.

> note that the embedding dimension d’ does not depend on the original dimension d, but
depends on n, €

> [?] show that: the mapping f is linear and that w.p. 1 — % a random projection (rescaled)
has this property

> their proof is elementary Projecting a fixed vector v on a a random subspace is the same as projecting a random vector v on a
fixed subspace. Assume v = [vq, ... vg] with v ~ i.i.d. and let ¥ = projection of v on axes 1 : d’. Then

’
E[l9]12 = d’ E[vjz] = %EH |v||2]. The next step is to show that the variance of ||#] |2 is very small when d’ is sufficiently large.
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A two-step EM algorithm [?]

oUl A WM

eorem

Assumes K spherical gaussians, separation ||pj"® — ptre > CVdoy

. Pick K’ = O(K In K) centers p{ at random from the data
. Set 0 = & minguer |1 — 10, (12, 79 = 1/K’

Run one E step and one M step :> {ﬂk,uk,ai}kzl:,(/

) Hﬂk Hk/H

Compute “distances” d(,uk,,uk, =
k

_gk/

. Prune all clusters with 7} < 1/4K’
. Run Fastest First Traversal with distances d(,ui,,ui,) to select K of the remaining centers.

Set mp = 1/K.

. Run one E step and one M step —- {ﬂz,ui,az}kzl;;{

For any 8,& > 0 if d large, n large enough, separation C > d'/4 the Two step EM
algorithm obtains centers i so that

Il = 1| < |Imean(C{®) — pf*e|| + couV/d



Experimental exploration [?]

November, 2020

> High d

> True model: centers uj at corners of hypercube, ¥} = oly spherical equal covariances,
e =1/K

» n, K, separation variable

> Algorithm: EM with Power initialization and projection on (K — 1)-th principal subspace
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Experimental exploration [?] (2)

k=16 d=512 sep=4.0

a  “fair” EM

label error

EM from true centers
Max likelihood (fair or not)

True centers

Difference between likelihood of “fair’
EM runs and EM from true centers

2 run attaining max likelihood

0
sl LS
&
B A A
L Ed Bls
g:“ EAA’Q*LA%
&
2,0 b
DI
10°

figures from [?]




Experimental exploration [?] (3)

k=16 d=1024 sep=6c

November, 2020

012l & “fair’ EM
o)

ol mot'u%wm’hAAAM ~ EM from true centers
Soos AAAAAA 0 Max likelihood (fair or not)
° +  True cen
50.06]

2
T 04 1
0.02]

0100, & & 300 1000

5" anluiat sample size Difference between likelihood of “fair”
o a2 A% EM runs and EM from true centers
s 3 Alatff,
8 2- MAAA&A 4 run attaining max likelihood
@ 1 lgy, 3
] o 2

N
- AAAA M R
“00 300 1000 3000
sample size
& “fair EM
k=8 ¢=128 sep=3.0 = EM from true centers

Max likelihood (fair or not)

+  True centers

label error

- Difference between likelihood of “fair”
giay & EM runs and EM from true centers
E al a2
3 @
g1 ailt 2 run attaining max likelihood
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Experimental exploration [?] (4)

» Practical limits vs theoretical limits

November, 2020

Dasgupta |s > 0.5d% n= Q(klﬂg2 1s) Random projection,
1999 then mode finding
5 Dagupta | s = (d%) n = poly(k) 2 round EM with
N Schulamn ®(klogk) centers
o 8 1000 2000 (large d) (k-logk)
]
2 Arora s =0Q(d%log d) Distance based
£ Kannan
§ 2001
?’ " p— Vempala |s=0Q(k*logdk) |n= Spectral projection,
8 utational limit Wan -
informational limit 20049 Q(dakZIOQ(deSS)) then distances
5 i 1o 3 General mixture of Gaussians:
k [Kannan Salmasian Vempala 2005] s=Q(k52log(kd)), n=Q(k2d-log5(d))
n o k5 — k'8 for all d, separation [Achliopts McSherry 2005] s>4k+o(k), n=Q(k’d)

figures from [?]
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Selecting K

» Run clustering algorithm for K = Kpin : Kmax
> obtain AKmin’ . AKmax OF YKppins + + + VKmax
> choose best Ak (or yx) from among them

> Typically increasing K = cost L decreases

» (L cannot be used to select K)
> Need to "penalize” £ with function of number parameters

November, 2020
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Selecting K for mixture models

The BIC (Bayesian Information) Criterion

> let 8 = parameters for i
> let #0x=number independent parameters in Ok
> e.g for mixture of Gaussians with full X4's in d dimensions

0k =K —1+ Kd +Kd(d —1)/2
#0k + + Kd( )/

R e
1K Hi:K Tk
» define 0
BIC(0x) = I(0k) — %Inn

v

Select K that maximizes BIC(0x)
selects true K for n — 00 and other technical conditions (e.g parameters in compact set)
but theoretically not justified (and overpenalizing) for finite n

vy



Number of Clusters vs. BIC Eil (A), VIl (B), EEI (C), VEI (D),

EEV, 8 Cluster Solution
EVI (E), WVI (F), EEE (G), EEV (H), VEV (I), VWV (J)
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