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Chapter 1

Introduction

1.1 Why should a computer scientist or engineer
learn probability?

• Computers were designed from the beginning to be “thinking machines”. They
are billions times better than people at Boolean logic, arithmetic, remembering
things, communicating with other computers. But they are worse than most
people at understanding even simple images, speech. Why this difference?

One reason is that most real-life reasoning is “reasoning in uncertainty”. Even
if we didn’t admit uncertainty exists (in fact it’s something relative or even
subjective!) we still must recognize this: if we want to reason by rules in real
life, we must provide for exceptions. If there are many rules, and every rule has
exceptions, any working reasoning system must specify how the exceptions to
rule A interact with the exceptions to rule B and so on. This can become very
complicated! And it can become too much work even for a computer. This is
why there are so few expert systems deployed in practice.

• Computers are used to collect and store data. Computer scientists are required
to help analyze these data, draw conclusions from them or make predictions.

Computer scientists are of course not the only ones who work on this. Scien-
tists and statisticians have been analyzing data for much longer. Why should
computer scientists be called to help? Because when the data sets are large,
specific problems occur that need understanding of data bases, algorithms, etc.
Did you ever encounter some examples?

In fact, in recent years, CS has made some really important contributions to

11



12 CHAPTER 1. INTRODUCTION

statistics, especially in the areas of machine learning and probabilistic reasoning
(belief networks).

• Computer systems are not deterministic. Think of: delays in packet routing,
communication through a network in general, load balancing on servers, memory
allocation and garbage collection, cache misses.

• Computers interact with people, and people are non-deterministic as well.
Can you give some examples? [Graphics, speech synthesis.]

1.2 Probability and statistics in computer sci-
ence

Probability and statistics have started to be used in practically all areas of
computer science:

• Algorithms and data structures – randomized algorithms and proofs
using probability in deterministic algorithms. For example: random-
ized sort, some polynomial time primality testing algorithms, randomized
rounding in integer programming.

• Compilers – modern compilers optimize code at run time, based on col-
lecting data about the running time of different sections of the code

• Cryptography

• Data bases – to maximize speed of access data bases are indexed and
structured taking into account the most frequent queries and their respec-
tive probability

• Networking and communications – computer networks behave non-
deterministically from the point of view of the user. The probabilistic
analysis of computer networks is in its beginnings.

• Circuit design – both testing the functionality of a circuit and testing
that a given chip is working correctly involve probabilistic techniques

• Computer engineering – cache hits and misses, bus accesses, jumps in
the code, interruptions are all modeled as random events from the point
of view of the system designer.

• Artificial intelligence – probabilistic methods are present and play a
central role in most areas of AI. Here are just a few examples: machine
learning, machine vision, robotics, probabilistic reasoning, planning, nat-
ural language understanding, information retrieval.
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• Computer graphics – machine learning techniques and their underlying
statistical framework are starting to be used in graphics; also, making
rendered scenes look “natural” is often done by injecting a certain amount
of randomness (for example rendering of clouds, smoke, fields with grass
and flowers, tree foliage)

1.3 Why is probability hard?

• Probability involves math.

• Even if you like math, you may hate probability. A science which deals with
gambling, failures and noise. Who would ever like this? We computer scientists
like clear, predictable things, like computers. We like the numbers 0 and 1 and
these are the only ones we need. Or is it so?

• Probability attempts to describe uncertainty in a general way. This is not
an easy task. Probability is both abstract and complex. “Make everything as
simple as possible, but not simpler.” (Einstein)

1.4 Probability is like a language

When you start learning probability and statistics, it helps remembering the
times when you last learned a foreign language. Or of the times when you first
learned to program a computer.

Just like programming languages are languages that describe computation, prob-
ability is a language meant to describe uncertainty. It is a very powerful
language (proved mathematically). There are many programming languages
(why?). [There are many human languages. Why?] Probability as a language
for describing uncertainty has practically no competitor.

This is good news: you only need to learn it once. Then you can converse
with everyone else who understands probability, be they particle physicists or
psychologists or casino-managers.

1.5 What we will do in this course

We will learn the fundamental concepts of probability and statistics. We will
develop a set of tools and use some of them for practice. We will see examples
from CS where our tools apply.
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Below is a pictorial view of our road, starting in the plains of Mathematics and
winding up the hills of Probability to the heights of Statistics. From there, we
will look onto and take short explorations on the nearby mountains, most often
on the AI mountain.

Statistics

Probability

Machine
learning

AI

Robotics

Networks
Software
engineering

Cryptography

Randomized
algorithms

Mathematics

1.5.1 Describing randomness

As a first step toward the study of randomness, note that not all random pro-
cesses are alike.

• How is a coin toss different from a dice roll?

• A fair coin from an unfair one?

• How is the coin toss different from the salt-and-pepper noise in the TV
signal?

• How is the salt-and-pepper noise different from the noise you hear in a
radio signal?

The concepts of sample space and probability distribution will help us
distinguish between these. As you notice here and in the examples below, some
processes are “more random” than others (or should we say “less predictable”?).
Concepts like variance and entropy allow us to measure the predictability of
a random variable. Also to measure the quality of our predictions.

We are often interested in the relationship between two (random) phenomena.
The concepts of conditional probability, probabilistic dependence (and
independence) will help us handle these.
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• The stock market is a random process. However, there is some dependence
between one day and the next, and there are clear trends over longer
periods of time.

• The weather from one year to the next is highly random (e.g. on some
years it rains a lot in winter in Seattle, on others there are many sunny
days). However meteorologists have discovered some correlations: about
every three years, Seattle gets a dryer than usual fall and winter, while
Californians get a rainier than usual season. This is the El Niño effect.

• “Smoking causes lung cancer.” This effect has been proved scientifically,
but it is a non-deterministic one. You may be a smoker and live a long life
without lung cancer, or you may get the disease without being a smoker.
But overall, a smoker is more likely to have lung cancer than a non-smoker.

1.5.2 Predictions and decisions

Probability helps us make predictions. This is usually the ultimate goal of an
engineer using probability. Of course, if the phenomenon we are interested in
is non-deterministic, we can never predict the future with certainty. We will
predict the future in the language of probability as well. In other words, all
predictions are guesses. But some guesses are better than others (probability
and statistics study which and why), and sometimes we will be able to also
compute a measure of confidence, for example a confidence interval, for our
guess. This will be a guess too, of course.

What kind of predictions can we make? Here are some examples.

Assume that the probability that a plane’s engine fails during the period of 1
hour is p = 10−6. Then we can predict that the probability that the engine fails
in 100 hours of flight is no more than 10−4.

If a server has 2 processors, the chance that each of them being busy is 1/3,
then the chance that the server can take our job is at least 2/3.

The outcomes of the toss of a fair coin are 0 or 1 with probabilities equal to
1/2. We cannot predict the outcome of the next coin toss, but we can predict
that if the coin is flipped n =100 times, we will observe about 50 1’s. If the
coin is flipped n =1000 times, we can predict that we’ll see about 500 1’s and
the second is a better approximation than the first.

It is interesting to contrast the last example with the properties of computer
simulation. Suppose that instead of applying the laws of probability, you write
a program that simulates the n coin tosses and counts the number of 1’s. The
running time of the program will increase if n grows. Intuitively, if you want
to simulate a larger system, you need to put more effort into the computation.
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Probability eludes this problem in cases like the one above: the computation is
just the same for every n (it consists of dividing n by 2) and the result becomes
ever more accurate when n is increased! This kind behavior of probabilistic
predicitions is called the law of large numbers.

Statistical decisions. As the future is never completely known, every decision
we make is a “decision in uncertainty”. For example:

• Choosing the optimal cache size. There is a certain cost (e.g time
delay) to a cache miss, but increasing the size of the cache has a cost
too. Based on some estimate of the characteristics of the applications the
processor will be running, the designer needs to find the optimal cache size,
i.e the cache size that give the best trade-off between cost and performance.

• Stagewise diagnosis. A doctor sees a new patient who describes her
symptoms. Or, a computer specialist is trying to fix a broken computer.
The doctor needs to diagnose the disease (and prescribe a treatment). She
can prescribe the treatment right away, or can perform more investigations
(like MRI scans, blood tests). With each new tests, the doctor accquires
more knowlege (and reduces her uncertainty) about the patient’s “internal
state”, so presumably she can make a better treatment recommendation.
However, medical investigations carry costs (monetary, in time, discomfort
to the patient, risks of secondary effects). The costs themselves are some-
times not known before the test is performed (for example, the discomfort
to the patient, or, in case of a treatment like a surgery, the benefits it will
bring). Also, later decisions to perform a certain lab test may depend on
the results of a previous one. (For example, a test for disease A is negative,
so the doctor proceeds to test for the less frequent disease B). The doctor’s
problem is a stagewise decision problem, because the doctor must make a
series of decisions, each of them based on previously accquired information
and some probabilistic guesses about the future.

The theory of statistical decision tells us how reason about this act, how to
express mathematically our goals, our knowledge and our uncertainty, and how
from them to obtain the “optimal” choice.

1.5.3 What is statistics?

A model is a probabilistic description of how the data is generated. For exam-
ple, a fair coin is a model. If we have a model, probability allows us to make
predictions about the data that it will generate. For example, we can predict
to see roughly 50 1’s in 100 tosses of a fair coin.
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Statistics does the reverse: we observe the data and try to infer something
about the source of the data. For example if I observe 50 1’s in 100 tosses what
can I say about the coin that produced the data? Or, if I observe that 31 out
of 50 patients who had a new treatment got well while in the control group 18
out of 38 got well, what can I say about the new treatment? [Of course, since
the data is random, everything I said would still be a guess.]

In engineering, one studies data and constructs models in order to make pre-
dictions. For example, suppose a book selling company has collected data on
the sales of “Harry Potter” during the first 10 months of 2001. The company’s
statistician analyses this data and constructs a probabilistic model of the de-
mand for “Harry Potter”. The company wants to use this model to predict the
sales of “Harry Potter” in the 11th and 12th month of the year. [What factors
should the model take into account in order to make good predictions? Remem-
ber that the movie “Harry Potter” was released in November and December is
Christmas shopping month.] Or, in another scenario, the company uses data on
“Harry Potter” from Dec 00 to Nov 01 to construct a model of demand jumps.
Then the model is applied to the sales of “Lord of the Rings” in December 01.
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Chapter 2

The Sample Space, Events,
Probability Distributions

2.1 Summary

S the sample space (or outcome space)
x ∈ S an outcome
E ⊆ S an event
P : P(S) −→ [0, 1] a probability distribution on S
E 7−→ P (E) maps an event into its probability
X : S −→ R a random variable is a function of the outcome

2.2 The sample space

The sample space (or outcome space) S is the set of outcomes of a random
experiment.

Example 2.1 Tossing a coin. S = {0, 1}

Example 2.2 Rolling a die. S = {1, 2, 3, 4, 5, 6}

Example 2.3 Rolling two dice. S = {1, 2, 3, 4, 5, 6}×{1, 2, 3, 4, 5, 6} i.e the set
of all pairs of integers between 1 and 6.

19
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Example 2.4 Tossing a coin 10 times. S = the set of all binary sequences of
length 10. |S| = 210

Example 2.5 Measuring the height of a student in this class. S = (0, 8ft].

Example 2.5 shows a continuous sample space. The previous examples showed
finite sample spaces. A sample space which is finite or countable is called dis-
crete. The last example also shows that the sample space can include outcomes
that will never appear (no student will be 0.1 ft high; also, there may be no
student 8 ft high, and there may even not be a student 6.02133457 ft high).
Including more outcomes than one may necessarily need is not a mistake. How-
ever, to miss any outcomes that are possible is a serious mistake that
typically results in erroneous conclusions further down the line.

Example 2.6 The position of a robot in a room. S = {(x, y), 0 ≤ x ≤ L, 0 ≤
y ≤W} (L and W are the length and width of the room.)

Example 2.7 There can be very large discrete sample spaces. For example, the
set of all 1024×1024 BW images. If we assume that the value of each pixel is
contained in a byte then we have |S| = 1024× 1024× 256.

Example 2.8 A random number generated by srand48() the C random num-
ber generator. S = [0, 1]; or is it so?

2.3 Events

An event is a subset of S 1

Example 2.9 For the die roll example, E1 = {1}, E2 =“the outcome is even”
= {2, 4, 6}, E3 =“the outcome is ≥ 3”= {3, 4, 5, 6}, E4 =“the outcome is
≤ 0”= ∅ are all events.

Example 2.10 For the image sample space of example 2.7, E5 =“pixel (0,0) is
white” is an event. It consists of all the possible images that have a white
upper left corner pixel, hence |E5| = (1024 × 1024 − 1) × 256. The event
E6 =“the first row is black” is the set of images whose first row is black and it
has 1023×1024×256 elements.

1For a continuous outcome space, not all subsets of S are events, but only what is called
measurable sets. In practice you will never encounter a set that’s not measurable so from now
on we shall assume that all subsets that we deal with in any sample space are events.
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Example 2.11 For the robot position experiment of example 2.6, the event
E7 =“the robot is 3 ft from the right wall” represents the set {(x, y), L − 3ft ≤
x ≤ L, 0 ≤ y ≤ W} ∼ {(x, y) ∈ S, x ≥ L − 3ft}. The event E8 =“the robot
is no more than ε away from the middle of the room” is described by the set
E8 = {(x, y) ∈ S, (x − L/2)2 + (y −W/2)2 ≤ ε}.

One can map events (i.e subsets of S) into propositions about the elements of
S: each event is the domain where a certain proposition is true and vice versa.
Therefore we can apply propositional logic operations to events.

For example, the event “E2 and E3” (i.e “the outcome is even and ≥ 3”) repre-
sents the set E2 ∩ E3 = {4, 6}. The set of BW images that “have a white (0,0)
pixel or a black first row” is E5∪E6. If “the first row is black” then “pixel (0,0)
is not white”; in other words “E6 ⇒ Ē5” (E6 implies non-E5). Below is a table
containing all the relationships between propositional logic and set operations.

Event Propositional operation
A ∪B A OR B
A ∩B A AND B

Ā = S \A NOT A
A ⊆ B A IMPLIES B

(A \B) ∪ (B \A) A XOR B
S TRUE (sure)
∅ FALSE (surely NOT)

With this “translation” one can express “in words” other relationships from set
algebra, like

(A ∩B) ∪ (A ∩ B̄) = A

“If A is true, then either A and B are both true, or A and B̄ are true”. For
example, let A=“the alarm is on” and B=“there is a burglar in the house”. Lets
us decompose the event A (that I observe) into two disjoint events “the alarm
is on and there is a burglar in the house” and “the alarm is on and there is no
burglar in the house (perhaps an earthquake set it on)” (that I have procedures
to deal with: for example call the police in the first case and turn the the alarm
off in the second case).

2.4 Probability

2.4.1 The definition

A probability distribution P is a function that assignes to each event E a
positive number P (E), called its probability.
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To be a probability distribution, P has to satisfy the following 3 axioms:

1. Positivity: P (E) ≥ 0 for all events E ⊆ S.

2. S is the certain event: P (S) = 1.

3. Additivity: If A ∩B = ∅ then P (A ∪B) = P (A) + P (B).

Intuition. It will be useful throughout this course to think of probability as
behaving like mass (or volume, or area, or number of elements). Then one
can interpret the axioms as describing how a function should be in order to
“behave like mass”. In terms of mass (or volume, etc) the axioms read: “Mass
is a property of subsets of the universe”. “Atoms”, i.e the elements of S, are
themselves subsets, so they have “mass” (probability) too.

1. “Mass is always positive”.

2. “The total mass in the universe is finite (and by convention equal to 1).”

3. “If we decompose a slice of the universe into two disjoint parts, then the
total mass of the slice equals the sum of its parts (conservation of mass in
a fashion).”

The truth about Axiom 3 – A mathematical digression

Axiom 3 is in reality somewhat more complicated. It’s precise formulation is:

3′. If A1, A2, . . . An, . . . is a sequence of mutually disjoint sets (i.e An∩Am = ∅
for all m 6= n) then P (A1 ∪A2 ∪ . . . ∪An ∪ . . .) =

∑∞
n=1 P (An).

Note that the above axiom cannot (and should not) be extended to non-countable
unions of sets. To understand the difference, the positive integers 1, 2, 3, . . . are
a countable set, while the points in a square are not countable. There are more
points in the unit square then there are positive integers. It is wrong to say
that the probability of the unit square is equal to the sum of the probabilities
of its points.

2.4.2 Two examples

Let us first describe two examples to illustrate the properties. The first example
applies to the dice roll experiment of example 2.2.
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Example 2.12 For a fair die, each outcome has equal probability, so we know
that

P ({i}) =
1

6
for all i = 1, . . . 6

This means that for a general event E,

P (E) =
|E|
6

Let us check that it satisfies the axioms of probability. Axiom 1 is obvious, we
verify axiom 2:

P (S) =
|S|
6

=
6

6
= 1

To verify axiom 3, note that if two sets A,B are disjoint, then |A ∪ B| =
|A|+ |B|. With this, axiom 3 follows easily.

Example 2.13 For the robot in a room experiment of example 2.6 let us define

P (E) =
area(E)

area(S)

i.e the probability of the robot being in a certain region E is proportional to its
area.

Again, checking the axioms is straight-forward. Any area is ≥ 0, therefore
P (E) ≥ 0 for all E. P (S) = area(S)/area(S) = 1. If two regions A,B are
disjoint, then area(A ∪ B) = area(A) + area(B). With this, axiom 3 follows
easily again.

Both examples illustrate uniform distributions, i.e. distributions where “each
outcome has the same probability”.

2.4.3 Properties of probabilities

The properties that we will derive here give us the opportunity of the first prac-
tice with probability calculus. They are also the most general and fundamental
properties of any probability distribution and thus worth remembering. Third,
they will serve as a “sanity check”, showing whether the newly-introduced con-
cept makes sense.

Proposition 2.1 P (A) = 1− P (A)

Proof. A ∪A = S and A ∩A = ∅ imply that P (S) = P (A) + P (A) = 1. From
which follows that P (A) = 1− P (A).
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Proposition 2.2 P (A) ≤ 1 for all A ⊆ S.

Proof. Every A has a complement A whose probability is non-negative. There-
fore,

P (A) = 1− P (A) ≤ 1

Proposition 2.3 P (∅) = 0.

Proof. We have S ∪ ∅ = S and S ∩ ∅ = ∅ from which P (∅) + P (S) = P (S) or
P (∅) + 1 = 1.

Proposition 2.4 If A ⊆ B, then P (A) ≤ P (B).

Proof. If A ⊆ B, then B can be written as the union of the disjoint subsets A
and B \A. Therefore,

P (B) = P (A) + P (B \A) ≥ P (A)

Note also that from the above follow that, whenA ⊆ B, P (B\A) = P (B)−P (A)
and P (A \B) = 0.

Proposition 2.5 P (A ∪B) = P (A) + P (B)− P (A ∩B).

Proof. A ∪B can be written as the disjoint union of A \B, B \A and A ∩B.
Therefore,

P (A ∪B) = P (A \B) + P (B \A) + P (A ∩B)

= [P (A)− P (A ∩B)] + [P (B)− P (A ∩B)] + P (A ∩B)

= P (A) + P (B)− P (A ∩B)

2.4.4 Another example – the probability of getting into
the CSE major

Example 2.14

At Everdry State University, to get into the CSE major a student needs to get
a passing grade in at least two of the following 3 subjects: Computer Program-
ming, Physics and English. Melvin Fooch, freshmen at ESU is calculating his
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chances of getting into the CSE major. He has denoted by P the event “passing
Physics”, by C the event “passing Computer Programming” and by E “passing
English”. He has spent a sleeples night figuring out the probability for each
possible outcome.

CPE 0.20 CPE 0.12

CPE 0.13 CPE 0.11

CPE 0.15 C̄P̄E 0.11

CP̄ Ē 0.11 C̄P̄ Ē 0.07

Now he is too tired to add them up so let’s help him. The event he’s most
interested in is E1 entering the CSE major, which is the same as passing at
least two of the three courses.

P (E1) = P (CPE ∪ CPE ∪ CPE ∪ CPE)

= P (CPE) + P (CPE) + P (CPE) + P (CPE)(since they’re disjoint events)

= 0.2 + 0.12 + 0.15 + 0.13

= 0.6

We can also compute other probabilities:

P (Melvin passes at most 2 classes) =

= 1− P (CPE)

= 0.8

P (Melvin passes English) =

= P (E)

= P (CPE ∪ CPE ∪ CPE ∪CPE)

= P (CPE) + P (CPE) + P (CPE) + P (CPE)

= 0.2 + 0.12 + 0.15 + 0.11

= 0.58

P (Melvin passes Physics but not English) =

= P (P ∩ E)

= P (CPE ∪ CPE)

= P (CPE) + P (CPE)

= 0.13 + 0.11

= 0.24
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Chapter 3

Finite sample spaces. The
multinomial distribution

3.1 Discrete probability distributions

If the outcome space S is finite or countable (i.e discrete), a probability P on it
is called discrete.

3.1.1 The uniform distribution

If all the outcomes have equal probability, i.e θ0 = θ1 = . . . θm−1 = 1
m , then

the distribution is called a uniform distribution. Examples 3.2 and 3.1 above
represent uniform distributions.

The probability of any event E under a uniform distribution equals

P (E) =
|E|
m

(3.1)

(where |E| represents the number of elements, or cardinality of E). Thus com-
puting probabilities of events under uniform distribution is reduced to counting.
Equation (3.1) is at the basis of an older definition of probability that you may
have encountered:

probability =
number of “favorable” cases

total number of cases

27
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Example 3.1 The die roll. A fair die has six faces, S = {f1, f2, . . . f6} having
equal probabilities of occurring in a roll. Thus θf1 = θf2 = . . . = 1

6 .

3.1.2 The Bernoulli distribution

This distribution describes a biased coin toss.

Example 3.2 The (biased) coin toss. S = {0, 1}, θ0 = 1− p, θ1 = p

Example 3.3 Component testing. All integrated circuits produced by a factory
are tested. The outcomes of the test are given by S = {pass, fail} with probabil-
ities θpass = 0.99, θfail = 0.01.

3.1.3 The exponential (geometric) distribution

The sample space is the set of integers Sm = {0, 1, . . .m−1} and the probability
distribution is given by

P (n) =
1

Z
γn, 0 < γ < 1 (3.2)

The value γ is called the parameter of the distribution. In the above Z is the
number that assures that the probabilities sum to 1. It is called the normaliza-
tion constant of P .

Z =

m−1∑

n=0

γn =
1− γm
1− γ (3.3)

Hence, the exponential distribution is

P (n) =
1− γ

1− γm γ
n (3.4)

This distribution is also known as the geometric distribution, because the prob-
abilities P (n) are the terms of a geometric progression.

One can define the exponential distribution over the whole set of integers S =
{0, 1, 2, . . . n, . . .} by formula (3.2). Then

Z =

∞∑

n=0

γn =
1

1− γ (3.5)

and the geometric distribution becomes

P (n) = (1− γ)γn (3.6)

Note that for γ = 1
2 we have P (n) = 1

2n−1
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3.1.4 The Poisson distribution

The Poisson distribution is defined over the range of non-negative integers
{0, 1, . . . n, . . .} by

P (n) = e−λ
λn

n!
(3.7)

The parameter λ > 0 is called the rate of the Poisson distribution for reasons
that will become clear soon.

The factor 1/eλ represents the normalization constant of the Poisson distribu-
tion. Remember from calculus the identity

eλ =
∑

n≥0

λn

n!
for λ ∈ (−∞, ∞) (3.8)

In contrast to the exponential distribution (1− λ)λn which always has a max-
imum at n = 0, the Poisson is first increasing to a maximum then decreasing
asymptotically towards 0. Figure 3.1 shows this distribution for different values
of λ.

Mathematical digression: The Poisson distribution as a sum of Bernoulli’s

Assume: We have a unit interval, divided into N equal intervals, where N will
tend to infinity. For each subinterval, of length ∆t = 1/N , the probability of
observing a 1 is p = λ∆t. We want the probability of n successes in the unit
interval. This is the sum of N independent Bernoulli trials (n1 in the course
notes) therefore

P (n) =

(
N
n

)

pn(1− p)N−n (3.9)

0 2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

n

Figure 3.1: The Poisson distribution for λ = 2.
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=
N(N − 1) . . . (N − n+ 1)

n!
λn∆tn(1 − λ∆t)N−n (3.10)

=
λn

n!

N(N − 1) . . . (N − n+ 1)

N−n (1− λ/N)N−n (3.11)

So we have to prove that aN = N(N−1)...(N−n+1)
N−n (1− λ/N)N−n tends to e−λ.

aN =

n−1∏

k=0

1− k/N
1− λ/N · (1− λ/N)N (3.12)

And now it’s really easy, because the first product tends to 1 when N → ∞
with n fixed and the second part tends to e−λ.

Why the last limit? It is known that limx→∞(1 + 1/x)x = e. Use x = −N/λ
and force the exponent to be 1/x times −λ.

3.1.5 Discrete distributions on finite sample spaces – the
general case

We can denote the elements of a finite S by {x0, x2, . . . xm−1} where m is the
cardinality of S. A probability P over S is determined by its values θi = P (xi)
on each element of S because

P (A) =
∑

x∈A
P (x) (3.13)

In fact P is completely determined by any m − 1 such values due to the con-
straints

θi ≥ 0 for i = 0, . . . m− 1 (3.14)
m−1∑

i=0

θi = 1 (3.15)

The numbers θi, i = 0, . . . m− 1 can be given by a rule like for the uniform or
exponential distributions, but in general we are free to choose them any way we
want, subject to the contraints (3.14). In this case, they are the parameters of
the distribution. So, in general, a discrete finite distribution is defined by m−1
free parameters.

3.2 Sampling from a discrete distribution

How can one generate on a computer samples from an arbitrary distribution
with parameters θ0, . . . θm−1?
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Here is a method that uses the computer’s rand() function, that generates a
random number uniformly distributed between 0 and 1. We define the numbers
a0, a1, . . . am by:

a0 = 0 (3.16)

a1 = a0 + θ0 (3.17)

. . . (3.18)

ak+1 = ak + θk (3.19)

. . . (3.20)

am = 1 (3.21)

Then we generate a random number r with rand(). If ak < r ≤ ak+1 the
method outputs k.

We will intuitively show why this method is correct. It is because under a
uniform distribution over the [0, 1] interval (given by rand()) the probability
that r falls in the interval (ak, ak+1] is equal with the length of the interval
ak+1 − ak = θk. (See also example 5.2.)

3.3 Repeated independent trials

A coin tossed n times, a series of n die rolls are both examples of experiments
with repeated trials. (What about rolling n identical dice simultaneously?) In
a repeated trial, the outcome space Sn is

Sn = S × S × . . . × S
︸ ︷︷ ︸

n times

. (3.22)

The elements of Sn are length n sequences of elements of S. If S has m elements
then |Sn| = mn.

We denote by x(k) the outcome of trial k (x(k) is a random variable); the outcome
of the repeated trial is x(1), . . . x(n).

If in a set of repeated trials, the outcome of a trial x(k) is not influenced in
any way by the outcomes of the other trials, either taken together or separately,
we say that the trials are independent. Independence is a very useful and
important property, and will be studied in more detail later. Independent events
have the following property: the probability of two or more independent events
is equal to the product of the probabilities of the individual events.

In the case of repeated trials, the above property amounts to:

P (x(1), . . . x(n)) = P (x(1))P (x(2)) . . . P (x(n)) (3.23)
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We also have that P (x(k)) = θx(k) . Hence, we can compute the probability of
every outcome in Sn using the parameters of the original probability over S

P (x(1), . . . x(n)) = P (x(1))P (x(2)) . . . P (x(n))

= θx(1)θx(2) . . . θx(n)

=

m−1∏

i=0

θni

i (3.24)

The exponents ni represent the number of times value xi appears in the se-
quence. Often they are called the counts associated with the outcome (x(1), . . . x(n)).
They are integer-valued random variables satisfying the constraints

ni ≥ 0, i = 0, . . . m− 1 (3.25)
m−1∑

i=0

ni = n (3.26)

Example 3.4 Rolling a die 5 times. Below are a few outcomes with their
counts (all outcomes have the same probability)

outcome x n1 n2 n3 n4 n5 n6

11111 5 0 0 0 0 0
23166 1 1 1 0 0 2
63261 1 1 1 0 0 2
16326 1 1 1 0 0 2
42453 0 1 1 2 1 0

Note the difference between x(k) (the outcome of the k-th trial) and xi (outcome
i of S). For example, in the line above x(1) = 4 while x1 is always 1.

Example 3.5 A fair coin tossed n = 10 times. Sn = {0, 1}n = {0000000000,
0000000001, . . . , 1111111111}; θ0 = θ1 = . . . = θ1023 = 0.510.

Both examples above illustrate uniform probabilities over spaces of equal length
sequences.

Example 3.6 The biased coin. A coin is tossed 4 times, and the probability of
1 (Heads) is p > 0.5. The outcomes, their probability and their counts are (in
order of decreasing probability):
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outcome x n0 n1 P (x) event
1111 0 4 p4 E0,4

1110 1 3 p3(1− p)1 E1,3

1101 1 3 p3(1− p)1
1011 1 3 p3(1− p)1
0111 1 3 p3(1− p)1
1100 2 2 p2(1− p)2 E2,2

1010 2 2 p2(1− p)2
1001 2 2 p2(1− p)2
0110 2 2 p2(1− p)2
0101 2 2 p2(1− p)2
0011 2 2 p2(1− p)2
0100 3 1 p1(1− p)3 E3,1

1000 3 1 p1(1− p)3
0010 3 1 p1(1− p)3
0001 3 1 p1(1− p)3
0000 4 0 (1− p)4 E4,0

3.4 Probabilities of sequences vs. probabilities
of events. The multinomial distribution

Note that in the table above, there are several outcomes that have the same
probability. In fact, all outcomes that have the same number of zeros n0 (and
correspondingly the same number of ones n1 = n−n0) have the same probability
and this is (1 − p)n0pn1 .

We denote by En0,n1 the event “the outcome has n0 zeros and n1 ones”. In other
words, the event En0,n1 is the set of all sequence with n0 zeros (and n1 = n−n0

ones). Events of this kind are so frequently used and so important that their
probabilities have the special name of “multinomial distribution”. They arise in
cases when all we care about the outcome sequence is the number of individual
outcomes of each kind but not the order in which they occur.

Example 3.7 For example, if in the above experiment, we would gain 1$ for
each 1 and nothing for a zero, then from the point of view of the total gain the
order of the zeros and ones in the sequence would not matter. The probabilities
of gaining 0, 1, 2, 3, 4$ respectively equals the probabilities of E4,0, . . . E0,4.

If there are m > 2 possible outcomes in a trial, then each outcome sequence is
described by m counts n0, n1, . . . nm−1. The set of all sequences with the same
counts n0, n1, . . . nm−1 represents the event En0,n1,...nm−1 .

Now we will compute the probability of an event En0,n1,...nm−1 . To simplify
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notation, we will refer to En0,n1,...nm−1 as (n0, n1, . . . nm−1) when no confusion
is possible.

We shall start with the case of a binary experiment (like the coin toss), where
there are only 2 possible outcomes (m = 2). For a given (n0, n1), with n0+n1 =
n, there are

(
n
n1

)

=

(
n
n0

)

=
n!

n0!n1!

different outcomes that have counts (n0, n1). All the outcomes in the event
(n0, n1) have the same probability (and are clearly mutually exclusive). There-
fore the probability of (n0, n1) is given by

P (n0, n1) = θn0
0 θn1

1

(
n
n1

)

For an experiment with m > 2 outcomes, the number of outcomes that corre-
spond to a set of counts (n0, n1, . . . nm−1) is

(
n

n0, n1, . . . nm−1

)

∆
=

n!

n0!n1! . . . nm−1!
(3.27)

read “n choose n0, n1, . . . nm−1” and called the multinomial coefficient in-
dexed by n0, . . . nm−1. Note the analogy with “n choose k” the well known
binomial coefficient. Formula (3.27) can be proved by induction over m, start-
ing from m = 2.

Then the probability of observing a set of counts (n0, . . . nm−1) is obtained
by multiplying the probability of one sequence, given by (3.24) with the total
number of sequences exhibiting those counts:

P (n0, . . . nm−1) =
n!

n0!n1! . . . nm−1!

m−1∏

i=0

θni

i (3.28)

=

(
n

n0 n1 . . . nm−1

)m−1∏

i=0

θni

i (3.29)

Equation (3.28) defines the multinomial distribution. For m = 2 equation
(3.28) is called the binomial distribution.

3.5 Examples

We have seen how to define a probability distribution over a discrete space. Let
us now practice using it by computing the probabilities of various events.
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Example 3.8 Sending messages through a channel. The probability of a bit
being corrupted when it is sent through a channel is p = 10−6. We send a
message length n = 103. What is the probability that the message is received
correctly? What is the probability that at least one bit is corrupted? It is assumed
that the errors on each bit are independent.

Solution The probability of receiving one bit correctly is 1− p. The probability
of receiving all n bits correctly is

(1− p)n = (1− 10−6)10
3

= 0.9990005 ≈ 0.999 (3.30)

The event “at least 1 bit is corrupted” is the complement of “all bits are received
correctly”, hence its probability is

1− (1 − p)n = 1− (1− 10−6)10
3

= 0.0009995 ≈ 10−3 (3.31)

Note how these probabilities change if we up the bit error probability p to 10−3:

P [all bits correct] = (1− 10−3)10
3

= 0.368 (3.32)

P [at least one error] = 1− 0.368 = 0.632 (3.33)

Example 3.9 Toss a coin until a 1 comes up. The probability of a 1 is θ1.
What is the probability that the experiment takes n trials? Note that the number
of trials until 1 comes up is an infinite (but discrete) outcome space.

P (n) = P (00 . . . 0
︸ ︷︷ ︸

×n−1

1) = (1− θ1)n−1θ1 (3.34)

For the fair coin with θ1 = 0.5, P (n) = 1
2n . You can easily verify that

∑∞
n=1

1
2n =

1.

Let us now compute the probability that the experiment takes at least n ≥ 1
trials. This is an exercise in geometric series.

P [at least n trials] =

∞∑

k=n

P (k) (3.35)

=

∞∑

k=n

(1− θ1)k−1θ1 (3.36)

= (1− θ1)n−1θ1

∞∑

k=0

(1− θ1)k (3.37)

= (1− θ1)n−1θ1
1

1− 1 + θ1
(3.38)

= (1− θ1)n−1 (3.39)
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Another way to compute the probability of the same event is to notice that the
experiment takes at least n trials if and only if the first n − 1 trials have all
outcome 0. The probability of this happening is

(1− θ1)n−1

This problem is encountered in more realistic settings, like: (1) One takes a test
as many times as necessary to pass it and one would like to know in advance
the probability of having to take the test more than n times. (2) A part of an a
car (or computer, or home appliance) will break with probability θ1 on a given
trip (hour of usage). Both the manufacturer and the user want to know what is
the probability that the part can be used for n trips (hours) before it has to be
replaced.

Example 3.10 Simple market basket analysis. A grocery store sells Apples,
Bread, Cheese, Detergent and Eggs. It is assumed that each customer buys a
product randomly with a certain probability, independently of any other products
they have already bought and of the products that other customers have bought.
(This is a very simple customer model indeed!) The probabilities that a customer
buys each of the 5 products are:

θA = 0.2 θB = 0.4 θC = 0.3 θD = 0.1 θE = 0.1 (3.40)

1. A customer buys n = 3 things. What is the probability that he buys only
bread?

P [only bread] = P (BBB) = θ3B (3.41)

2. A customer buys n = 3 things. What is the probability that she buys
nothing but bread and cheese?

P [nothing but bread and cheese] = P [(B∨C), (B∨C), (B∨C)] = (θB+θC)3

(3.42)

3. A customer buys n = 5 things. What is the probability that she buys one
of each product?

P [one of each] = 5!θAθBθCθDθE (3.43)

4. A customer buys n = 5 things. What is the probability that he buys 2
apples, 2 cheeses and one bread?

P [2A+2C+1B] =

(
5

2 1 2 0 0

)

θ2AθBθ
2
C (3.44)

=
5!

2! 1! 2! 0! 0!
θ2AθBθ

2
C (3.45)



3.5. EXAMPLES 37

5. A customer buys n = 5 things. What is the probability that he buys at
least 3 apples?

P [at least 3A] = P [3A] + P [4A] + P [5A] (3.46)

=

(
5
3

)

θ3A(1− θA)2 +

(
5
4

)

θ4A(1− θA) +

(
5
5

)

θ5A(3.47)

Example 3.11 A coin is tossed n times. The probability of obtaining a 1 on
any toss is θ. What is the probability that there are two consecutive 1’s in the
outcome?

Solution: Denote S = {0, 1}n, A = {x ∈ S |x contains 2 consecutive 1’s } and
B = A. We will estimate the probability of B, then P (A) = 1− P (B).

The event B = “the outcome has no 2 consecutive 1’s” can be further parti-
tioned into the disjoint sets Ck, Dk defined as follows:
Ck = the set of sequences in B ending in 1 and having exactly k 1’s k = 1, 2, . . . ⌈n2 ⌉
Dk = the set of sequences in B ending in 0 and having exactly k 1’s k = 1, 2, . . . ⌊n2 ⌋

x ∈ Dk Then the sequence x can be written as a sequence of k “10” “symbols”
and n− 2k “0” symbols. The total number of symbols is k + (n− 2k) = n− k.
Therefore,

P (Dk) =

(
n− k
k

)

[(1− θ)θ]k(1− θ)n−k =

(
n− k
k

)

(1− θ)n−kθk (3.48)

x ∈ Ck Then the sequence x can be written as a sequence of k − 1 “10” “sym-
bols”, a final 1 symbol, and n− 1− 2(k− 1) = n− 2k+ 1 0 symbols. Since the
final 1 has a fixed position, the total number of sequences is

(
n− 2k + 1 + k − 1

k − 1

)

=

(
n− k
k − 1

)

Therefore,

P (Ck) = θ

(
n− k
k − 1

)

[(1−θ)θ]k−1(1−θ)n−2k+1 =

(
n− k
k

)

(1−θ)n−kθk (3.49)

Note that each two sets {Ck, Dk for all k } are disjoint and that the union of all
the sets is equal to B. So,

P (B) =
∑

k

P (Ck) +
∑

k

P (Dk) (3.50)

Also, recall that
(
m
k

)

+

(
m

k − 1

)

=

(
m+ 1
k

)

(3.51)
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Hence, for n even

P (B) =

n/2
∑

k=0

(
n− k + 1

k

)

(1− θ)n−kθk (3.52)

and for n odd

P (B) =

(n−1)/2
∑

k=0

(
n− k + 1

k

)

(1 − θ)n−kθk + (1− θ)n−1
2 θ

n+1
2 (3.53)

and P (A) = 1− P (B).

3.6 Models for text documents

3.6.1 What is information retrieval?

There is a collection of documents somewhere (like a library, the web, the
archives of a newspaper or newsgroup, an image library) and you want to get
information about a certain topic (for example “water skiing”, “weather in Seat-
tle”) from it. The first step, at the library for example, would be to find books
on “water skiing”, on the web to find the pages mentioning water skiing, and
in general to gather the documents that are relevant to your topic. Then you
can study the documents and extract the useful information from them. The
first step – retrieving all the useful documents from the collection – is called
document retrieval or information retrieval. It is what the search engines (are
supposed to) do.

Another related problem that belongs to information retrieval is the following:
you have a web page that you like (because it is water skiing for example) and
you want your search engine to find other pages that are like it.

What you give to the search engine, be it a whole web page or a few words
describing what you want, is called the query. The query will be treated as a
document, albeit a very short one.

In what follows we will present a simple statistical approach to information
retrieval. Although simple, this method is the backbone of most working search
engines and document retrieval systems.
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3.6.2 Simple models for text

We assume that we deal with documents containing only plain text (i.e no
images, links, graphics, etc). This is what some search engines do anyways.
Others, like Google, also take into account the link structure of the web.

We shall construct a model for documents. That is we create a distribution P
such that when we sample from it the outcomes are documents. So stated, this
a very ambitious goal. Few have ever come close to attaining it. But something
that is more easily done is to create a P such that all documents could have
come from it. One of the simplest models is the so-called “multinomial”
model of text. It assumes that documents are produced by sampling the first
word from a dictionary, then sampling the second word independently from the
first from the same dictionary, and so on until we reach a prescribed word limit
n. If we hypothetically sampled from this P , sometimes the outcome would be
a document, sometimes something else. This is OK as long as P doesn’t assign
probability 0 to any document. It means that documents will have in general a
lower likelihood than they would under an “ideal” P .

Let us define the outcome spaceW as the set of all wordsW = {word0, word1, . . . , wordm−1}.
Let PW be a distribution over W . The probability of sampling word w under
PW is PW (w) = θw. Then, to generate a “document”, we will sample its length
n from a distribution over lengths PN , then sample n times independently from
P to get the words. To simplify matters even more, we will assume that PN
is uniform for n between 1 and a given maximum length n = 1000. This way
PN (n) is a constant and we can ignore it. Hence, the probability of a document
d under P is

P (d) = PN (|d|)
∏

w∈d
PW (w) = PN (|d|)

∏

w∈W
θnw
w (3.54)

where, as usual, nw is the number of occurrences of word w in d and |d| is the
length of the document.

An alternate model for information retrieval is the so called bag of words
model. In this model, each word has a probability φw of appearing in the
document. We assume that documents are generated by going through the list
of words W , and at each word flipping a coin with a probability φw of obtaining
one (and probability 1− φw of obtaining 0). The words for which a 1 comes up
are included in the document. (This method doesn’t really produce a document,
just the unordered collection of its words; therefore the name “bag of words”
model.)

Under this model, the probability of a document is

PB(d) =
∏

w∈d
φw

∏

w∈W\d
(1− φw) (3.55)
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One question is, where do we get the parameters θ or φ? We will estimate them
from the documents themselves by the Maximum Likelihood method described
in chapter 4.



Chapter 4

Maximum likelihood
estimation of discrete
distributions

4.1 Maximum Likelihood estimation for the dis-
crete distribution

Assume that we have a discrete distribution P over S, with unknown parameters
{θi}. We are given n independent samples from P ; they represent the dataset
D = {x(1), . . . x(n)}. The task is to estimate the parameters θ̄ = {θi} using the
data set.

The Maximum Likelihood (ML) principle tells us to write down the likelihood
of the dataset as a function of the parameters and then to choose the vector of
parameters θ̄ that maximize the likelihood.

θ̄ML = argmax
θ̄

L(θ̄) (4.1)

The likelihood, i.e the probability of the data as a function of θ̄ is given by

L(θ̄) ≡ P (D|θ̄) =

m−1∏

i=0

θni

i (4.2)

L(θ̄) has to be maximized subject to the constraints

θi ≥ 0 for i = 0, . . . m− 1 (4.3)

41
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m−1∑

i=0

θi = 1 (4.4)

The solution to this problem is

θML
i =

ni
n

for i = 0, . . . m− 1 (4.5)

This estimate is consistent with the “popular” definition of probability, i.e

P (outcome i) =
#times outcome i occured

total # observations
(4.6)

The ML estimate of θ is a function of the outcome, therefore it is a random
variable. Note however that the values of θ̄ depend on the outcome only through
the counts (n0 n1 . . . nm−1) (i.e the estimate θ̄ is the same for all outcomes that
exhibit those counts). For this reason, the counts (n0 n1 . . . nm−1) are called
the sufficient statistics of the sample. They summarize all the information in
the data pertaining to estimating the distribution’s parameters.

4.1.1 Proving the ML formula

Here we show two proofs of the result (4.5). A third elegant proof will be given
in section 4.4

1. An elementary solution. We shall present here the case m = 2. In this
case, we have to estimate one parameter θ0, because θ1 = 1−θ0. The likelihood
is

L(θ0) = θn0
0 (1 − θ0)n−n0 (4.7)

We will work with the logarithm of the likelihood, shortly log-likelihood (this
is convenient in many other cases).

l(θ0)
∆
= = n0 log θ0 + n1 log(1 − θ0) (4.8)

l′(θ0) =
n0

θ0
− n1

1− θ0
(4.9)

=
n0 − θ0(n0 + n1)

θ0(1− θ0)
(4.10)

Equating the derivative with 0 we find the maximum of the likelihood at

θ0 =
n0

n0 + n1
=

n0

n
(4.11)
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2. Advanced calculus solution using Lagrange multipliers. The stan-
dard calculus method for solving this problem is by introducing the Lagrange
multiplier λ.

θ̄ML = argmax
θ̄

[

L(θ̄) + λ(

m−1∑

i=0

θi − 1)

]

︸ ︷︷ ︸

J

(4.12)

The solution is found equating the partial derivatives of J w.r.t all the variables
with 0.

∂J

∂θi
=

ni
θi
L(θ̄)− λ = 0 (4.13)

∂J

∂λ
=

m−1∑

j=0

θj − 1 = 0 (4.14)

The above partial derivatives exist only if both ni > 0 and θi > 0. For ni = 0,
it is easy to see that θi = 0 maximizes J . If ni > 0, then θi = 0 cannot be
a maximum. Therefore, the solution can be found by solving the system of
equations above. We obtain

θML
i =

ni
n

for i = 0, . . . m− 1

4.1.2 Examples

Example 4.1 The coin toss. A coin is tossed 10 times and the outcome is the
sequence 0010101010. Hence, n = 10, n0 = 6, n1 = 4. Figure 4.1 displays the
likelihood and the log-likelihood as a function of the parameter θ0. The maximum
is attained for θ0 = 0.6. This is verified by computing the ML estimate of the
distribution of the outcomes for this coin by formula (4.5):

θ0 =
6

10
= 0.6 θ1 =

4

10
= 0.4

Example 4.2 A grocery store sells Apples, Bread, Cheese, Detergent and Eggs.
Last week it made n = 1000 sales, out of which
nA = 250 Apples
nB = 350 Breads
nC = 150 Cheeses
nD = 150 Diapers
nE = 100 Eggs

It is assumed that each customer buys a product randomly with a certain prob-
ability, independently of any other products they have already bought and of the
products that other custormers have bought. (As we noticed before, this is a very
simple customer model indeed!)
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Figure 4.1: The likelihood and log-likelihood of the data in example 4.1 as a
function of parameter θ0.

The grocery store manager wants to estimate the probabilities of a random cus-
tomer buying each of the 5 products. By the ML method, they are

θA =
250

1000
= 0.25

θB =
350

1000
= 0.35

θC =
150

1000
= 0.15

θD =
150

1000
= 0.15

θE =
100

1000
= 0.1

Example 4.3 Maximum Likelihood estimation of the λ parameter for
the Poisson distribution. The Poisson distribution is defined in (3.7) as

P (n) = e−λ
λn

n!
(4.15)

Assume that we have a data set D = {n1, n2, . . . nN} where N represents the
number of observations in the data set. The likelihood and log-likelihood of the
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parameter are

L(λ|D) =

N∏

i=1

P (ni) (4.16)

=
N∏

i=1

e−λ
λni

ni!
(4.17)

= e−Nλ
λ

PN
i=1 ni

∏N
i=1 ni!

(4.18)

(4.19)

l(λ|D) = lnL(λ|D) (4.20)

= −Nλ+ lnλ

N∑

i=1

ni − ln

N∏

i=1

ni! (4.21)

Note that the last term above does not depend on λ so in fact has no role in the
parameter estimation. To find the maximum of the (log-)likelihood, we differen-
tiate l w.r.t λ, obtaining:

l′(λ) = −N +
1

λ

N∑

i=1

ni = 0 (4.22)

or

λML =

∑N
i=1 ni
N

(4.23)

Hence, the rate λ is the arithmetic mean of the observed values of n.

4.2 The ML estimate as a random variable

The estimate of the parameters θ̄ML is a function of the counts n0 n1 . . . nm−1.
The correspondence is one-to-one: for each set of counts, a distinct set of pa-
rameter estimates is obtained. Therefore

• the estimate θ̄ML must take only a finite number of values

• the distribution of the values of θ̄ML is the same as the distribution of the
counts, namely the multinomial distribution.

Example 4.4 Assume that m = 2 and n = 20 and let θ1 = θ for simplicity.
The true value of θ is 0.7. What is the probability that the estimate θML = 0.8?
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What is the probability that the estimate θML = 0.7? That it is 0.81? That it
lies in the interval [0.5, 0.9]?

P (θML = 0.8) = P (
n1

n
= 0.8) (4.24)

= P (n1 = 0.8× n = 16) (4.25)

=

(
n
16

)

θ16(1− θ)4 (4.26)

=

(
20
16

)

0.716(1 − 0.7)4 (4.27)

Note that the true value of θ (usually unknown) is used to compute this proba-
bility.

Similarly

P (θML = 0.7) = P (n1 = 20× 0.7 = 14) =

(
20
14

)

0.714(1 − 0.7)6 (4.28)

P (θML = 0.81) = 0 because for n = 20 the estimate can only take values that
are multiples of 1/20.

Figure 4.2,a shows the probability for every value of n1 and for the corresponding
value of θML. To compute the probability of an interval, we simply add up the
probabilities of all θML values in that interval. Therefore P (θML ∈ [0.5, 0.9]) =
∑

θ∈{0.5,0.55,0.6...0.9} P (θML = θ) = 0.975.

The following experiments show “empirical” distributions for the ML estimates.
Unlike the previous figure, these distributions are histograms constructed from
a large number N = 1000 of different experiments, each of them consisting of
drawing n samples from a distribution over {0, 1} with fixed parameters and
estimating the parameters. Note that the shape of the theoretical and empirical
distributions are similar.

Two trends are visible: First, as n grows, the number of possible values grows
too. How many possible values can θ take for a given n? As a result, the
distribution of the values of θML “aproximates better and better” a continuous
curve, that has the shape of a bell.

Second, the “bell” is centered on the true value of θ and becomes narrower as n
increases. In other words, the distribution becomes more concentrated around
the true value. Is this good or bad? Looking at it another way, this fact means
that with high probability, θML will be a good approximation of the true θ for
large n.
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Figure 4.2: The distribution of the count n1 and of the ML estimate θML
1

for n = 20 (a) and n = 100 (b) trials from a distribution over {0, 1} with
θ0 = 0.3, θ1 = 0.7.
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Figure 4.3: Bar graphs of the value of the ML estimate of θ0 for a binary experiment
comprising n identical independent trials. The values of n are 10, 100, 1000 and the
values of θ0 are 0.5 in a, b, c and 0.05 in d, e f. What are the similarities/differences
between the plots for the two values of θ0?



4.3. CONFIDENCE INTERVALS 49

4.3 Confidence intervals

In the previous section we learned how to compute the probability that the ML
estimate θML is “near” the true value θ i.e P [θML ∈ [θ − ǫ, θ + ǫ] for a given ǫ.

Statisticians often ask the reverse question: What is ǫ so that P [θML ∈ [θ−ǫ, θ+
ǫ] is at least, say p = 0.95? If we find such an ǫ, then the interval [θ − ǫ, θ + ǫ]
is called a confidence interval for confidence level p.

In general, the interval [a, b] is a CIp for a parameter θ if P [ θML ∈ [a, b] ] ≥ p.
The probabililty P [ θML ∈ [a, b] ] has the following meaning: If we did many
experiments of drawing random data sets of size n from the same distribution,
and of estimating θML for each of those data sets, at least a fraction p of times
θML will be contained in [a, b].

It follows that the confidence interval depends on the true (unknown) distribution
and on the size of the data set n. While n is known, the true distribution is not
known (after all, this is why we are estimating its parameters). For now, we
will discuss mathematical properties of confidence intervals assuming that the
true distribution is known. Then, in the next section, we will discuss how get
around the fact that the distribution is unknown.

4.3.1 Confidence intervals – the probability viewpoint

In this section we examine properties of confidence intervals, assuming that the
true parameters of a distribution are known.

The confidence interval can be obtained numerically using the probability dis-
tribution of θML. Assume S = {0, 1, . . .m − 1}, and that P is given by the
(true) parameters θ0, . . . θm−1 as before. The distribution of θML

j is

P [θML
j =

nj
n

] = P (nj) =

(
n
nj

)

θ
nj

j (1− θj)n−nj (4.29)

Let δ = (1− p)/2. Then, an algorithm for computing the CIp is

i ← 0
q ← 0
while q < δ do

q ← q + P [nj = i]
i ← i+ 1

a ← (i− 1)/n
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i ← n
q ← 0
while q < δ do

q ← q + P [nj = i]
i ← i− 1

b ← (i+ 1)/n

output interval [a, b]

This algorithm finds an interval [a, b] such that P [θML
j < a], P [θML

j > b] < δ.

The confidence interval is not unique. For once, if [a, b] is CIp then any interval
[a′, b′] that contains [a, b] is also a CIp. Indeed, if a′ ≤ a ≤ b ≤ b′ we have

P [ θML ∈ [a′, b′] ] ≥ P [ θML ∈ [a, b] ] ≥ p (4.30)

Also, if p′ < p and if [a, b] is CIp then [a, b] is also CIp′ . Moreover, we can have
intervals [a, b], [a′, b′] overlapping but not included in one another, which are
both CIp.

Computing confidence intervals by using the multinomial distribution of θML is
computationally intensive. In later chapters we shall learn an approximate but
very convenient method to obtain confidence intervals, based on the Gaussian
distribution.

4.3.2 Statistics with confidence intervals

Statisticians use confidence interval as an indicator of how “trustworthy” the es-
timated θML is. The smaller a confidence interval (i.e the smaller the difference
b− a), the more confident we are in the value of our estimate.

However, as we have seen before, the confidence interval depends on the true θ
so we cannot compute it if we don’t know θ! What is done then is to use the
estimate θML itself as if it was the true θ. If we replace our estimate θML

j in
the place of θj in the distribution (4.29) we can find an estimated confidence
interval.

The estimated confidence interval has the following property that makes it useful
in practice: Assume that we set p at some value. Then perform a mental
experiment: Draw many data sets of size n from the true, unknown distribution.
For each data set, estimate θML and then calculate a confidence interval of
confidence p, pretending that the current θML is the true θ. This way we will
get a lot of intervals [a, b], one for each data set. One can prove that a fraction
p or larger of these intervals contain the true θ.
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Figure 4.4: Confidence intervals for θ1 for the distribution in example 4.4 for
various confidence levels p
.
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Figure 4.5: The confidence interval for a given p is not unique. Here we show
confidence intervals computed by two different methods. The (magenta) squares
mark the confidence interval computed by the method presented here, which
results in P [θML

1 < a] ≤ δ and P [θML
1 ≥ b] ≤ δ. The (red) circles mark a a

confidence interval computed by a different method, for which a− θ1 = b− θ1.
.
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Figure 4.6: The entropy of the distribution representing the coin toss as a
function of p = P (1). Note that the entropy is symmetric around 0.5.

In summary, estimating a parameter θj from data takes the following steps.

1. Collect data D = {x(1), . . . x(n)}
2. Compute sufficient statistics n0, n1, . . . nm−1

3. Compute the ML estimates θML
j = nj/n

4. Choose a confidence level, say p = 0.95. For each j = 0, . . .m−1 use θML
j

and distribution (4.29) to obtain a CIp for the parameter θj .

4.4 Incursion in information theory

Return to the coin toss experiment. I toss the fair coin and tell you the result.
How much information do you receive? By definition, one bit. Now I toss
the biased coin (p = 0.9) and tell you the result again. Do you receive the
same amount of information now? Uncertainty is the opposite of information.
When I give you information, I remove some of your uncertainty. So when are
you more uncertain about the outcome of the toss? At p = 0.5, p = 0.9 or
p = 0.999? If p = 1 you are certain and the information you’d receive from
me is 0. In information theory, uncertainty is measured by the entropy. The
entropy of a distribution is the amount of randomness of that distribution. If x
is an elementary event in S, then the entropy of a distribution P over S is

H(P ) = −
∑

x∈S
P (x) logP (x) (4.31)

Figure 4.6 plots the entropy of the distribution representing the coin toss as a
function of p. The maximum entropy is reached at p = 0.5, corresponding to
the uniform distribution. The entropy is 0 for p = 0 and p = 1 which are the



4.4. INCURSION IN INFORMATION THEORY 53

deterministic experiments. Note that H is always ≥ 0. The logarithms are in
base 2.

Information theory also gives us a way of measuring the “distance” between two
probability distributions. It is the Kullbach-Leibler (KL) divergence

D(P ||Q) =
∑

x∈S
P (x) log

P (x)

Q(x)
(4.32)

The KL divergence is 0 if and only if P ≡ Q, and positive otherwise. D(.||.)
is not a distance, since it is not symmetric and it does not obey the triangle
inequality.

Example 4.5 Let S = {0, 1} and let P and Q be two distributions on S defined

by θP1 = 0.5, θQ1 = 0.2.

D(P ||Q) = P (0) log
P (0)

Q(0)
+ P (1) log

P (1)

Q(1)
= θP0 log

θP0

θQ0
+ θP1 log

θP1

θQ1
= 0.2231

D(Q||P ) = Q(0) log
Q(0)

P (0)
+Q(1) log

Q(1)

P (1)
= 0.1927

4.4.1 KL divergence and log-likelihood

An interesting connection exists between KL divergence and likelihood. Let us
rewrite the logarithm of the likelihood for an experiment with n trials:

l(θ) = log θn0
0 θn1

1 . . . θ
nm−1

m−1 (4.33)

= n0 log θ0 + n1 log θ1 + . . .+ nm−1 log θm−1 (4.34)

= n

m−1∑

i=0

ni
n

log θi (4.35)

= n

m−1∑

i=0

ni
n

[log θi + log
ni
n
− log

ni
n

] (4.36)

= −n
m−1∑

i=0

ni
n

log
ni

n

θi
− n

m−1∑

i=0

ni
n

log
ni
n

(4.37)

= n[−D(P̂ ||P ) +H(P̂ )] (4.38)

In the above, we have denoted by P the distribution over S defined by the
parameters θ and by P̂ the distribution defined by the parameters ni

n , i =
0, . . . m− 1. Hence, we can rewrite the log-likelihood as

1

n
l(θ) = −D(P̂ ||P ) +H(P̂ ) (4.39)
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To maximize the log-likelihood we have to minimize the KL divergence on the
r.h.s. because the other term does not depend on θ. But this KL divergence
has a unique minimum of 0 for P ≡ P̂ , i.e for

θi =
ni
n

for i = 0, . . . m− 1 (4.40)



Chapter 5

Continuous Sample Spaces

Here we study probability distributions whose set of outcomes S is the real
line. While a discrete distribution can be directly defined by its values for all
elements of S, the case of continuous distribution this approach breaks: For
example, the probability of an individual point on the real line is zero (almost
everywhere) but the probability of an interval containing only zero-probability
points is usually non-zero. Hence, distributions on (subsets of) the real line
require a different approach.

5.1 The cumulative distribution function and the

density

The cumulative distribution function (CDF) corresponding to a distribution P
is defined by

F (x) = P (X ≤ x) (5.1)

In the above, X is a random sample from P , while x, the argument of F is a
given point on the real line.

The following properties of F are easy to derive:

1. F ≥ 0 positivity.

2. lim
x→−∞

F = 0

3. lim
x→∞

F = 1

4. F is an increasing function

55
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Cumulative distribution function
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Probability density function

Figure 5.1: A distribution over the real numbers, given by its cumulative dis-
tribution function F and by its probability density f . Note that the maxima of
the density correspond to the steepest points in F .

5. P ((a, b]) = F (b)− F (a); the probability of an interval is the increase of
F between its limits.

This last property is useful because having the probability of an interval allows
us to compute the probability of any set of interest (read Lebesgue measurable
set if you are steeped in measure theory) from F . Hence F is sufficient to
determine P .

In the following we shall assume that F is continuous and differentiable. Its
derivative w.r.t x is called the probability density function or shortly the density1.

f =
dF

dx
(5.2)

By Newton’s formula we have

P (a, b) = P [a, b] = F (b)− F (a) =

∫ b

a

f(x)dx (5.3)

1For you measure theorists out there, P is a measure, F (x) is the measure of (−∞, x] and
f is the Radon-Nikodym derivative of P w.r.t to the Lebesgue measure.
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and the normalization condition
∫ ∞

−∞
f(x)dx = 1 (5.4)

The distribution P can be defined just as well by the density as by the cumulative
distribution function. Throughout this course, we shall find it more convenient
to use almost exclusively the former.

Any function f defined on the real numbers can be a density, provided it satisfies
the following conditions:

1. f(x) ≥ 0 for all x (positivity)

2.
∫∞
−∞ f(x)dx = 1 (normalization)

Note that: a. If f is not defined over all real numbers we can extend it by giving
it value 0 everywhere where it is not otherwise defined. For example

f(x) =

{ √
x x ≥ 0

0 otherwise

b. If f integrates to a finite number K 6= 1 (and K > 0), then we can rescale f
to make it integrate to 1.

∫ ∞

−∞
f(x)dx = K > 0 ⇒

∫ ∞

−∞

1

K
f(x)dx = 1

This operation is called normalization.

Example 5.1

f(x) = sinx for x ∈ (−∞,∞) is not a density because it can take negative values
f(x) = 1 + sinx for x ∈ (−∞,∞) is not a density because its integral is infinite
f(x) = 1 + sinx for x ∈ [0, π] and 0 otherwise is not a density because its integral is π + 2 6= 1
f(x) = 1+sin x

π+2 for x ∈ [0, π] and 0 otherwise is a density

5.2 Popular examples of continuous distributions

Example 5.2 The uniform distribution over a given interval [a, b], has a
density that’s constant inside [a, b] and 0 outside.

f(x) =

{
1
b−a , x ∈ [a, b]

0, otherwise
(5.5)
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Cumulative distribution function

x1 x2

F(x1)

F(x2)

Probability density function

x1 x2

Figure 5.2: Computing the probability of an interval. The probability of [x1, x2]
is equal to the difference F (x2) − F (x1) in the plot above, but it is also equal
to the integral of f from x1 to x2 in the plot below.
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Figure 5.3: The uniform distribution on interval [0,3] represented as density
(above) and as cumulative distribution function (below).
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Similarly, one can define uniform distributions over [a, b), (a, b), (a, b]. The num-
ber b−a represents the normalization constant of the uniform distribution. The
uniform density and its cumulative distribution function are shown in figure 5.3.

Under a uniform distribution, the probability of an interval contained in [a, b]
is proportional to its length. To see this, assume first that [a, b] = [0, 1] the
unit interval and that 0 ≤ c ≤ d ≤ 1, that is, [c, d] ⊆ [0, 1]. Then P [c, d] =
F (d)− F (c) = d− c and the result is proved. Exercise Generalize this to any
other interval [a, b].

Example 5.3 The normal (Gaussian) distribution.

This is the “bell curve”, probably the most important (and famous) of all distri-
butions. There are innumerable real-world phenomena which behave according
to the normal distribution (sometime later in this course we shall see one reason
why). Can you give an example? Moreover, the Gaussian is popular also with
the mathematicians (this is no surprize:) who were charmed by its many nice
properties and are still discovering more of them. The normal distribution is
given by

f(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (5.6)

It has two parameters, µ and σ called respectively the mean and standard de-
viation of the distribution. We shall see later what is the significance of these
names. For now we can notice that the parameter σ controls the “spread” of
the distribution, while µ controls the position of the maximum. Indeed, it is
easy to show that f has a unique maximum at x = µ and that it is symmetric
around this value. Figure 5.4 plots normal distributions with different means
and standard deviations.

The cumulative distribution function of the Gaussian cannot be written in closed
form. It is called G, or the error function, and its values for µ = 0 and σ = 1
are tabulated.

Example 5.4 The (continuous) exponential distribution F (x) = 1 − e−γx,
f(x) = γe−γx.

5.3 Another worked out example

Assume that components are produced which have a parameter x with nominal
value is x = a. However, due to process errors, the distribution of x is described
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Figure 5.4: The normal distribution with µ = 1 and σ = 1: the density (above)
and the cumulative distribution function (below).
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Figure 5.5: Examples of normal distributions. Above: σ = 1, µ = −2, 0,+2;
below: µ = 0, σ = 0.2, 1, 4. The peak of each distribution is located at µ and
the spread increases with σ.
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by the density

f(x) =







hx
a , x ∈ [0, a]
h(2a−x)

a , x ∈ (a, 2a]
0, otherwise

1. What is the value of h so that the above function is a proper probability
density function?

Solution The function f needs to be ≥ 0, which is easily verified, and to satisfy
the normalization condition

∫ 2a

0

f(x) = 1

To find h, we compute the area under f and equal it with 1. The area is a
triangle, whose area is 2ah/2 = ah. Therefore

1 = ah =⇒ h =
1

a

and

f(x) =







x
a2 , x ∈ [0, a]
2a−x
a2 , x ∈ (a, 2a]

0, otherwise

2. What is the CDF of this distribution?

Solution F (t) = P (x ≤ t)

For t ≤ a:
F (t) =

∫ t

0

x

a2
dx =

x2

2a2

∣
∣
∣
∣

t

0

=
t2

2a2

For a < t ≤ 2a:

F (t) =

∫ t

0

f(x)

=
1

2
+

∫ t

a

2a− x
a2

dx

=
1

2
+

[
2ax

a2
− x2

2a2

]t

a

=
1

2
+

[
2a(t− a)

a2
− t2 − a2

2a2

]t

a

=
1

2
+

4at− 4a2 − t2 + a2

2a2

= 1− (2a− t)2
2a2
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3. Compute the probabilities: P (x ≤ a), P (x ≤ a/2), p(x ≥ 3a/2).

Solution By the symmetry of the triangle, P (x ≤ a) = P (x ≥ a) = 1/2. Or, we
can use the CDF to obtain the same result; P (x ≤ a) = F (a) = t2/2

∣
∣
t=1

= 1/2.

P (x ≤ a/2) =

∫ a/2

0

f(x)dx =

[
x2

2a2

]a/2

0

=
1

8

= F (a/2) =
t2

2a2

∣
∣
∣
∣
t=a/2

=
1

8

=

(
1

2

)2

P (x ≤ a) =
1

8
geometrically: by triangle similarity

P (x ≥ 3a/2) = 1− P (x < 3a/2) = 1− F (3a/2) =
1

8

= P (x ≤ a/2) =
1

8
geometrically: by symmetry

This also shows that 1/8+1/8 of the components are a/2 away or more from the
nominal value. If we call these components “bad” and the others “good”, we
can conclude that in this process the probability of producing a good component
is p1 = 1− 1/4 = 3/4.

4. Let us compare this distribution with a normal distribution g(x) with µ =
a, σ2 = 1. We will choose a so that the two distribution have the same maximum
height. We want to establish for which distribution the probability of producing
a good component is higher.

Solution We first need to find a. We have

g(x) =
1√
2π
e(x−a)

2

2

and therefore g(a) = 1/
√

2π. If we require g(a) = f(a) it follows that h = 1/a =
1/
√

2π and a =
√

2π.

Now we want to find the probability Pg(x ≤ a/2) = Pg(x ≤
√

2π/2). Recall that
g is a normal distribution centered at µ. Tables give us the CDF of a normal
distribution centered at 0. Therefore, we change the variable x to x′ = x − a.
Now our question becomes: what is P (x′ ≤ a/2−a = −

√

π/2) under a standard
normal distribution? We can find this from the table, looking for the value
√

π/2 = 1.2533. We find that the corresponding probability is 0.1050.

Finally, we can compute the probability Pg(|x − a| ≤ a/2) = 1 − 2 × 0.1050 =
0.79 = p2.
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Comparing the p1 = 0.75 with p2 we see that the normal distribution is more
likely to produce a good component.

5. Quantiles Sometimes we are interested in the reverse question: What is
t, so that P (x ≤ t) equals some value α? Typically, α = 1

4 ,
3
4 , 0.1, 0.2, . . .0.9.

The corresponding t values, denoted x 1
4
, x 3

4
, x0.1, x0.2, . . . are called quartiles,

deciles, or more generally quantiles.

We will evaluate the quartile x 1
4
.

Solution We have to solve the equation

F (x1/4) = 1/4

or equivalently

x2

2a2
=

1

4
=⇒ x1/4 =

a√
2

5.4 Sampling from a continuous distribution

Assume that we have a system-supplied function rand() that generates random
numbers uniformly distributed in the interval [0, 1]. We want to sample from
another continuous density F using rand().

Here is a method:

1. call rand() to produce u ∈ [0, 1]

2. output x = F−1(u)

Then x’s CDF will be F .

Why it works: Assume that the method above produces numbers distributed
according to a CDF F̃ . We will show that F̃ = F . Take an arbitrary x0 ∈
(−∞,∞).

F̃ (x0) = P (x ≤ x0) (by definition)

= P (F (x) ≤ F (x0)) (because F is increasing)

= P (u ≤ F (x0)) (because u = F (x))

= F (x0) (because u is uniformly distributed)
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Sampling from a CDF

x=F−1(u) 

u

Figure 5.6: Sampling from an arbitrary F .

5.5 Discrete distributions on the real line

We shall now give a unified view of distributions over subsets of the real line, be
they discrete (like the Bernoulli) or continuous (like the normal). Let us start
with the example of the die roll, whose outcomes set is S = {1, 2, 3, 4, 5, 6} a
finite subset of (−∞,∞).

What is the cumulative distribution function F for this distribution? Applying
the definition (5.1) we obtain

F (x) =







0 x < 1
1
6 1 ≤ x < 2
2
6 2 ≤ x < 3
3
6 3 ≤ x < 4
4
6 4 ≤ x < 5
5
6 5 ≤ x < 6
1 x ≥ 6

(5.7)

Hence the cumulative distribution function exists, but is discontinuous. How
about the density f? Obviously, f is zero in all points but 1, 2, 3, 4, 5, 6. In
those points, its value must be “infinity”. More precisely, we say that f for the
die roll is

f(x) =
1

6
δ(x− 1) +

1

6
δ(x− 2) + . . .

1

6
δ(x− 6) (5.8)
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Figure 5.7: The discrete distribution corresponding to the die roll. Its cumula-
tive distribution function F (above) has “steps” of size 1

6 at the points 1, . . . 6;
the density f has δ “spikes” at the same points and is 0 otherwise.

The symbol δ() called Dirac’s “function” is defined by

δ(x) =

{
0, x 6= 0
∞, x = 0

(5.9)

with ∫ ∞

−∞
δ(x)dx = 1 (5.10)

In addition we have the more general relationship holding for any function g
defined on the real line ∫ ∞

−∞
δ(x)g(x)dx = g(0) (5.11)

(Parenthesis: Mathematically speaking, Dirac’s funtion is not a function but
a functional and the last formula above defines it by the values it takes when
applied to a real function.)

In general, the density of a discrete distribution over S = {x0, . . . xm−1} ⊆
(−∞,∞) is given by

fx(x) =
m−1∑

i=0

P (xi)δ(x− xi) (5.12)
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Chapter 6

Parametric density
estimation

6.1 Parametrized families of functions

In parametric density estimation, we assume that the density to be estimated
belongs to a parametrized family of densities F = {fθ, θ ∈ Θ}. The following
are examples of parametrized families of densities.

• the family of all uniform distributions over a closed interval

F1 = {u[a,b], a < b} (6.1)

Under this distribution all outcomes are equally possible. It is some-
times called an uninformative distribution, because it gives no outcome
a higher preference. F1 has two parameters a and b. The domain Θ is the
half-plane a < b.

• the family of all normal distributions, parametrized by µ and σ2; here Θ
is the half-plane (µ, σ2), σ2 > 0.

F2 = {N(.;µ, σ2)} (6.2)

This distribution is the most famous of all. Many natural and social
phenomena are well described by this law. Besides, it has compelling
mathematical properties which make it a focus point for much of statitics.

• the family of logistic cumulative distribution functions (CDF’s) given by

F (x; a, b) =
1

1 + e−ax−b
, a > 0 (6.3)

67
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The density that corresponds to this cumulative distribution function is

f(x; a, b) =
ae−ax−b

(1 + e−ax−b)2
(6.4)

and the family F3 is the set of all densities of the form (6.4) with param-
eters (a, b) belonging to the right half-plane.

The logistic distribution has been used to describe growth phenomena. It
is also very useful in classification (chapter 16).

• the family F4 of exponential distributions parametrized by λ > 0

f(x;λ) =

{
λe−λx, if x ≥ 0
0, if x < 0

(6.5)

The exponential distribution is used heavily in reliability (the proba-
bilistic theory of how to optimally schedule diagnosis and maintenance
for components and systems) to describe occurence of failures, times to
fix bugs, component lifetimes. It is also used to describe concentration of
pollutants in environmetrics, in physics to model radioactive decay, and
so on.

• any subset of one of the above families (e.g all the normal distributions
with σ > 1)

• the union of some of the above families (e.g F = F1 ∪ F2)

6.2 ML density estimation

Like in non-parametric density estimation, the objective is to estimate fθ from
a given set of data points D = {x1, x2, . . . xn}. Since the form of f is defined
up to the parameter (vector) θ, the problem is in fact equivalent to estimating
θ. In the framework of ML, we want to find

θ̂ = argmax
θ∈Θ

L(θ) (6.6)

where

L(θ) ≡ L(f(.; θ)) =

n∏

i=1

f(xi; θ). (6.7)

Example 6.1 Estimating a uniform density

Let F be the family of all uniform densities over an interval [a, b] of the real
line. The likelihood is then

L(a, b) =

{ 1
(b−a)n , for a ≤ xi ≤ b for all i

0 otherwise
(6.8)
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From this we can easily derive the ML estimates of the parameters:

a = min
i
xi (6.9)

b = max
i
xi (6.10)

The uniform family is a unusual example, in the sense that the likelihood (and
u) are not smooth functions of the data (a small, even infinitezimal change in
the data can induce a lage change in the likelihood). I included it more like a
curiosity than as a situation you are likely to encounter in practice. The next
examples have more to do with real estimation problems.

6.2.1 Estimating the parameters of a normal density

The normal density function is given by

f(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (6.11)

Because of the exponential form of the distribution, we will find it more convie-
nient to work with the log-likelihood l.

l(µ, σ2) =

n∑

i=1

[

−1

2
lnσ2 − 1

2
ln 2π − (xi − µ)2

2σ2

]

(6.12)

= −n
2

lnσ2 − n

2
ln 2π − 1

2σ2

[
n∑

i=1

x2
i − 2µ

n∑

i=1

xi + nµ2

]

(6.13)

To find the maximum of this expression, we equate its partial derivatives w.r.t
µ and σ2 with 0.

∂l

∂µ
=

2nµ

2σ2
− 2

∑n
i=1 xi

2σ2
= 0 (6.14)

From this equation we obtain

µ̂ =
1

n

n∑

i=1

xi. (6.15)

Hence, the mean µ is equal to the arithmetic mean of the data. It is also
convenient that µ can be estimated from the data independently from σ2.

Now, let us take the partial derivative w.r.t σ2:

∂l

∂σ2
= − n

2σ2
+

1

2σ4

n∑

i=1

(xi − µ̂)2 = 0 (6.16)
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This entails

σ̂2 =
1

n

n∑

i=1

(xi − µ̂)2 (6.17)

In other words, the variance σ2 is the arithmetic mean of the squared deviations
of the data from the estimated mean µ̂. Note that an alternative formula for σ̂2

is

σ̂2 =
1

n

n∑

i=1

x2
i − µ̂2 (6.18)

Now we also see that for the purpose of parameter estimation, the data are
summarized by the sufficient statistics

∑n
i=1 xi and

∑n
i=1 x

2
i .

6.2.2 Estimating the parameters of an exponential density

l(λ) =
n∑

i=1

(logλ− λxi) (6.19)

= n logλ− λ
n∑

i=1

xi (6.20)

Taking the derivative we obtain:

∂l

∂λ
=

n

λ
−

n∑

i=1

xi (6.21)

Then, solving ∂l
∂λ = 0 we obtain

1

λML
=

∑n
i=1 xi
n

(6.22)

λML =
n

∑n
i=1 xi

(6.23)

Note that this density, too, has a sufficient statistic: it is 1
n

∑n
i=1 xi the

arithmetic mean of the observations. The parameter λ is inversely proportional
to the sufficient statistic, which suggests that if x is measured in time units (for
example seconds), then λ would be measured in inverse time units (for example
s−1). For this reason, λ is called the rate of the exponential distribution.

6.2.3 Iterative parameter estimation

Let us now estimate the ML parameters of the third family of functions, the
logistic CDF’s. The expression of the log-likelihood is:

l(a, b) = n ln a− a
∑

i

xi − nb− 2

n∑

i=1

ln(1 + e−axi−b) (6.24)
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and its partial derivatives w.r.t a, b are

∂l

∂a
=

n

a
−

n∑

i=1

xi
1− e−axi−b

1 + e−axi−b = 0 (6.25)

∂l

∂b
= −

n∑

i=1

1− e−axi−b

1 + e−axi−b = 0 (6.26)

The above system of equation cannot be solved analytically. We’ll have to settle
for a numerical solution, obtained iteratively by gradient ascent. We shall start
with an initial estimate (aka guess) of a, b and update this estimate iteratively
as follows:

a ← a+ η
∂l

∂a
(6.27)

b ← b+ η
∂l

∂b
(6.28)

As the gradient ( ∂l∂a ,
∂l
∂b ) approaches zero, this iteration is guaranteed to converge

to a (local) maximum of the log-likelihood. This is a serious problem with
iterative parameter estimation in general, and one that hasn’t been satisfactory
solved yet.

Figure 6.1 shows the gradient ascent iteration for a data set of 100 samples, in
two situations. Both iterations are run for 100 steps, starting from the initial
point a = 1, b = 0. The first situation corresponds to a step size η = .01. The
iteration converges to a = 3.5, b = −1.9, the log-likelihood attains a maximum
of −71.6 and the gradient itself converges to 0. The final density is plotted
with continuous line vs. the true density. They do not coincide exactly: the
true density is a normal density and the best estimate by a logistic CDF has a
slightly different shape. In the second situation, the step size η = 0.1. This is too
large a step size, causing the iteration to oscillate; neither the parameters nor
the likelihood or the gradients converge. The resulting estimate is disastruous.

Appendix: The likelihood function for the logistic density
has no local optima

In section 6.2.3 we computed the gradient of the logistic density and showed
how the likelihood l(a, b) can be maximized by gradient ascent. In general, the
gradient ascent method, being a greedy method, converges to a local maxi-
mum of the likelihood function. Here we show that this is not a problem for
the logistic density, as the likelihood in this case has a unique optimum. More
precisely, we will show that the Hessian matrix of l(a, b), i.e the matrix of
second derivatives of l w.r.t the parameters a, b, is negative definite. When a
function has a negative definite Hessian, then the function is concave, and it
can have at most one maximum.
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Figure 6.1: Two examples of gradient ascent on the same problem. The data
are 100 points generated from a normal distribution. The step size η is 0.01 in
the top 4 plots and 0.1 in the bottom set of plots. The estimated
f is shown with continuous line, the true f is in dotted line.
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We start by computing the second derivatives of l. To simplify notation, let
ei ← e−axi−b.

∂

∂a

(
1− ei
1 + ei

)

=
2xei

(1 + ei)2
(6.29)

∂

∂b

(
1− ei
1 + ei

)

=
2ei

(1 + ei)2
(6.30)

∂2l

∂a2
= − n

a2
−

n∑

i=1

2x2
i

ei
(1 + ei)2

(6.31)

∂2l

∂b2
= −

n∑

i=1

2ei
(1 + ei)2

(6.32)

∂2l

∂a∂b
= −

n∑

i=1

2xiei
(1 + ei)2

(6.33)

The Hessian is the symmetric matrix

H =





∂2l
∂a2

∂2l
∂a∂b

∂2l
∂a∂b

∂2l
∂b2



 (6.34)

A matrix H is negative definite when −H is positive definite. To prove that
some 2× 2 matrix is A positive definite, we need to show that the determinant
det A > 0 and that the two diagonal elements are also positive.

Note that both ∂2l
∂a2 ,

∂2l
∂b2 ≤ 0. Therefore, to prove that the matrix H is negative

definite, all we need to prove is that the determinant det(−H) > 0 for all a > 0
and all b.

To simplify matters again, we denote yi = ei

(1+ei)2
> 0 and hence

det (−H) =
∂2l

∂a2

∂2l

∂b2
−
(
∂2l

∂a∂b

)2

(6.35)

=

(

n

a2
+
∑

i

2x2
i yi

)(
∑

i

2yi

)

−
(
∑

i

2xiyi

)2

(6.36)

=
2n

a2

∑

i

yi + 4
∑

i

x2
i yi
∑

i

yi − 4(
∑

i

xiyi)
2 (6.37)

To process the last term, let us first prove the follwing identity:

(
∑

i

a2
i )(
∑

j

b2j)− (
∑

i

aibi)
2 =

=
∑

i

∑

j

a2
i b

2
j − (

∑

i

a2
i b

2
i + 2

∑

i<j

aibiajbj) (6.38)
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= 2
∑

i<j

a2
i b

2
j − 2

∑

i<j

aibiajbj (6.39)

=
∑

i<j

(aibj − ajbi)2 (6.40)

Set now a2
i = x2

i yi, b
2
i = yi (which implies xiyi = aibi) and we obtain

det (−H) =
2n

a2

∑

i

yi + 4
∑

i<j

(aibj − ajbi)2 > 0 (6.41)

This proves that the log likelihood l(a, b) has a negative definite Hessian every-
where and therefore it can have at most one maximum.

6.3 The bootstrap

T.B.D.



Chapter 7

Non-parametric Density
Estimation

The objective is to estimate a probability density fX over the real line (or a
subset thereof) from a set of points D = {x1, x2, . . . xn}.

7.1 ML density estimation

The likelihood of D is

L(fX |D) =
n∏

i=1

fX(xi) (7.1)

and the log-likelihood

l(fX |D) =

n∑

i=1

log fX(xi) (7.2)

Maximizing the above over all functions yields (without proof)

f̂ML
X =

1

n

n∑

i=1

δxi (7.3)

where δx̄ is the Dirac “function”

δx̄ =

{
∞ for x = x̄
0 otherwise

(7.4)

By convention
∫ ∞

−∞
δx(t)dt = 1 (7.5)
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∫ ∞

−∞
δx(t)g(t)dt = g(x) (7.6)

Hence, the ML estimate of f is a weighted sum of δ spikes placed at the sampled
points. Such an estimate is counterintuitive - we know that most densities aren’t
spikes! It is also completely impractical: if we used the model f̂X for prediction
then we would predict that all the future samples from fX will lie at the locations
x1, x2, . . . xn and nowhere else!

Therefore, instead of maximizing the likelihood over all possible density func-
tions we will impose some restrictions corresponding to our intuition of a “re-
alistic” density. One way to do that is to decide on a model class (e.g uniform,
normal) and find the ML estimate in that class. This is called parametric den-
sity estimation. The alternative is the non-parametric way. We will study two
non-parametric models: the histogram and the kernel density estimator.

7.2 Histograms

To construct a histogram, we partition the domain of the distribution into nb
bins of equal width h. Then we count the number of points ni, i = 1, . . . nb in
each bin and we define fX to be equal to the ni

nh over bin i. Note that this way
fX is a piecewise constant function that integrates to 1. The density is zero in
all bins that contain no points.

Figure 7.1 shows examples of histograms. The choice of the bin width h influ-
ences the aspect of the histogram and its variance w.r.t to the sample. This is
an illustration of the bias-variance trade-off that will be discussed further on.
Another source of variation in a histogram is the choice of bin origins. If all
bins are shifted by an amount ∆ < h, the numbers ni may change, because
bin boundaries are shifted. The latter variability is entirely due to artefacts -
having nothing to do either with the data or with other reasonable assumptions
about nature. It is an example of problem to be avoided by a “good” statistical
model. The next section will show a class of models which is clearly superior
to histograms in all respects. Therefore, histograms are not recommended and
should not be trusted except with caution, for a very qualitative look at the
data.
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Figure 7.1: Three histograms (note that they are unnormalized, i.e don’t sum
to 1). The first two are over data sets that differ in only 1 point. The third is
from the first data set but has twice as many bins.

7.3 Kernel density estimation

This method constructs the estimate of fX by placing a “bump” at each data
point and then summing them up.

fX(x) =
1

nh

n∑

i=1

k(
x− xi
h

) (7.7)

The “bump” function k(.) is called a kernel and the parameter h is the kernel
width. Figure 7.3 shows three typical kernels. A kernel should always be non-
negative and satisfy the following conditions

1.
∫∞
−∞ k(x)dx = 1 integrate to 1

2.
∫∞
−∞ xk(x)dx = 0 “centered” at 0

3.
∫∞
−∞ x2k(x)dx < ∞ “finite variance”

Usual kernels are also symmetric around 0, have a maximum at 0 and decrease
monotonically away from the origin. If a kernel is 0 outside a neighborhood
of the origin, then we say that it has compact support. The uniform and the
Epanechnikov kernel have compact support, while the Gaussian kernel doesn’t.
The Epanechnikov kernel has optimal variance (something we’ll discuss next).

Sometimes, the last condtion is replaced with
∫∞
−∞ x2k(x)dx = 1. This condi-

tion insures that different kernels are comparable w.r.t width.

Note that f̂X defined above is a ML estimate. If we model fX by summing
n bumps of fixed shape and width and maximize the likelihood of the data
w.r.t the bumps positions, then, if the width of the bumps is small enough, the
optimal placement centers each bump on a data point.
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Figure 7.2: Kernel density estimation. A kernel is placed on each data point;
the density is (proportional to) the sum of all kernels.

What happens if we also allow the kernel width to vary? Decreasing h will
have the effect of increasing the likelihood. It will also make the estimated
density look “spikier”. The “optimal” h will be zero in which case the original,
unconstrained ML solution with its n δ spikes is recovered. This shows that
kernel density estimation is ML estimation with a restriction on how “spiky”
we allow our solution to be.

Another way of looking at kernel density estimation is as a convolution: the
kernel density estimator represents the convolution of the kernel with a set of
spikes placed at the data points.

f̂X =
1

h
f̂ML
X ∗ k (7.8)

Choosing a kernel A compactly supported kernel has computational advan-
tages: k(x) being zero outside a finite interval we will only need to compute the
non-zero terms in 7.7. If we assume that the original density is defined only on
an interval of the real axis (such an fX is called compactly supported), then it
also makes sense to choose a kernel with compact support.

On the contrary, the Gaussian kernel assures that f̂X is non-zero everywhere.
To compute such an f̂X at one point x we have to evaluate k in n points, which
can be quite a burden if the data set is large.

The exact shape of the kernel is not critical in practice. Therefore in the next
examples we shall only use the Gaussian kernel. Far more important than the
kernel shape is the choice kernel width h that controls the bias-variance trade-
off.
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Figure 7.3: Examples of kernel functions: (a) the square kernel; (b) the Epanech-
nikov kernel2; (c) the Gaussian kernel. The area under each kernel equals 1.
Note that they have different widths and different maximum heights; therefore
we expect different amounts of smoothing for the same h.

7.4 The bias-variance trade-off

Bias. The bias refers to the capacity of a family of functions (in this case
the family of kernel density estimators with a given kernel k and a given h) to
fit the data. The better the fit to the data, the lower the bias. For example,
estimating the density with delta spikes models the data perfectly, hence has 0
bias. On the other hand, if we use a kernel density estimator with h large, then
the bumps are wide and their peaks are flat. No matter if the original density
was flat or not, the estimator will look flat. Hence densities that have sharp
peaks can’t be approximated well with a large h. We say that an estimator
with large h is biased toward slowly varying densities. In the case of the kernel
density estimators, the bias increases with h.

Because h controls the smoothness of the resulting density estimate, is also
called a smoothing parameter. Large bias toward some kind of solution implies
potentially large estimation errors, i.e large differences between our solution and
the “true” density that generated the data. Therefore we usually want to have
low bias.

Variance measures how much the estimated density changes due to the ran-
domness of the data set. The maximum variance is attained for h = 0 - the
unconstrained ML estimate. Indeed, if the data set contains a data point at a
then the density there is ∞; if we draw another sample which doesn’t contain
a data point exactly at a, then the density in a will be 0. A variation from
infinite to 0 due to an infinitesimal change in the data! As h becomes larger,
the density becomes less sensitive to small perturbations in the data, therefore
the variance of the estimate will decrease with h.
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Since we want an estimated density that fits well all the possible data sets, a
low variance is what we should aim for.

Considering now what we know about bias, we see that minimizing bias (which
means reducing h) and minimizing variance (by increasing h) are conflicting
goals. This is the bias-variance trade-off: finding a value of the kernel width h
that is reasonable both for bias and for variance.

The effect of the sample size n. Intuitively, it is harder to fit more data points
than less data points. Thus, the bias will in general not decrease when the
sample size n increases. For the case of kernel density estimates, the bias doesn’t
change with n. The variance however will decrease with n, therefore it is at our
advantage to obtain as much data as possible. With enough data to compensate
for the variance, we can afford using a small h to reduce the bias as well. In
conclusion, a larger sample size n has a beneficial effect on the overall quality
of the estimate.

How should h be changed with n? Theoretical studies show that the optimal
kernel width should be

h ∝ 1

n
1
5

(7.9)

Example 7.1 Traffic on the I-90 bridge

Assume that we have placed a sensor on the I-90 bridge that records the moment
a car passes in front of it. The data file fig h7 traffic.dat is a (fictitious!)
recording of such data over 24 hours. The same data is plotted in figure 7.5
on the time axis (from 0 to 24 hrs). We will visualize the it by constructing a
kernel density estimator.

The figure 7.6 shows the density estimate using 3 different kernels with the same
width h = 1. The rectangular kernel is easy to recognize by its ruggedness, the
other two plots that are very close together are the Gaussian kernel and the
Epanechnikov (call it E.!) kernel. Note two things: First, the Gaussian and E.
kernels give almost indistinguishable estimates. It doesn’t really matter which
one we use. The rectangular kernel, at this h, produces a more rugged picture.
While for the two other kernels h = 1 seems a good kernel width, for the
rectangular kernel we may want to use a larger h.

After experimenting with the three kernel types, we decide to use one of the
smooth kernels, and the choice falls onto the E. kernel. The next plots show
the density obtained with this kernel for various kernel widths. At the smallest
kernel width, h = 0.3 the density has many peaks and valleys. Even without
having seen the true f , we may assume that traffic doesn’t vary that wildly.
The estimate for h = 1 is much smoother and on it two peaks - corresponding
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Figure 7.4: The effect of bias, variance and the sample size. The first row plots
density estimates with h = 0.02 for 3 samples from the same distribution (a
uniform over [0, 1]). The first two samples have size n = 12, the third has
n = 1200. The density estimate is concentrated at the data points (thus the
bias is low); this is beneficial for the large sample, but produces high variance
for small samples. The second row shows density estimates from the same three
data sets for h = 0.17. Now the three curves look very similar – the variance
is low. The estimates obtained from the small data sets are much closer to the
true distribution now. But this h is too large for the large data set, resulting
in a worse estimate then previously. Last, note also that more data points are
better than less data points in both cases.
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Figure 7.5: The traffic data set.
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Figure 7.6: Density estimates of the traffic data with three different kernels:
square, Epanechnikov and Gaussian. The kernel width is h = 1 in all cases.
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Figure 7.7: Density estimates of the traffic data with the same kernel at three
different kernel widths.

to the morning and afternoon rush hours - appear clearly. This plot can help
anyone trying to learn something about the traffic see the global pattern (in
this case two intervals of intense traffic) amids the “sampling noise” that the
small h estimate failed to suppress. Thus a density estimator is a tool in data
visualization. The last plot, for h = 3 shows only one large peak; the kernel
width is too large, smoothing out not only the noise but also the structure in
the data.

The density estimate can be used also for prediction: How many cars will cross
the I-90 bridge tomorrow between noon and 1 pm, if the total number of cars
that cross it in a day is 10,000? The answer is

10, 000

∫ 13.00

12.00

f(t)dt ≈ 535 (7.10)

In the above example, h = 1 has been chosen by visually examining the plots.
Although “the visual appeal” method is quite popular, one can do something
more principled.

7.5 Cross-validation

The idea of cross-validation is to “test” the obtained model on “fresh” data,
data that has not been used to construct the model. Of course, we need to
have access to such data, or to set aside some data before building the model.
In our imaginary example, we are lucky to be given “next day’s data”, another
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Figure 7.8: Likelihood (right) and log-likelihood of the test set of traffic data
for different kernel sizes h. The optimum is at h = 1.

sample from the same distribution (this is the file fig h7 traffic next.dat).
This data set is called test data or hold out data, in contrast to the data used
to build the model which is called training data.

We will “test” the model on the holdout data. If the model is accurate, it
must be able to predict well unseen data coming from the same distribution.
In statistics terms, the unseen data should have high likelihood. Thus, the
log-likelihood of the test data

ltest(h) =
∑

x∈Dtest

log fh(x) (7.11)

=
∑

x∈Dtest

log




1

|D|h
∑

y∈D
k

(
x− y
h

)


 (7.12)

is a measure of the goodness of our estimator. In the above equation, we have
indexed the density by h the kernel width. Now all we need to do is to is to
compute fh and ltest for a sufficiently large range of h. This was done and the
results, both as likelihood and as log-likelihood are shown in figure 7.8. The
maximum value of the (log-)likelihood is attained for h = 1. This is the value
that predicts the future data best, confirming our intuition.

Now at least having made all the choices we can allow ourselves to take a look
at the “true” density that I used to generate this sample. Figure 7.9 depicts it
along with the sample (n = 100).
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Figure 7.9: The data and the true density (left) and cumulative distribution
function (right).

7.5.1 Practical issues in cross-validation

1. The range of h to be tested. If the kernel is finitely supported, then,
once h is smaller than the smallest distance between two data points, each
point is under a separate bump and decreasing it further will only create
larger 0 density regions between the data. So, this is a good lower limit
for h. For the upper limit, a good choice is an kernel width of about the
range of the data xmax − xmin, or a fraction of it, e.g 1/2(xmax − xmin).

2. The size of the validation set Dtest. If the validation set is too small,
then the value of ltest will have high variance (i.e will change much if we
pick another validation set out of the original data set). So, our decision
based on it will be prone to error. But if ntest = |Dtest| is large, then we
may be left with too little data for building the model.

What is recommended depends on the amount of data available. If data
is abundant (several thousands or more data points) then a ntest of about
1000 should suffice; the rest of the data should be used for constructing
the model. If the available data set is medium (several hundreds), then it
is recommende to split it into a ratio of ntest

n ≈ 1
3 . . .

1
2 .

For smaller data sets, a procedure calledK-fold cross validation is used.
The whole data is divided at random into equal sized sets D1, . . .DK .
Then, for k = 1, . . . K, Dk is used as a validation set, while the rest of the
data is used as training set. The log-likelihood lk(h) of Dk for the k-th
model is calculated. The final score for each h is equal to the arithmetic
mean of lk, k = 1, . . . K. In practice, the values of K range from 3–5 to n.
If K = n the method is called leave-one-out cross validation. You can
notice that, the larger the value of K, the more credible are the results
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of the procedure (why?). The downside is that computational costs also
grow with K as follows. The number of kernel computations to evaluate
a density estimate from n′ points on ntest points is n′ntest. Therefore, to
perform K-fold CV we need

N = K
( n

K
× (K − 1)

n

K

)

= n2(1 − 1/K) (7.13)

kernel evaluations.

3. Other sanity checks include looking at the shape of the density estimate
for the chosen h, or even at how this shape changes with h.

Note that in spite of its conceptual elegance, cross-validation is not a completely
error-proof method. For example, it can be shown that hCV 6→ 0 if the target
density f has infinite support and decays exponentially or slower. Also, outliers
can cause problems in cross-validation.



Chapter 8

Random variables

8.1 Events associated to random variables

A random variable (r.v.) is defined as a function that associates a number to
each element of the outcome space. Hence, any r,

r : S −→ (−∞,∞) (8.1)

is a random variable.

Example 8.1 Let S = {H,T }3 be the outcome space of the experiment consist-
ing of tossing a coin three times. The following 3 numbers that can be associated
with each outcome of the experiment are random variables on this space:

nH the number of heads in 3 tosses

h the number of the first toss that is heads, or zero if no heads appear

r the length of the longest run of heads only

The following table shows the values of these random variables for each outcome
and the respective probabilities, assuming that the coin is fair (p = .5).

87
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Outcome nH h r
TTT 0 0 0 0.125
TTH 1 3 1 0.125
THH 2 2 2 0.125
THT 1 2 1 0.125
HHT 2 1 2 0.125
HHH 3 1 3 0.125
HTH 2 1 1 0.125
HTT 1 1 1 0.125

We see that nh takes values in the set Snh
= {0, 1, 2, 3}, h in Sh and r in Sr

which coincidentally are also equal to {0, 1, 2, 3}.

An important question that will often occur is “What is the probability that a
random variable (RV from now on) takes a certain value?”. For example what
is the probability of the event “r = 2”? This event is the set {THH,HHT }
and its probability is the sum of the probabilities of the individual outcomes

P (r = 2) = P (HHT ) + P (THH) = 0.25 (8.2)

The events r = k for k = 0, 1, 2, 3 are disjoint events, and their union is equal
to the whole sample space S. We say that they form a partition of S. If we
are interested only in r instead of the experiments outcome itself, then we can
ignore the original outcome space S and instead look at the outcome space Sr
of r. The probability of an outcome k in Sr is the probability of the event r = k
in S. The Karnaugh diagram below shows how the events “r = k” partition the
sample space S.

x1x2 00 01 10 11
x3 = 0 0 1 2

1 1 2 3

In general, for a random variable Y and a general outcome space S, with Y :
S −→ SY ⊆ (−∞,∞): the range of Y, SY is called the outcome space of the
random variable Y .

If the range (i.e the outcome space) SY of a RV Y is discrete, then Y is called
a discrete random variable. If SY is continuos (for example an interval or a
union of intervals) then the RV is continuous. Since the outcome space of
Y cannot have more elements than the original S, on a discrete (finite) S one
can have only discrete (finite) RVs. If S is continuous, one can construct both
discrete and continuous RV’s.

For example, let S = [0, 10]. A continuous RV on S is Y (x) = x2 for x ∈ S and
a discrete RV is Z(x) that rounds x to the nearest integer.
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8.2 The probability distribution of a random vari-

able

The probability distribution of a RV Y denoted by PY is a probability over
SY defined by

PY (y) = P ({x ∈ S |Y (x) = y}) (8.3)

(It is a standard notation to designate random variables by capital letters and
their values by the same letter, in lower case. We shall use this notation often
but not always.)

In this section we show how to derive the distribution of a RV from the original
distribution P on the original sample space S.

Conceptually, of course, PY (y) is the probability of the event Y (x) = y. What
we do now is to derive equvalent and (if possible) easily computable formulas
that will give us PY from P . We break up this task by the sample space type
of S and SY .

8.2.1 Discrete RV on discrete sample space

This is the case when both S and SY are discrete. A discrete distribution is
defined by its values on the individual outcomes. Let

θx = P ({x}) for x ∈ S (8.4)

φy = PY ({y}) for y ∈ SY (8.5)

(8.6)

The task is now to find the parameters φ of PY from the parameters θ.

φy = P (Y (x) = y) (8.7)

=
∑

x:Y (x)=y

P ({x}) (8.8)

=
∑

x:Y (x)=y

θx (8.9)

Hence, the parameters of PY are sums of subsets of the parameters of P . Note
that as every x belongs to one and only one of the events “Y (x) = y”, every
θx participates in one and only one φy parameter. This ensures that the φ
parameters sum to 1.

∑

y∈SY

φy =
∑

y∈SY

∑

x:Y (x)=y

θx =
∑

x∈S
θx = 1 (8.10)
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Example 8.2 In the above coin toss we have 3 random variables; they define
3 probability distributions:

value PnH Pr Ph
0 0.125 0.125 0.125
1 0.375 0.5 0.5
2 0.375 0.25 0.25
3 0.125 0.125 0.125

In the above table, the values of Pr and Ph are the same. However, the
two random variables are not identical, because the event “r = 2” (equal
to {HHT, THH}) is different from the event “h = 2” (which is equal to
{THH, THT }).

8.2.2 Discrete RV on continuous sample space

This is the case when S = (−∞,∞) and SY is discrete. Hence, the task is to
find the parameter φ of PY as a function of the CDF F (x) or probability density
f(x) representation of P on S.

φy = PY ({y}) (8.11)

= P (Y (x) = y) (8.12)

=

∫

{x|Y (x)=y}
f(x)dx (8.13)

=

∫ ∞

−∞
f(x)1Y (x)=ydx (8.14)

By 1Y (x)=y we denote a function that is 1 when Y (x) = y and 0 otherwise. Note
the similarity between the above formula and equation (8.9): they are identical
except for replacing the summation with and integral when S is continuous.

If we introduce the notation (see more about this notation in the appendix)

Y −1(y) = {x |Y (x) = y} (8.15)

then we can simplify the formula (8.14) to

PY (y) = P (Y −1(y)) (8.16)

Example 8.3 . The discrete exponential Assume P is given by

f(x) = λe−λx for x ≥ 0, λ > 0 (8.17)
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and
Y (x) = ⌊x⌋ (8.18)

In other words, x has an exponential distribution and Y is its discretization to
the integers.

PY (y) = P (⌊x⌋ = y) (8.19)

= P (y ≤ x < y + 1) (8.20)

=

∫ y+1

y

λe−λxdx (8.21)

= e−λy − e−λ(y+1) (8.22)

= (1− e−λ)e−λy (8.23)

Hence, the distribution of the the discrete RV y is proportional to eλy. This is
the discrete exponential distribution.

8.2.3 Continuous RV on continuous sample space

Here S = (−∞,∞) as above, but Y = Y (x) = g(x) is a continuous RV. For
clarity, in this subsection we denote the function of x represented by Y with the
letter g. Note also that it is the random variable Y that is continuous-valued
(for example SY is an interval), but Y (x) aka g(x) as a function may or may
not be a continuos function!! For example g(x) = x − ⌊x⌋ the fractionary part
of x. Then Y is a continous RV taking values in [0, 1) but g is not continuous.

The task is to find the distribution of Y , PY being given the distribution of x
(by its density fX for example). A continuous distribution is defined if we know
either its CDF (i.e FY ) or its density fY . In the following we will derive FY ;
the density fY can then be easily computed as the derivative of FY .

FY (y) = PY (Y ≤ y) (8.24)

= P ({x, g(x) ≤ y}) (8.25)

= P (g−1(−∞, y]) (8.26)

=

∫

g−1(−∞,y]

f(x)dx (8.27)

Example 8.4 fX is the uniform density on [−1, 1], given by

f(x) =

{
1
2 , −1 ≤ x ≤ 1
0, otherwise

(8.28)

and
Y = g(x) = x2 (8.29)
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Then SY = [0, 1] and for every y ∈ SY
g−1(y) = {x, x2 ≤ y} = [−√y,√y]. (8.30)

Applying (8.24) we obtain

FY (y) = P ([−√y,√y]) =







1
2 · 2
√
y =

√
y, 0 < y ≤ 1

0, y ≤ 0
1, y > 1

(8.31)

fY (y) = F ′
Y (y) =

{ 1
2
√
y , 0 < y ≤ 1

0, otherwise
(8.32)

Note: don’t be bothered that the derivative of FY doesn’t exist at 0 and 1. If
this happens in a finite or countable set of points only, we can define the value
of fY in those points as we wish (I set it to 0) without changing the value of
the integral

∫

I
fY dy on any interval I.

Example 8.5 F (x) = x3

3 for x ∈ [0, 3
1
3 ]. Hence

f(x) =

{

x2, 0 ≤ x ≤ 3
1
3

0, otherwise
(8.33)

Let Y = g(x) = x2 as before. Then SY = [0, 3
2
3 ] and g−1((−∞, y]) = [0,

√
y].

FY (y) = P ([0,
√
y]) (8.34)

=

∫ √
y

0

f(x)dx (8.35)

=

∫ √
y

0

x2dx (8.36)

=
x3

3

∣
∣
∣
∣

√
y

0

(8.37)

=
1

3
y

3
2 (8.38)

(8.39)

fY (y) = F ′
Y (y) =

{
1
2

√
y, 0 ≤ y ≤ 3

2
3

0, otherwise
(8.40)

Compare with the previous example to see that the same function g(x) = x2

generates two random variables with completely different distributions, due to
the different domains and distributions of x.

Example 8.6 . Linear dependence. If Y depends linearly on x, we can
derive a general relationship between their respective CDF’s and densities. Let

Y = g(x) = ax, a > 0 (8.41)
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Then

FY (y) = P ({x, ax ≤ y}) (8.42)

= P ({x, x ≤ y

a
}) (8.43)

= F (
y

a
) (8.44)

and

fY (y) =
1

a
f(
y

a
) (8.45)

For example, if x is uniformly distributed between 0 and 1, then Y = ax, a > 0
will be uniformly distributed between 0 and a and the density will be fy(y) = 1/a
in this interval.

If a < 0 and F is continuous then

FY (y) = P ({x, ax ≤ y}) (8.46)

= P ({x, x ≥ y

a
}) (8.47)

= 1− F (
y

a
) (8.48)

(8.49)

fY (y) = −1

a
f(
y

a
) (8.50)

or, summarizing both a > 0 and a < 0

fY (ax) =
1

|a|f(x) (8.51)

where |a| is the magnitude of a.

Example 8.7 Another special case that can be solved in closed form is the case
when Y = g(x) is a strictly monotonic function of x. In this case, if we pick
SY = g(S) then the mapping g between S and SY is one-to-one and its inverse
g−1(y) exists. (Do not confuse this inverse with the inverse image of y, g−1({y})
which can be either the empty set, or a value, or a set of x’s and which exists
for any g and any y. When the g is one-to-one and the inverse function g−1

also exists, the two are equal). So, if g is strictly increasing,

FY (y) = PY (Y ≤ y) (8.52)

= P (g(x) ≤ y) (8.53)

= P (x ≤ g−1(y)) (8.54)

= F (g−1(y)) (8.55)
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If g is also differentiable then we have

fY (y) =
d

dy
g−1(y)f(g−1(y)) =

1

g′(x)
f(x)

∣
∣
∣
∣
x=g−1(y)

(8.56)

If g is strictly decreasing and F is continuous, by a reasoning similar to that of
the previous example , we obtain

FY (y) = 1− F (g−1(y)) (8.57)

fy(y) = − 1

g′(x)
f(x)

∣
∣
∣
∣
x=g−1(y)

(8.58)

As an example, assume x ∼ N(.; 0, 1), i.e x is normally distributed with mean
0 and variance 1. Set Y = g(x) = ax + b and let us derive the distribution of
Y . By the way, the CDF of a normal distribution cannot be computed in closed
form. The CDF for N(; 0, 1) is denoted by G and its values are tabulated. This
exercise will allow us to compute the CDF of any other normal distribution
using G.

The inverse of g is g−1(y) = y−b
a and hence

fY (y) =
1

|a|f(
y − b
a

) (8.59)

=
1

|a|
√

2π
e−

(y−b)2

2a2 (8.60)

= N(y; b, a2) (8.61)

Or, the linear transformation of a N(.; 0, 1) distributed variable is a normally
distributed variable whose mean is shifted by b and whose standard deviation
is multiplied by a.

If a > 0 then

FY (y) = F (g−1(y)) = G(
y − b
a

) (8.62)

8.3 Functions of a random variable

A function of a random variable is itself a random variable. Let Y be a random
variable on S with distribution PY and outcome space SY . Let Z be some
function of Y . Then Z : SY −→ SZ ⊆ (∞,∞). The probability distribution
associated with Z is

PZ(z) = PY ({y, Z(y) = z} = P (x ∈ S, Z(Y (x)) = z} (8.63)
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We can also define functions of several random variables; such a function is, of
course, a new random variable. For example,

ns =

{
nH − r + 1 r > 0
0 r = 0

(8.64)

is the number of sequences of heads in the experiment (it can be 0,1 or 2). It’s
distribution is given by

Pns(0) = Pr(0) = 0.125 (8.65)

Pns(1) = P (nH − r = 0 and r 6= 0) = 0.75 (8.66)

Pns(2) = P (nH − r = 1 and r 6= 0) = P (nH − r = 1) = 0.125 (8.67)

Note that unlike the previous case, for a function of several RVs, you will usually
need to resort to the original outcome space and its probability distribution to
compute the probability of the new RV.

To compute the density of a continuous RV Z that is a function of another
(continuous) RV Y we need to take two steps:

1. compute the cumulative distribution function (CDF) of Z as

FZ(z0) = P (z ≤ z0) (8.68)

by using the density of Y on SY .

2. take the derivative dFZ/dz to obtain fZ .

Example 8.8 Let X ∼ uniform[0, 1] and Y = X2. We want to find the CDF
and density of Y .

First, we note that SY = [0, 1]. Then,

FY (a) = P (y ≤ a) (8.69)

= P (x2 ≤ a) (8.70)

= P (x ≤ √a) (8.71)

= F (
√
a) (8.72)

=
√
a (8.73)

Hence FY (y) =
√
y and

fY (y) =
1

2
√
y

for y ∈ (0, 1) (8.74)



96 CHAPTER 8. RANDOM VARIABLES

8.4 Expectation

The expectation of a RV Y is a real number computed by

E[Y ] =
∑

y∈SY

y.PY (y) =
∑

x∈S
Y (x)P (x) (8.75)

if Y is discrete and

E[Y ] =

∫

y∈SY

y.fY (y)dy =

∫

x∈S
Y (x).f(x)dx (8.76)

if Y is continuous.

Intuitively, the expectation is the “average value” of the RV, more precisely
it is a weighted average of the values of the RV, where the weights are the
probabilities of the outcomes. The expectation is also called mean, expected
value and sometimes average.

Example 8.9 The fair die roll. SY = {1, 2, .. . . . , 5} and PY (y) = 1
6 for all

y.

E[Y ] =
1

6
.1 +

1

6
.2 + . . .

1

6
.6 = 3.5 (8.77)

Example 8.10 The uniform density on [a, b].

E[u[a,b]] =

∫ b

a

1

b− a .xdx =
1

b − a
x2

2

∣
∣
∣
∣

b

a

=
b2 − a2

b− a =
b+ a

2
(8.78)

Example 8.11 The 0–1 coin toss (Bernoulli distribution) If X is Bernoulli
with P (1) = p, P (0) = 1− p then

E[X ] = p.1 + (1− p).0 = p (8.79)

Example 8.12 The three coin toss. Let’s compute the expectation of the
RVs nH , h, r from the example above.

E[nH ] = 0.125.0 + 0.375.1 + 0.375.2 + .125.3 = 1.5 (8.80)

E[h] = 0.125.0 + 0.5.1 + 0.25.2 + .125.3 = 1.375 (8.81)

E[r] = 0.125.0 + 0.5.1 + 0.25.2 + .125.3 = 1.375 = E[h] (8.82)

Example 8.13 The Poisson distribution

P (n) = e−λ
λn

n!
(8.83)
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Therefore,

E[n] =
∑

n≥0

ne−λ
λn

n!
(8.84)

=
∑

n≥1

e−λ
λn

(n− 1)!
(8.85)

= λ
∑

n≥1

e−λ
λn−1

(n− 1)!
(8.86)

= λ
∑

n≥0

e−λ
λn

n!
(8.87)

= λ (8.88)

Hence, the average value of n is equal to λ.

Example 8.14 The normal distribution If X ∼ N( ;µ, σ2) then

E[X ] =

∫ ∞

−∞
x

1

σ
√

2π
e−

(x−µ)2

2σ2 dx (8.89)

=

∫ ∞

−∞
(x− µ+ µ)

1

σ
√

2π
e−

(x−µ)2

2σ2 dx (8.90)

=

∫ ∞

−∞
(x− µ)

1

σ
√

2π
e−

(x−µ)2

2σ2 dx

︸ ︷︷ ︸

0

+µ

∫ ∞

−∞

1

σ
√

2π
e−

(x−µ)2

2σ2 dx

︸ ︷︷ ︸

1

(8.91)

= µ (8.92)

Hence, the expectation of the normal distribution is µ which is rightly called
the mean.

8.4.1 Properties of the expectation

Property 1. The expectation of a constant random variable is the
constant itself. If Y = C, where C is a constant, then Y is in fact determinintic.
The expectation is expressed as

E[Y ] = C × P (C) = C × 1 = C (8.93)

Property 2. Multiplication with a constant. Let X be random variable
and Y (X) = CX . Then

E[Y ] =
∑

x∈S
CxP (x) = C

∑

x∈S
xP (x) = CE[X ] (8.94)
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Note: in the above we used the standard statistical notation by which r.v’s are
denoted by capital letters (e.g X) and their values by lower case letters (e.g x).

Property 3. The expectation of the sum of two r.v’s is equal to the sum
of their expectations. Let Y (X), Z(X) be two r.v’s.

E[Y + Z] =
∑

x∈S
(Y (x) + Z(x))P (x) (8.95)

=
∑

x∈S
Y (x)P (x) +

∑

x∈S
Z(x)P (x) (8.96)

= E[Y ] + E[Z] (8.97)

Here we have implicitly assumed that Y and Z share a common original sample
space. But what happens if they don’t? Such a case is the case when Y and Z
are the outcomes of two die rolls from different dice. This is not a problem. It
is always possible to construct a sample space S and and r.v X so that Y and
Z are both functions of the random outcome X . For instance, in the two dice
example, we can construct the space S representing the outcomes of the pair of
dice. An outcome X ∈ S is a pair (X1, X2). Then, trivially, Y (X) = X1 and
Z(X) = X2. Hence, equation (8.97) always holds.

From the last two properties it follows that the expectation is a linear opera-
tion. This means that for any n random variables X1, . . . Xn and real numbers
λ1, . . . λn we have

E[
n∑

i=1

λi.Xi] =
n∑

i=1

λiE[Xi] (8.98)

For example, the expectation of nH − r is

E[nH − r] = 0.P (nH − r = 0) + 1.P (nH − r = 1) + 2P (nH − r = 2) + 3P (nH − r = 3)

= 0× 0.875 + 1× 0.125 + 2× 0 + 3× 0 (8.99)

= 0.125 (8.100)

= E[nH ]− E[r] (8.101)

8.5 The median

Like the expectation, the median is another way of summarizing a r.v in a single
number. By definition, the median of a continuous random variable X with
CDF F (x) and density f(x) is the value m[X ] for which

P (X ≤ m[X ]) =
1

2
⇔ F (m[X ]) =

1

2
⇔

∫ m[X]

−∞
f(x) dx =

∫ −∞

m[X]

f(x) dx =
1

2
(8.102)



8.6. VARIANCE 99

It can be shown (take it as an exercise!) that if the density fX is symmetric
about the value µ then m[X ] = E[X ] = µ.

The median can be defined as well for a discrete distribution. In this case, it’s
value is often not unique. For example, take PX to be the uniform distribution
over {1, 2, 3}; then m[X ] = 2. But for PY uniform over {1, 2, 3, 4} any number
between 2 and 3 can be the median. By convention, computer scientists take it
to be 2.5.

8.6 Variance

A special kind of expectation associated with a RV measures the average amount
of deviation from it’s mean. This is the variance, defined as

V arX = E[(X − E[X ])2] (8.103)

The variance is always ≥ 0. When the variance is 0, the RV is deterministic (in
other words it takes one value only). The square root of the variance is called
standard deviation.

Let us compute the variances for the examples above.

Example 8.15 The fair die roll

V ar Y =
1

6

[
(1− 3.5)2 + (2− 3.5)2 + . . . (6− 3.5)2

]
= 2.9167 (8.104)

Example 8.16 The uniform density on [a, b].

V ar U = E

[

(U − a+ b

2
)2
]

(8.105)

=

∫ b

a

1

b− a

(

u− a+ b

2

)

du (8.106)

=
1

b− a

∫ b

a

(

u2 − (a+ b)u+
(a+ b)2

4

)

du (8.107)

=
1

b− a

[

u3

3

∣
∣
∣
∣

b

a

− (a+ b)
u2

2

∣
∣
∣
∣

b

a

+
(a+ b)2

4

∣
∣
∣
∣

b

a

]

(8.108)

=
(b − a)2

12
(8.109)

Hence, the mean of the uniform distribution is in the middle of the interval,
while the variance is proportional to the length of the interval, squared. Thus
the standard deviation is proportional to the length of the interval.
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Example 8.17 The 0–1 coin toss (Bernoulli distribution)

V arX = E[(X − p)2] (8.110)

= p(1− p)2 + (1− p)(0 − p)2 (8.111)

= p(1− p)(1 − p+ p) (8.112)

= p(1− p) (8.113)

Note that the variance of the biased coin toss depends on p. It is largest for
p = 0.5 and it tends to 0 when p→ 0 or 1. Does this make sense?

Example 8.18 The Poisson distribution To compute this variance, we will
use formula (8.133) proved in the next section, plus another trick that will help
simplify the calculations. [Exercise After you see the result and all these tricks,
you can do the direct calculation of the variance as an exercise.]

E[n2 − n] =
∑

n≥0

n(n− 1)e−λ
λn

n!
(8.114)

= λ2
∑

n≥2

e−λ
λn−2

(n− 2)!
(8.115)

= λ2 (8.116)

Now, by (8.133), the variance of a Poisson random variable is

V ar(n) = E[n2 − n+ n]− (E[n])2 (8.117)

= λ2 + λ− λ2 (8.118)

= λ (8.119)

Example 8.19 The normal distribution

V arX =

∫ ∞

−∞
(x− µ)2

1

σ
√

2π
e−

(x−µ)2

2σ2 dx (8.120)

=

∫ ∞

−∞
t2σ2 1

σ
√

2π
e−

t2

2 σdt (8.121)

= σ2

∫ ∞

−∞
−t.(−t 1√

2π
e−

t2

2 )dt (8.122)

= −σ2

[

t.
1√
2π
e−

t2

2

∣
∣
∣
∣

∞

−∞
−
∫ ∞

−∞

1√
2π
e−

t2

2 dt

]

(8.123)

= −σ2[0− 1] (8.124)

= σ2 (8.125)
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Hence, the variance of the normal distribution is σ2 and its standard deviation
is σ.

Properties of the variance

Property 1. The variance is always non-negative. The variance is the
expectation of an expression that can never be negative. The variance is zero
only if the expression x − E[X ] is zero for all x. This happens only if X is a
constant.

Property 2. The variance of a constant C is zero. We have that E[C] = C
and therefore

V ar(C) = E[(C − E[C])2] = E[0] = 0 (8.126)

The converse is also true, as shown in property 1. In other words, a variable
that has zero variance has no randomness at all, it is deterministic.

Property 3. Multiplication with a constant. If Y = CX then

V ar(Y ) = E[(CX − E[CX ])2] (8.127)

= E[(CX − CE[X ])2] (8.128)

= E[C2(X − E[X ])2] (8.129)

= C2E[(X − E[X ])2] = C2V ar(X) (8.130)

Hence, if a variable is multiplied by a constant, its variance scales quadratically
with the value of the constant. Note that the standard deviation, the square
root of the variance, scales linearly:

√

V ar(CX) = C
√

V ar(X) (8.131)

Property 4. The variance of a sum of two random variables does not
equal the sum of the variances, except in special cases. We will discuss this
when we talk about correlation.

8.7 An application: Least squares optimization

8.7.1 Two useful identities

First we prove two useful identitites involving the mean and variance. Let X
be a random variable, and denote

µ = E[X ] σ2 = V arX (8.132)

Note that X may be any r.v (not necessarily Gaussian, or continuous).
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V arX = E[X2]− (E[X ])2 (8.133)

Proof

V arX = E[(X − µ)2] (8.134)

= E[X2 − 2µX + µ2] (8.135)

= E[X2]− 2µE[X ]
︸ ︷︷ ︸

µ

+µ2 (8.136)

= E[X2]− µ2 Q.E.D (8.137)

If a is a fixed real number

E[(X − a)2] = σ2 + (a− µ)2 (8.138)

Proof

E[(X − a)2] = E[(X − µ+ µ− a)2] (8.139)

= E[(X − µ)2] + 2E[(X − µ)]
︸ ︷︷ ︸

0

(µ− a) + E[(µ− a)2](8.140)

= σ2 + 2(µ− a)× 0 + (a− µ)2 (8.141)

8.7.2 Interpretation of the second identity

Let now C(a) = (X − a)2 be a r.v and c̄(a) be its expectation. By (8.138)

c̄(a) = σ2 + (a− µ)2 (8.142)

This is a quadratic function of a that has a minimum for a = µ. The minimum
value is

c̄∗ = σ2 (8.143)

The following example illustrates one frequent usage of formula (8.138). Assume
X is the temperature at noon on a given day. In the morning you cannot know
what will be the value of X , but you know its distribution. You want to dress
aprropriately for temperature X but of course you cannot do it before knowing
X . All you can do is “guess” that X = a and dress appropriately for a. But if
X 6= a, you will pay a “cost” for your error. You will suffer of cold of X < a
and you will be too hot if X > a. Evaluate the cost of your error to be
C(X) = (X − a)2, thus a squared cost. You want to choose a in a way that
minimizes your expected cost E[C]. The equations above offer the solution to
this problem. They say that if you are trying to predict a random outcome
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X by the constant a, and that if the cost of your error is a quadratic function
of the distance between the true X and a, then the best possible prediction is
a = E[X ]. The cost associated with this prediction, in other words the lowest
possible cost to pay, is equal to the variance of X . This last observation confirms
that the variance is a measure of predictability of a variable.

8.8 The power law distribution

Assume S = {1, 2, . . . n, . . .}. The “power law” is a distribution over S defined
by

P (n) =
1

Z
n−r for n ∈ S, r > 1 (8.144)

with Z equal to the normalization constant

Z =
∞∑

n=1

1

nr
(8.145)

The name “power law” underscores the fact that the probability of the outcome
being n is proportional to the inverse r-th power of n. The parameter r can
have a fractionary or integer value. Figure 8.1 shows plots of the power law
distribution for different values of r.

The power law distribution, and its close relative called Zipf’s law, have a perva-
sive presence in the realm of modelling human activities (but are not restricted
to it). Here are a few examples:

• Denote by d the number of links pointing to a given web page. This is
called the in-degree of the page in the graph representing the world wide
web. The probability that a random page has in-degree d follows a power
law given by

P (d) ∝ d−r

FYI, the average degree of a web page, that is E[d] is very close to 2.1.

• If we rank the pages of a web site (Yahoo, CNN) with the most accessed
page first and the least accessed page last, then the probability of accessing
page i in this list is proportional to 1/ir. This kind of distribution is called
Zipf’s law. Thus, Zipf’s law is a power law distribution over a domain
of ranks.

• Zipf’s law is present in information retrieval as well. For example, sort all
the words in an English dictionary by their frequency. Usually this fre-
quency is estimated from a large collection of documents, called a corpus
(plural “corpora”). If this is done, very likely word 1 is “the”, word 2 is
“and”, while rare words like “corpora” have much higher ranks (a natural
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language corpus for English may contain between a few thousands and
some tens of thousands of words). It was found that the frequency of the
i-th word in the list is proportional to (i+K)−r.

Let us now evaluate the mean, standard deviation, and median of the power
law distribution.

E[n] =
1

Z

∞∑

n=1

n× n−r =
1

Z

∞∑

n=1

n−r+1 (8.146)

E[n2] =
1

Z

∞∑

n=1

n2 × n−r =
1

Z

∞∑

n=1

n−r+2 (8.147)

V ar(n) = E[n2]− (E[n])2 (8.148)

Figure 8.2 shows the dependence of the mean, standard deviation and median
of n as a function of r. It is a well-known fact that

∞∑

n=1

n−r

converges only for r > 1 and is ∞ for 0 ≤ r ≤ 1. Therefore, the power law
will have infinite mean if r < leq2 and infinite variance if r ≤ 3. In practice,
the domain S never extends to infinity (there are a finite number of web pages,
a finite number of words in the dictionary, etc.). So in the domain of social
networks and social interactions at least, the mean and variance of any process
will be finite. However, for r smaller or near 3, the fact that the power law
decays slowly makes the “tails” of the distribution have large weight. So when
we estimate the distribution, or its mean, or variance, these estimates will be
very sensitive to the tails and therefore not robust.

Figure 8.1: The power law distribution P (n) ∝ (n+ 1)−r for different values of
r. The domain S has been truncated to {0, 1, . . . , 100000}.
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This is not the only reason the power law is a difficult distribution. Another
reason is that the mean is not a very informative quantity for this distribution.
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Figure 8.2: The the mean (full line) and standard deviation (dotted line) of the
power law distribution P (n) ∝ (n+ 1)−r for different values of r. The domain
S has been truncated to {0, 1, . . . , 100000}. On the left, the mean and standard
deviation is plotted for r > 3. On the right, the values are plotted for r > 1 on
a logarithmic scale. Note the fast grouth of the mean to the left of 2 and of the
standard deviation to the left of r = 3. The median is 0 for all values of r.
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Note that in figure 1, the most probability mass is concentrated at 0; for exam-
ple, for r = 2.1, P (0) = 0.64. For the same r, the mean equals 3.8. These type
of distributions, where most of the mass is on one side of the mean, are called
skewed distributions. The variance is also rather uninformative; for the case
r = 2.1, the standard deviation is 156 suggesting that the bulk of the samples
is in [3.8 − 156, 3.8 + 156]. In fact, the interval that contains the bulk of the
distribution is much smaller: [0, 5] contains 92% of the probability mass.

8.9 Appendix: The inverse image of a set and
the change of variables formula

In dealing with RVs and their expectations, we shall rely heavily on the change
of variable formula, so let’s start by recalling what it is.

The setup:

• y is a continuous and differentiable function of x and g′ is its derivative

y = g(x) (8.149)

g′ =
dg

dx
(8.150)

• For every x in a set A, y = g(x) is in a set B and g(x) ∈ B only if x ∈ A.
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In other words:

A = {x, g(x) ∈ B} = g−1(B) (8.151)

B = {y, y = g(x), x ∈ A} = g(A) (8.152)

We denote this equivalently by

x ∈ A g−→ y ∈ B (8.153)

• f : B → R is an integrable function of y

Then the change of variable formula is
∫

B
f(y)dy =

∫

A
f(g(x))g′(x)dx

If you prefer a simplified and somewhat more ambiguous notation, whereby y = y(x)
(replacing the letter g by y), then the change of variable formula reads

Z

b

f(y)dy =

Z

A

f(y(x))y′(x)dx

We shall use the formula in both directions, i.e we will sometimes replace the
left hand side by the right hand side of (8.9) and sometimes we’ll do the reverse.



Chapter 9

Conditional Probability of
Events

9.1 A summary of chapters 8 and 9

a random outcome X −→ Y depends on X

{
deterministically : RandomVariable
non− deterministically : Conditional Probability

9.2 Conditional probability

Suppose that we are interested in the probability of an event A occurring during
an experiment with outcome space S. Can the occurrence of another event B,
or additional knowledge about the conditions of the experiment influence the
probability of A?

The answer is YES, the probability of an event A can change when the exper-
imental conditions change. Assume the “experimental conditions” are repre-
sented by event B; then to emphasize the dependence of P (A) on B we write
P (A|B) and read it as probability of A conditioned on B or probability of A
given B.

Example 9.1 The probability of rain on a random day in a random city in the
US is

P (rain) = 0.3 (9.1)

107
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But, if we know the city, then this probability changes:

P (rain|Seattle) = 0.5 (9.2)

P (rain|Phoenix) = 0.01 (9.3)

Sometimes it’s not the experimental conditions that change, but our knowledge
about them.

Example 9.2 In class on Monday your friend Andy tells you:
A: “I ran into one of your friends this weekend. Guess who it was?”
You have three other friends: Beth, Chris and Dana. Which of them could it
have been? You don’t have any reason to think one friend was more likely than
another to coincidentally meet Andy so

P (B) = P (C) = P (D) =
1

3

But then Andy drops a hint:
A: “I was skiing at Crystal this weekend”.
You know that Beth and Dana do not ski and in fact don’t like snow at all, but
Chris is a fanatic of skiing. Therefore, your probabilities change to

P (C|Crystal) =
98

100
P (B|Crystal) = P (D|Crystal) =

1

100

Notation: From now on, we will denote the event “A and B” by A,B or AB
or A ∩B interchangeably.

The conditional probability of event A given B is defined as:

P (A|B) =
P (A,B)

P (B)
(9.4)

In words, P (A|B) equals the proportion of outcomes in which A occurs from
the total set of outcomes in which B occurs.

Example 9.3 The dice roll. P (2) = 1/6 but P (2 | “even outcome′′) = 1/3
and P (2 | “odd outcome′′) = 0. P (5 | outcome > 4) = 1/2, P (outcome >
4 | outcome > 2) = 1/2, P (outcome > 2 | outcome > 4) = 1.

Example 9.4 The robot in the closet Below is a picture of a very small
room that the Roomba vacuum cleaner (www.irobot.com) takes care of. The
pictures maps some areas of interest:
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C

D

B

A

A is the area near the robot’s power supply

B is the Eastern half of the closet where it’s warm and cozy

C is the central area that the Janitor cleans weekly

D is the strip by the door (there are unhealthy drafts there).

The robot is programmed to be constantly moving at random, so the probability
that it is in a certain area is proportional to the size of the area.

Therefore,

P (A) =
π

4× 12
≈ 0.065

P (B) =
1

2

P (C) =
π(1.5)2

12
≈ 0.59

P (D) =
1.2

12
= 0.1

Here are some conditional probabilities:

P (A|B) =
π

4× 6
≈ 0.129 > P (A)

P (A|B) = 0

P (B|A) = 1

P (C|B) =
2.39

6
≈ 0.39 < P (C)

P (C|B) =
4.78

6
≈ 0.78 > P (C)

P (D|B) =
0.6

6
= 0.1
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9.3 What is conditional probability useful for?

Here are a few situations that can be described using conditional probability:

• Discovering that there is a relationship between two variables or events.
For example, P ( lung cancer | smoking ) > P ( lung cancer | not smoking
) suggests that there is a connection between lung cancer and smoking.

• Better predicting or guessing the value of an unobserved variable. The
weather man studies the data collected from satellites and weather stations
and makes a prediction for the tomorrow’s weather. His prediction is
P (sunny| data ). You are a trained meteorologist, but you don’t have
access to other data than looking at the sky today. You can also make a
prediction P (sunny). It is possible that P (sunny| data ) >,=, < P (sunny).
It is possible that the weather tomorrow is closer to your prediction than
to the weatherman’s (what does “closer” mean in this context?), and both
are guesses anyways, but on average the weather man’s guess is a more
accurate guess.

• Guessing about an unobserved cause. (This is an application of Bayes’
rule which will be discussed further in this chapter.) It is known that P (
fever | infectious disease ) is high and P ( fever | no infectious disease ) is
low. Therefore, if fever is observed, we conclude that P ( infectious disease
) is higher than if we hadn’t measured the temperature.

• Probabilistic reasoning (something that will be discussed later on). The
formula of conditional probability is an instrument that allows us to rea-
son and draw conclusions about a variable we don’t observe from one that
we can observe. With a little mathematical manipulation, one can use
this formula to derive the probability of one or several unobserved events
from several observed ones. Taking medical diagnosis as an example again:
the events of interest are diseases (flu, hepatitis, diabetes). The observed
events are temperature, results of blood tests, patient’s age, sex, etc. We
also know various conditional probabilities relating the observed and un-
observed events, as for example P (fever|flu), P ( high blood sugar| diabetes
). What we want is P ( diabetes | observed blood sugar, temperature, other
tests, patient age ). This can be computed from the observations and the
known conditional probabilities.
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9.4 Some properties of the conditional probabil-

ity

Property 1 P (·|B) is a probability distribution over S, i.e it obeys the axioms
of probability. Let us check them:

First of all, P (A|B) is defined for all events A ⊆ S and clearly, P (A|B) ≥ 0 for
all A. Then,

P (S|B) =
P (S ∩B)

P (B)
=
P (B)

P (B)
= 1. (9.5)

Finally, if A,C are disjoint sets (incompatible events) then (A∩B)∩(C∩B) = ∅
and thus

P (A ∪C|B) =
P (A ∪ C,B)

P (B)
=

P (A,B) + P (C,B)

P (B)
= P (A|B) + P (C|B)

(9.6)
Note that under P ( |B) all the outcomes of S that are not in B and all the
events of S that do not intersect B have 0 probability (see Property 4).

Property 2 If A ⊆ B then

P (A|B) =
P (A,B)

P (B)
=

P (A)

P (B)
≥ P (A) (9.7)

Hence, if A implies B then B occurring increases the probability of A.

Property 3 If B ⊆ A then

P (A|B) =
P (A,B)

P (B)
=

P (B)

P (B)
= 1 (9.8)

Hence, if B implies A then B occurring makes A sure.

Property 4 If B ∩A = ∅ then

P (A|B) =
P (A,B)

P (B)
=

0

P (B)
= 0 = P (B|A) (9.9)

Intuitively, conditioning on B sets the probability of all the outcomes outside B
to 0 and renormalized the probabilities of the remaining outcomes to sum to 1.
(Or, in other words, the probability of S \B is set to 0 – it makes sense since we
know that B occurred – and the outcome space shrinks to B. The probability
of B thus becomes 1 and the probabilities of all events in B are scaled up by
1/P (B)).

Property 5 Conditioning on several events.

P (A|B,C) =
P (A,B,C)

P (B,C)
=

P (A,B|C)P (C)

P (B|C)P (C)
=

P (A,B|C)

P (B|C)
(9.10)
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In other words, if an event C is a context that is true in all cases, then the
formula for the conditional probability between A and B gets C added behind
the conditioning bar, but otherwise remains unchanged.

9.5 Marginal probability and the law of total

probability

Using conditional probability we can get the following useful rule (sometimes
called the rule of total probability).

P (A,B) = P (B)P (A|B) (9.11)

P (A,B) = P (B)P (A|B) (9.12)

but (A,B) ∩ (A,B) = ∅ hence

P (A) = P (A,B) + P (A,B)

= P (B)P (A|B) + P (B)P (A|B) (9.13)

In this context P (A,B) is called the joint probability of A and B and P (A) is
called the marginal probability of A. Using a similar reasoning as above we
also have that

P (A) = P (A,B) + P (A,B) (9.14)

The last equations shows how to use the joint probability of two events to obtain
the probability of one of them only.

Example 9.5 Alice is thinking of going to a party this Saturday, and wants
to compute the chances that she has a good time there. Denote by A the event
“Alice enjoys herself at the party” and by B the event “Bob, her boyfriend, will
also be at the party”.

If Bob is present, Alice is practically sure that she’ll have a great time (P (A|B) =
0.90) but if he’s absent, she may like the party anyways, albeit with lower prob-
ability P (A|B) = 0.30. She knows that Bob has a lot of homeworks to finish, so
that P (B) = 0.6. Then

P (A) = P (B)P (A|B) + P (B)P (A|B)

= 0.6× 0.9 + 0.4× 0.3

= 0.66

Note that the total probability of having a good time is somewhere in between
0.9 and 0.3 the probabilities of having a good time in each of the two (mutually
exclusive) situations. Is this always the case?
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9.6 Bayes’ rule

P (A,B) = P (B)P (A|B) = P (A)P (B|A) (9.15)

From which we derive the famous Bayes’ rule

P (A|B) =
P (A)P (B|A)

P (B)
(9.16)

This simple property of conditional probability has generated a whole field of
research called Bayesian statistics. We will revisit Bayes’ formula later in this
course.

Example 9.6 Probabilistic medical diagnosis. A patient tests HIV positive
on a test (call this event T ) and the doctor wants to know what is the probability
that the patient is actually HIV positive (call this event HIV ). What the doctor
knows is that

• The HIV test is not perfect; it will be positive if the patient has HIV
with probability P (T |HIV ) = 0.99 and negative otherwise. The test may
also be positive if the patient is not infected with HIV; this happens with
probability P (T |HIV ) = 0.03.

• The incidence of the HIV virus in the population of the US is P (HIV ) =
0.001. (These figures are not real figures!)

How can the doctor compute what he wants to know, namely P (HIV |T ) from
the information he has?

P (HIV |T ) =
P (T |HIV )P (HIV )

P (T )

We now compute P (T ) by the law of total probability

P (T ) = P (T |HIV )P (HIV ) + P (T |HIV )P (HIV )

Replacing the numbers we get

P (HIV |T ) =
0.99× 0.001

0.99× 0.001 + 0.03× 0.999
= 0.032

This probability is very small, but it is about 30 times larger than the P (HIV )
before seeing the positive result of the test. This is due mainly to the fact that
the prior probability of HIV in the population P (HIV ) is very small.

Suppose now that the doctor has also examined the patient, and now, based on
the patient’s symptoms, he thinks that the probability of an HIV infection is
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P ′(HIV ) = 0.3. Therefore he prescribes an HIV test, which is positive. What
is the new value P ′(HIV |T ) in these conditions? Redoing the above calculations
we obtain

P ′(HIV |T ) =
0.99× 0.3

0.99× 0.3 + 0.03× 0.7
= 0.93

9.7 Examples

Example 9.7 Bayes’ rule in court. (After Al Drake) With probability 0.8
Al is guilty of the crime for which he is about to be tried. Bo and Ci, each of
whom knows whether or not Al is guilty, are called to testify.

Bo is a friend of Al’s and will tell the truth if Al is innocent but will lie w.p 0.2
if Al is guilty. Ci hates everybody but the judge and will tell the truth if Al is
guilty but will lie w.p 0.3 if Al is innocent.

a. Draw the outcome space for this problem.

Solution Denote by A, B, C the events “Al is innocent”, “Bo says Al is inno-
cent”, “Ci says Al is innocent”.

ABC

ABC

ABC

ABC

b. What is the probability that Bo testifies that Al is innocent? What is the
probability that Ci testifies that Al is innocent?

Solution This means computing the marginal probability of B.

P (B) = P (A,B) + P (A,B)

= P (B|A)P (A) + P (B|A)P (A)

= 1× 0.2 + 0.2× 0.8

= 0.36
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Similarly, the marginal of C is

P (C) = P (A,C) + P (A,C)

= P (C|A)P (A) + P (C|A)P (A)

= 0.7× 0.2 + 0× 0.8

= 0.14

c. Which witness is more likely to commit perjury?

Solution

P (Bo commits perjury) = P (B|A)P (A) = 0.2× 0.8 = 0.16 (9.17)

P (Ci commits perjury) = P (C|A)P (A) = 0.3× 0.2 = 0.06 (9.18)

So, Bo is more likely to commit perjury.

d. What is the probability that the witnesses give conflicting testimony?

Solution The witnesses give conflicting testimony if either of them lies but not
both (note they will never both lie anyways).

P (conflicting testimony) = P (B,C) + P (B,C)

= P (A,B,C) + P (A,B,C) + P (A,B,C) + P (A,B,C)

= P (A)P (B,C |A) + P (A)P (B,C|A) + 0 + 0

= 0.2× 0.3 + 0.8× 0.2

= 0.22

e. What is the probability that Al is guilty, given that the witnesses give
conflicting testimony?

Solution This is an application of Bayes’ rule:

P (A|conflicting testimony) =
P (conflicting testimony|A)P (A)

P (conflicting testimony)

=
[P (B,C|A) + P (B,C|A)]P (A)

P (conflicting testimony)

=
(0.2 + 0)× 0.8

0.22
= 0.73

f. What is the probability that Al is guilty, given that both witnesses say he’s
innocent? What if both witnesses say he’s guilty?
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Solution These are also applications of Bayes’ rule. The denominator isn’t
readily computed this time, so we have to apply the rule of total probability to
compute it.

P (B,C) = P (A,B,C) + P (A,B,C)

= P (A)P (B,C|A) + P (A)P (B,C|A)

= 0.2× 0.7 + 0

= 0.14

Since there are only 3 alternatives: either both witnesses say Al is innocent, or
both say Al is guilty, or they give conflicting testimony, we have that

P (B,C) = 1− P (B, c)− P (conflicting testimony) = 0.64

Now we can apply Bayes’ rule:

P (A|B,C) =
P (B,C|A)P (A)

P (B,C
= 0

P (A|B,C) =
P (B,C|A)P (A)

P (B,C
=

0.8× 0.8

0.64
= 1

Could we have obtained these results in a more elegant way?

Example 9.8 Communication over a noisy channel (After Al Drake) Hor-
ton and Helen each know that the a-priori probability of Helen’s mother being
at home (call this event M) on any given night is 0.6. However, Helen can
determine her mother’s plan for the night only at 6 p.m and then, at 6:15 p.m.
she has only one chance of sending a signal across the Lake Washington ship
canal to Horton. She can either whistle or holler and they decide that she will
holler if mom is at home and whistle otherwise.

But Helen has a meek voice and the traffic on and across the canal at 6:15 p.m
is heavy so that sometimes Horton confuses the signals. Their problem is one
of communicating over a noisy channel, where the channel is described by

P (Horton hears holler | holler) =
2

3
P (Horton hears holler |whistle) =

1

4

Horton will visit Helen if he thinks mom will be away and will play computer
games if he thinks mom will be at home. Let’s denote the event “Horton believes
Helen whistled” which is equivalent with “Horton visits” by V .

a. What is the probability that Horton visits Helen given that mom will be away?
What is this probability given mom will be at home?

Solution. The sample space is drawn below



9.7. EXAMPLES 117

MV

MV

MV

MV̄

P (V |M) = P (Horton hears whistle |whistle) =
3

4

P (V |M) = P (Horton hears whistle | holler) =
1

3

b. What is the marginal probability that Horton visits Helen on a given night?

P (Horton visits) = P (Horton visits |M)P (M)+P (Horton visits |M)P (M) =
1

3
×0.6+

3

4
×0.4 = 0.5

c. What is the probability that Horton misunderstands Helen’s signal? (This
is called the probability of error in communications.

P (error) = P (V ,M) + P (V,M)

= P (V |M)P (M) + P (V |M)P (M)

=
1

4
× 0.4 +

1

3
× 0.6 = 0.3

d. Would this probability be lower if they chose to encode “mom will be away”
by a holler and “mom at home” by whistle?

Solution. Call error’ the event “error in the new encoding”. The changes are
that P (holler) is now equal to P (M) = 0.4 (and P (whistle) = P (M) = 0.6. So,

P (error′) =
1

3
× 0.4 +

1

4
× 0.6 = 0.28

The second encoding method yields a different (and smaller) probability of error!
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9.8 Independence

Two events A,B are independent if their probabilities satisfy

P (A,B) = P (A)P (B) (9.19)

This definition is equivalent to the following one

P (A|B) = P (A) (9.20)

The second definition offers more insight into the meaning of independence: A is
independent of B if knowing B doesn’t affect the probability of A. Note that the
relationship is symmetric: if A is independent of B then B is also independent
of A by the symmetry of (9.19). We denote independence by the symbol ⊥;
thus, “A independent of B” is expressed by

A ⊥ B (9.21)

Independence, as shown by (9.19), is a symmetric relationship: if A is indepen-
dent of B, then B is independent of A. Or, in other words, if A provides no
information about B, then B cannot provide any information about A. Remem-
ber that P (A|B) is not defined if P (B) = 0. Therefore, when talking about the
independence of two events, we assume that neither event has probability 0.

Example 9.9 Tossing a coin with PH = p. The events A =”the outcome of
the 1st toss is 1” and B =”the outcome of the 2nd toss is 1” are independent.

A set of events A1, . . . Am are mutually independent if

P (Ai|Aj . . . Ak) = P (Ai) (9.22)

for all subsets {j, k, . . .} ⊆ {1, 2, . . .m} \ {i}. In other words, knowing all and
any of the events A1, . . . Ai−1, Ai+1, . . . Am does not change the information we
have about Ai. The above definition implies that

P (A1A2 . . . Am) = P (A1)P (A2) . . . P (Am). (9.23)

If a set of events are mutually independent, they are also pairwise independent,
i.e

P (AiAj) = P (Ai)P (Aj) for all i 6= j (9.24)

The reverse is not true: pairwise independence does not imply mutual indepen-
dence.

Example 9.10 Pairwise independent events that are not mutually independent.
Let A be the event “the outcome of a fair coin toss is H” and B be the event
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“the outcome of a second fair coin toss is H”. Define C as the event A 6= B.
Clearly A and B are independent but A,B,C are not mutually independent,
since knowing any two of them completely determines the third. However, they
are pairwise independent since:

P (A) = 0.5

P (B) = 0.5

P (C) = P (A,B) + P (B,A) = P (A)P (B) + P (A)P (B) = 0.25 + 0.25 = 0.5

P (A,B) = P (A)P (B)

P (A,C) = P (A,B) = 0.25 = P (A)P (C)

P (B,C) = P (B,A) = 0.25 = P (B)P (C)

9.9 Conditional independence

Two events A,B are conditionally independent given event C if

P (A,B|C) = P (A|C)P (B|C) (9.25)

or, equivalently,

P (A|B,C) = P (A|C) (9.26)

This means that, if C is true, knowing that B is true does not change the
probability of A.

There is no general relationship between the conditional (in)dependence of two
events and their unconditional (in)dependence. All combinations are possible.

Example 9.11 Let the outcome space S be the set of students at UW. Let A
be the event “the student plays frisbee”, B =“the student takes Stat 390 B” and
C =“the student is a CS major”. Then, we have that A and C are independent,
since knowing that someone is a CS major doesn’t give any information about
her preference for frisbee. C and B are not independent, because knowing that
a student takes STAT 391 makes it more likely that he is a CS major than if
we didn’t have that information. A and C are also independent given B: if I
restrict the set of possible students to those who take STAT 391, knowing that
one of the students in the class is playing frisbee does not tell me anything new
about him being a CS major.

Example 9.12 We observe smoke in the classroom if someone smokes or if
there is a fire. Assume that smoking is allowed, that fires only start because of
defective electrical appliances, and that people choose to light cigarettes inde-
pendently of the fact that there is a fire or not. Let F denote “there is a fire”,
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S = “smoke is observed” and C = “someone is smoking”. The events C and
F are independent by our definition, if we don’t know whether there is smoke
in the room or not. But what if we observe smoke (i.e S is true)? If there is
smoke and no one is smoking then it is very likely that a fire is on. So knowing
something about C gives information about F , if S is also true. Hence, F and
C are conditionally dependent given S.

Example 9.13 A program consists of two modules A and B. The probability of
having a bug in module A does not depend of the fact that B has a bug or not.
(In other words, bugs are inserted independently in code). Let A be the event
“there’s a bug in module A”, B be the event “there’s a bug in module B”, and
C be the event “the program’s output is wrong”.

Before we run the program, A and B are independent: if we test module A, we
get information about event A but none about event B.

Suppose we run the program and find that C is true. Then we test A and find
that it has no bugs. Knowing that C is true, this means that there must be a
bug in B, therefore that B is true. Thus, in the context of C true, observing A
gives us strong information about B. Therefore,

A 6⊥ B | C

Think what if we run the program and find the output is correct?

Example 9.14 If A ⊆ B or A ∩B = ∅ then A 6⊥ B.

Example 9.15 Are shoe size and ability to read dependent in a child? Yes: the
shoe size can tell us something about the child’s age, and the age in turn gives
us information about the ability to read. If you know that a child’s shoe size is
3, then you’d guess correctly that she cannot read yet. If the shoe size is 5, then
it’s more likely he can read. However, once you know the age of the child, shoe
size can’t give you any extra information about the reading ability (and neither
can reading give you on shoe size), so the two are conditionally independent
given the age.

shoe size 6⊥ reading

shoe size ⊥ reading | age



Chapter 10

Distributions of two or
more random variables

10.1 Discrete random variables. Joint, marginal
and conditional probability distributions

Let X : S → SX and Y : S → SY be two discrete random variables on the
outcome space S. We define the joint probability of RVs X,Y to be

PXY (x, y) = P (X = x, Y = y). (10.1)

We can think of (X,Y ) as a vector-valued RV and of PXY as its distribution.
The joint distribution PXY summarizes all the information in P (the distribution
on the underlying sample space) that is relevant to X, Y and their interaction.
Therefore, after obtaining the joint distribution, we can discard the original
sample space altogether as long as we are only concerned with X and Y .

Each of X, Y has also its own distribution PX(x), PY (y). They are related to
the joint distribution by

PX(x) =
∑

y∈SY

PXY (x, y) (10.2)

PY (y) =
∑

x∈SX

PXY (x, y) (10.3)

In this context PX or PY are called the marginal probabilities ofX , respectively
Y . The summations above, by which we obtain the marginal distributions
PX , PY from the joint distribution PXY is called marginalization over Y
(respectively X).

121
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The conditional probability of X given Y is a function of x and y representing
the conditional probability of the eventX = x given that Y = y for x ∈ SX , y ∈
SY . The conditional probability can be written as a function of the marginal
and joint probabilities of X and Y :

PX|Y (x|y) =
PXY (x, y)

PY (y)
(10.4)

Like in the case of events, from (10.4) and (10.2) we get the law of total
probability

PX(x) =
∑

y∈SY

PY (y)PX|Y (x|y) (10.5)

PY (y) =
∑

x∈SX

PX(x)PY |X(y|x) (10.6)

10.2 Joint, marginal and conditional densities

Here we will define joint, marginal and conditional distributions for continuous
random variables. As you will see, these definitions and other properties are all
obtained from their counterparts for discrete random variables by replacing the
probabilities with densities and the sums with integrals.

Let X,Y : S −→ R be two continuous random variables over a continuous
subset S of R. An event in the X,Y space is a set1 in R2. We want to define
a joint probability distribution for the two variables, i.e a function PXY that
associates a positive values to each event in the X,Y space. For continuous
one-dimensional distributions, we defined this probability by the density f . We
shall do the same here.

The joint density for X,Y is an integrable function of x, y that satisfies

fXY ≥ 0 (10.7)
∫ ∞

−∞

∫ ∞

−∞
fXY (x, y)dxdy = 1 (10.8)

If A ⊆ R2 is an event, then the probability of A is given by

PXY (A) =

∫

A

fXY (x, y)dxdy ≤ 1 (10.9)

1Recall that, in theory, for a continuous distribution on R there exist sets that are not
events, but they practically never occur. The situation is similar for two-dimensional or multi-
dimensional continuous distributions. One can show by measure theory that there exist sets
that are not events, but we shall not be concerned with them since they almost never occur
in practice. So from now on we will safely assume that all subsets of a continous S are events.
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If we are interested in the distribution of X or Y separately, then these distri-
butions can be obtained from fXY by marginalization:

fX(x) =

∫ ∞

−∞
fXY (x, y)dy (10.10)

fY (y) =

∫ ∞

−∞
fXY (x, y)dx (10.11)

The functions fX , fY are called the marginal densities ofX and Y respectively
(or simply marginals). You can easily verify that they integrate to 1 and are
positive.

The conditional probability of X given a fixed value Y = y is a continous
probability over the range of X . We define it by the conditional density
fX|Y ( |y)

fX|Y (x|y) =
fXY (x, y)

fY (y)
(10.12)

Note that the denominator in the above expression is the integral of the numer-
ator over all values of x. For every fixed y, fX|Y is a function of x; if y is also
allowed to vary, then fX|Y is a function of x and y.

Just like in the discrete case, we also have

fXY (x, y) = fX(x)fY |X(y|x) = fY (y)fX|Y (x|y) (10.13)

and the law of total probability

fX(x) =

∫ ∞

−∞
fY (y)fX|Y (x|y)dy (10.14)

fY (y) =

∫ ∞

−∞
fX(x)fY |X(y|x)dx (10.15)

10.3 Bayes’ rule

Bayes’ rule is as essential in reasoning with random variables as it is in reasoning
with events. It can be derived from (10.13) for continuous RV’s

fX|Y (x|y) =
fY |X(y|x)fX(x)

fY (y)
(10.16)

For discrete RV’s it follows easily from (10.4)

PX|Y (x|y) =
PY |X(y|x)PX (x)

PY (y)
(10.17)
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Bayes’ rule is playing a very important role in estimation and prediction prob-
lems. So important, in fact, that a whole subfield of statistics is called Bayesian
statistics.

Why? Imagine yourself solving an estimation problem, where you observe data
D and want to find the model that generated the data. Let’s say for example that
the model is a normal distribution with variance 1 and all you need to estimate
is its µ. Assume also that from past experience with similar experiments you
know a probability distribution for µ, let’s call it P (µ|past). This distribution
has the name prior distribution or prior knowledge or simply prior. This is
the knowledge about µ that you have prior to seeing the data. After having seen
the data you can compute the likelihood, which is P (D|µ) – hence a function of
µ.

Now let us apply Bayes’ rule with A = µ and B = D. We have

P (µ|D, past) =
P (D|µ)P (µ|past)

P (D|past)
(10.18)

The left hand of the above equation, P (µ|D, past) is what we want: the distri-
bution of the parameter of interest µ given what we know: the dataset and the
prior knowledge. On the right hand side are the things we can compute: the
probability of the parameter before seeing the data P (µ | past), the likelihood
of the data. The denominator P (D | past) is equal to

P (D|past) =

∫ ∞

−∞
P (µ′|past)P (D|µ′)dµ′ (10.19)

thus being the normalization constant that turns the function in the numerator
into a probability density. But what is of importance is that P (D) is not a
function of µ and that, at least conceptually, it can be computed from the
known functions P (µ | past) and P (D|µ).

Hence, in contrast to ML estimation that always returns a single number as a
best guess, Bayes’ rule gives us µ as a distribution over possible values. In many
cases, such an answer is more informative and more useful than a single number;
for example, when there are several completely different “good guesses”.

Another fundamental diference from ML estimation is that Bayesian estima-
tion allows us to fuse two sources of knowledge: previous experience and new
information provided by the current experiment.

Often for convenience we drop the reference to the past from Bayes formula,
leaving it as

P (µ|D) =
P (D|µ)P (µ)

P (D)
(10.20)
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10.4 Independence and conditional independence

The RV’s X and Y are called independent if and only if the events X = x
and Y = y are independent for all x ∈ SX and y ∈ SY .

X ⊥ Y =⇒ PXY (x, y) = PX(x)PY (y) x ∈ SX , y ∈ SY (10.21)

Of course, the equivalent definition is also true: X and Y are independent if
knowing the value of X does not give any information about the value of Y .

X ⊥ Y =⇒ PX|Y (x|y) = PX(x) x ∈ SX , y ∈ SY (10.22)

In a similar way, we define conditional independence for random variables. Two
RVs X,Y are conditionally independent given RV Z if

PX|Y Z(x|y, z) = PX|Z(x|z) (10.23)

If two events or RVs are not (conditionally) independent we say that they are
(conditionally) dependent.

Two continous RV’s X,Y are independent if

X ⊥ Y ⇐⇒ fXY (x, y) = fX(x)fY (y) x, y ∈ R (10.24)

Of course, the equivalent definition is also true: X and Y are independent if
knowing the value of X does not give any information about the value of Y .

X ⊥ Y ⇐⇒ fX|Y (x|y) = fX(x) x, y ∈ R (10.25)

We define conditional independence on a third (continuous) RV, Z as

X ⊥ Y | Z ⇐⇒ fX|Y Z(x|y, z) = fX|Z(x|z) for all x, y, z (10.26)

The significance is the same as in the discrete case: if Z is known then knowing
Y does not add any information about X . If two RVs are not (conditionally)
independent we say that they are (conditionally) dependent.

10.5 The sum of two random variables

The results below hold for both continuous and discrete RVs. First we define the
expectation of a function of one or more RVs. Let g(X), h(X,Y ) be integrable
functions of one and two RVs respectively. Then, by definition,

E[g] =

∫ ∞

−∞
g(x)fX(x)dx (10.27)

E[h] =

∫ ∞

−∞

∫ ∞

−∞
h(x, y)fXY (x, y)dxdy (10.28)
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Now we show that the expectation is a linear operation, i.e. the expectation of
the (weighted) sum of two RVs is the (weighted) sum of the expectations of the
individual RVs. The sum is a function of two variables and we can apply the
formula above.

E[X + Y ] =

∫ ∞

−∞

∫ ∞

−∞
(x+ y)fXY (x, y)dxdy

=

∫ ∞

−∞

∫ ∞

−∞
xfXY (x, y)dxdy +

∫ ∞

−∞

∫ ∞

−∞
yfXY (x, y)dxdy

=

∫ ∞

−∞

(

x

∫ ∞

−∞
fXY (x, y)dy

)

dx+

∫ ∞

−∞

(

y

∫ ∞

−∞
fXY (x, y)dx

)

dy

=

∫ ∞

−∞
xfX(x)dx +

∫ ∞

−∞
yfY (y)dy

= E[X ] + E[Y ] (10.29)

We can also show that if a is a real number then

E[aX ] =

∫ ∞

−∞
axfX(x)dx (10.30)

= a

∫ ∞

−∞
xfX(x)dx (10.31)

= aE[X ] (10.32)

Putting the two above results together, we obtain

E[aX + bY ] = aE[X ] + bE[Y ] (10.33)

for any constants a, b. This result can be generalized by induction to a linear
combination of any number of random variables. Note that the RV do not have
to be independent. If we replace the integrals with sums we obtain a similar
result for discrete distributions.

Example 10.1 The arithmetic mean of n samples from the same dis-
tribution. Let X1, . . . Xn be independent samples from the density f . We
want to find the expectation of their arithmetic mean

µ̄ =
1

n

n∑

i=1

Xi (10.34)

Because X1, . . . Xn are all drawn from the same distribution, their densities are
fXi = f and their expectations are identical and equal to E[X1]. The expectation
of the arithmetic mean is

E[µ̄] = E[
1

n

n∑

i=1

Xi] (10.35)
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=
1

n

n∑

i=1

E[Xi] (10.36)

=
1

n

n∑

i=1

E[X1] (10.37)

= E[X1] (10.38)

Hence, the expectation of the arithmetic mean of n identically distributed RVs
is equal to the expectation of each of the RVs. We shall see further on that the
variance of the arithmetic mean for independent, identically distributed (i.i.d)
RVs is different, and much lower than that of the individual RVs.

For two independent RVs, we can compute the distribution of their sum. Let
Z = X + Y and FZ be its CDF. Then

FZ(z) = P (Z ≤ z) (10.39)

= P (X + Y ≤ z) (10.40)

=

∫

x+y≤z
fXY (x, y)dxdy (10.41)

=

∫ ∞

−∞

(∫ z−x

−∞
fXY (x, y)dy

)

dx (10.42)

=

∫ ∞

−∞

(∫ z−x

−∞
fX(x)fY (y)dy

)

dx (10.43)

=

∫ ∞

−∞

(∫ z−x

−∞
fX(x)fY (y)dy

)

dx (10.44)

=

∫ ∞

−∞
fX(x)FY (z − x)dx (10.45)

fZ(z) =
d

dz
FZ(z) (10.46)

=
d

dz

∫ ∞

−∞
fX(x)FY (z − x)dx (10.47)

=

∫ ∞

−∞
fX(x)

d

dz
FY (z − x)dx (10.48)

=

∫ ∞

−∞
fX(x)fY (z − x)dx (10.49)

The above operation is called the convolution of the two densities. Note that
in the proof we made use of the fact that X,Y are independent: the result is
true only for independent RVs. The probability of the sum of two discrete RVs
U, V is the discrete convolution of their distributions PU , PV :

PU+V (n) =
∞∑

k=−∞
PU (k)PV (n− k) (10.50)
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10.6 Variance and covariance

Let us now study the variance of a sum of two RVs, trying to write it as a
function of the variances of the individual RVs.

V ar(X + Y ) = E[(X + Y − E[X ]− E[Y ])2]

=

∫ ∞

−∞

∫ ∞

−∞
(x+ y − E[X ]− E[Y ])2fXY (x, y)dxdy

=

∫ ∞

−∞

∫ ∞

−∞

[
(x− E[X ])2 + 2(x− E[X ])(y − E[Y ]) + (y − E[Y ])2

]
fXY (x, y)dxdy

=

∫ ∞

−∞

∫ ∞

−∞
(x− E[X ])2fXY (x, y)dxdy +

∫ ∞

−∞

∫ ∞

−∞
(y − E[Y ])2fXY (x, y)dxdy

+2

∫ ∞

−∞

∫ ∞

−∞
(x − E[X ])(y − E[Y ])fXY (x, y)dxdy

︸ ︷︷ ︸

Cov(X,Y )

=

∫ ∞

−∞
(x − E[X ])2

∫ ∞

−∞
fXY (x, y)dydx+

∫ ∞

−∞
(y − E[Y ])2

∫ ∞

−∞
fXY (x, y)dxdy

+ 2Cov(X,Y )

=

∫ ∞

−∞
(x − E[X ])2fX(x)dx +

∫ ∞

−∞
(y − E[Y ])2fY (y)dy + 2Cov(X,Y )

= V arX + V arY + 2Cov(X,Y ) (10.51)

The quantity denoted by Cov(X,Y ) is called the covariance of the two random
variables. The covariance is a measures the “co-variation” of the two RVs around
their respective means. If large deviations of X are paired with large deviations
of Y in the same direction, then Cov(X,Y ) is a large, positive number. If
the deviations of X are paired with deviations of Y in opposite direction, then
Cov(X,Y ) is a negative number of large magnitude. If the deviations of X and
Y around their means are unrelated, the covariance is close to 0.

If the random variables are independent, then Cov(X,Y ) = 0.

Cov(X,Y ) =

∫ ∞

−∞

∫ ∞

−∞
(x− E[X ])(y − E[Y ])fXY (x, y)dxdy (10.52)

=

∫ ∞

−∞

∫ ∞

−∞
(x− E[X ])(y − E[Y ])fX(x)fY (y)dxdy (10.53)

=

[∫ ∞

−∞
(x− E[X ])fX(x)dx

]

︸ ︷︷ ︸

0

[∫ ∞

−∞
(y − E[Y ])fY (y)dy

]

︸ ︷︷ ︸

0

(10.54)

= 0 (10.55)
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The correlation coefficient of X and Y is

ρXY =
Cov(X,Y )√
V arX V ar Y

(10.56)

One can show that the correlation coefficient is always between −1 and 1. When
|ρXY | is close to 1, the variables are strongly correlated; when it is 0, they
are uncorrelated. Independent variables are always uncorrelated; the converse
in in general not true.

It is also useful to note that the variance of a RV scales quadratically with the
RV. If a is a real number, then

V ar[aX ] = E[(aX − aE[X ])2] = a2V arX (10.57)

Then it is simple to derive what happens to the variance of the linear combina-
tion of two RVs

V ar (aX + bY ) = E[(aX − aE[X ] + bY − bE[Y ])2]

= E[a2(X − E[X ])2 + b2(Y − E[Y ])2 + 2ab(X − E[X ])(Y − E[Y ])]

= a2V arX + b2V ar Y + 2abCov(X,Y ) (10.58)

Example 10.2 The arithmetic mean of n samples from the same dis-
tribution. Let X1, . . . Xn be independent samples from the density f . We now
want to find the variance of their arithmetic mean µ̄

V ar µ̄ = V ar(
1

n

n∑

i=1

Xi) (10.59)

=
1

n2

n∑

i=1

V arXi (10.60)

=
nV arX1

n2
(10.61)

=
V arX1

n
(10.62)

In the above we used the fact that the RVs are independent, hence uncorrelated,
and the fact that they have all the same variance. It results that the variance of
the arithmetic mean decreases proportionally to 1/( the number of terms in the
sum).

10.7 Some examples

Example 10.3 A discrete distribution
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The experiment is tossing a fair coin 4 times. Thus, S = {0, 1}4 = {(X1, X2, X3, X4)}
and the probability of every outcome is 1/24 = 1/16. We define the random vari-
ables:

• Y = position of first 1, or 0 if no ones

• Z = number of ones = X1 +X2 +X3 +X4

The values of Y, Z (in this order) for every outcome are shown in the table
below.

X1X2: 00 01 11 10

X3X4 = 00 0, 0 2, 1 1, 2 1, 1
01 4, 1 2, 2 1, 3 1, 2
11 3, 2 2, 3 1, 4 1, 3
10 3, 1 2, 2 1, 3 1, 2

The joint distribution PY Z(y, z) is represented in the next table. For clar-
ity, the values in the table are multiplied by 16 (so, for example, PY Z(0, 0) =
1/16, PY Z(3, 1) = 3/16, etc.).

Y 0 1 2 3 4
Z = 0 1 0 0 0 0

1 0 1 1 1 1
2 0 3 2 1 0
3 0 3 1 0 0
4 0 1 0 0 0

16

By adding up the rows of the table above, we obtain the marginal PY . Similarly,
the marginal of Z is obtained by adding up the elements in each column of PY Z .
Below is the joint table with the marginals added (the values are again multiplied
by 16). Note that “adding up the elements in a row/column” corresponds to
implementing the definition of the marginal

PY (y) =
4∑

z=0

PY Z(y, z)

Y 0 1 2 3 4
Z = 0 1 0 0 0 0 1

1 0 1 1 1 1 4
2 0 3 2 1 0 6
3 0 3 1 0 0 4
4 0 1 0 0 0 1

1 8 4 2 1 16
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The conditional distribution PZ|Y is shown below. Each row contains a distri-
bution over Z, PZ|Y=y. They are obtained by normalizing the corresponding
row in the PY Z table by the marginal value PY (y) in the last column. In other
words by implementing the formula

PZ|Y (z|y) =
PY Z(y, z)

PY (y)

Y 0 1 2 3 4
Z = 0 1 0 0 0 0

1 0 1
8

1
4

1
2 1

2 0 3
8

1
2

1
2 0

3 0 3
8

1
4 0 0

4 0 1
8 0 0 0

1 1 1 1 1

And here is PY |Z :

Y 0 1 2 3 4
Z = 0 1 0 0 0 0 1

1 0 1
4

1
4

1
4

1
4 1

2 0 1
2

1
3

1
6 0 1

3 0 3
4

1
4 0 0 1

4 0 1 0 0 0 1

Example 10.4 Rob’s fuel consumption

Rob (who is a robot roaming in the basement of Sieg hall) is switching to fossil
fuel consumption to save on electric energy. Every morning he is taking in his
tank X gallons of fuel, where X is uniformly distributed between 0 and 3.

X ∼ Uniform(0, 3]

At the end of the day, the amount of fuel remaining in his tank is Y

Y ∼ Uniform(0, X)

a. What is the joint density of X,Y ?

The joint outcome space is S = {0 < Y < X ≤ 3}. We know that

fX(x) =
1

3
for x ∈ (0, 3]

and

fY |X(y|x) =
1

x
for y ∈ (0, x]
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Therefore

fXY (x, y) = fX(x)fY |X(y|x) =
1

3x
for (x, y) ∈ S and 0 otherwise

Note that this is NOT a uniform distribution on S!

b. What is the marginal distribution of Y ?

fY (y) =

∫ 3

y

fXY (x, y) dx (10.63)

=

∫ 3

y

1

3x
dx (10.64)

=
1

3
(ln 3− ln y) (10.65)

Note that this density is unbounded towards 0.

c. What is the expectation of Y ?

E[Y ] =

∫ 3

0

yfY (y) dy (10.66)

=

∫ 3

0

y
1

3
(ln 3− ln y) dy (10.67)

=
1

3

[
y2

2
ln 3− (

y2

2
ln y − y2

4
)

]3

0

(10.68)

=
3

4
(10.69)

d. What is the conditional distribution of X given Y ?

The domain of X is (y, 3] and

fX|Y (x|y) =
fXY (x, y)

fY (y)
(10.70)

=
1
3x

1
3 (ln 3− ln y)

(10.71)

=
1

ln 3− ln y

1

x
(10.72)

e. If Y = 1 gallon, what is the probability that on that day Rob started with
X < 2 gallons in his tank?
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This is

P (X < 2|Y = 1) =

∫ 2

1

fX|Y (x, 1) dx (10.73)

=

∫ 2

1

1

ln 3− ln 1

1

x
dx (10.74)

=
ln 2

ln 3
(10.75)

f. What is Rob’s daily average fuel consumption?

The fuel consumption is X − Y so the daily average fuel consumption is

E[X − Y ] = E[X ]− E[Y ] =
3− 0

2
− 3

4
=

3

4
(10.76)
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0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

 f
Y|X

 for X=1, 2, 3

y
0

0.5
1

1.5
2

2.5
3

0

0.5

1

1.5

2

2.5

3
0

1

2

3

4

5

6

7

8

9

y

f
XY

x

fY |X for X = 1, 2, 3 The joint density fXY

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

70

80

y

f
Y

0 0.5 1 1.5 2 2.5 3
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

x

f
X|Y=1

 and P(X<2|Y=1) as an area

The marginal of Y , fY fX|Y for Y = 1

Example 10.5 In reliability, the probability density of failure over time is
often modeled as an exponential distribution. In other words, for a certain type
of component (e.g. a light bulb), the probability that the component fails in the
interval [t, t + ∆) (for a very small ∆) equals f(t)∆, with f being the p.d.f of
the exponential distribution

f(t) = γe−γt t ≥ 0 (10.77)

We compute the conditional probability that a component will fail in the next
∆ interval, given that it is working at time t.

P [fail in [t, t+ ∆) |working at t] =
P [fail in [t, t+ ∆), working at t]

P [working at t]
(10.78)
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=
f(t)∆

1− P [failed before t]
(10.79)

=
f(t)∆

1− F (t)
(10.80)

=
γe−γt∆

1− (1− e−γt) (10.81)

= γ∆ (10.82)

Note that this probability does NOT depend on t! The parameter γ represents
the fraction of failures in a certain short interval divided by the lenght of the
interval, and therefore it is known in reliability as the rate of failure of the
components. The exponential distribution describes those components that have
constant rates of failure.

Can you think of other processes that exhibit constant “rates of decay” or
“accumulation”?

10.8 The bivariate normal distribution

10.8.1 Definition

Two RVs X,Y are said to be jointly normal, or jointly Gaussian, or to obey
the bivariate normal distribution, if their joint density is

fXY (x, y) =
1

2π|Σ|1/2 exp

(

−1

2
[x− µx y − µy]Σ−1

[
x− µx
y − µy

])

(10.83)

The parameters of the bivariate normal distribution are the mean vector

µ =

[
µx
µy

]

and the covariance matrix

Σ =

[
σ2
x σxy

σxy σ2
y

]

The covariance matrix is positive definite or, equivalently, its determinant is
always positive.

|Σ| = σ2
xσ

2
y − σ2

xy ≥ 0 (10.84)

We denote the fact that X,Y have a jointly normal density by

(X,Y ) ∼ N(µ, Σ)
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10.8.2 Marginals

Proposition 1.
If X,Y ∼ N(µ, Σ), then

X ∼ N(µx, σ
2
x) (10.85)

Y ∼ N(µy, σ
2
y) (10.86)

In other words, the distributions of the individual variables are also normal and
their parameters are found by copying the corresponding parameters from the
joint distribution.

Proof. For simplicity, let us denote

x′ = x− µx y′ = y − µy (10.87)

and

Σ−1 =

[
Dx Dxy

Dxy Dy

]

=
1

|Σ|

[
σ2
y −σxy

−σxy σ2
x

]

(10.88)

The marginal of X is defined by

fX(x) =

∫

fXY (x, y)dy =

∫
1

2π|Σ|1/2 e
− 1

2 [Dxx
′2+2Dxyx

′y′+Dyy
′2] dy′ (10.89)

The expression in the exponent is a quadratic in y′ and we will separate from
it something that looks like a normal distribution in y′ alone, leaving out terms
depending on x′ only. Remember that the ultimate goal is to integrate over y′

and in this context x′ is a constant. We are guaranteed that the expressions
will be normalized so we can ignore tho the constant factors in front of the
exponentials.

fX(x) ∝
∫

e−
1
2 [Dxx

′2+2Dxyx
′y′+Dyy

′2] dy′ (10.90)

∝
∫

e
− 1

2Dy [y′2+2
Dxy
Dy

x′y′+
“

Dxy
Dy

x′
”2

−
“

Dxy
Dy

x′
”2

+Dx/Dyx
′2]
dy′(10.91)

∝
∫

e
− 1

2Dy

“

y′+
Dxy
Dy

x′
”2

︸ ︷︷ ︸

N(−x′Dxy/Dy,1/Dy)

e
− 1

2 [Dy

“

Dxy
Dy

x′
”2

+Dxx
′2]

︸ ︷︷ ︸

depends on x′ only

dy′ (10.92)

∝ e
− 1

2 [Dy

“

Dxy
Dy

x′
”2

+Dxx
′2] · 1 (10.93)

∝ e
− 1

2 [Dx−Dxy
Dy

]x′2

(10.94)

This is a normal distribution in x′. The coefficient of x′2 can be written as

Dx −
Dxy

Dy
=

DxDy −D2
xy

Dy
=

|D|
σ2
x/|Σ|

=
|D||Σ|
σ2
x

=
1

σ2
x

(10.95)
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By replacing x′ and (10.95) into (10.94) we obtain

fX(x) ∝ e
− (x−µx)2

2σ2
x (10.96)

QED.

Proposition 1 explains the notations and names of the parameters µx, µy, σx, σy.
But what about the parameter σxy which has no correspondent in the one
variable case? This parameter measures the covariance Cov(X,Y ) defined in
Handout 10.

Proposition 2. If X,Y ∼ N(µ, Σ), then

Cov(X,Y ) = σxy (10.97)

Proposition 3. If X,Y ∼ N(µ, Σ) and σxy = 0, the variables X,Y are
independent.

Proof. First, note that if σxy = 0 the inverse covariance Σ−1 is diagonal, with
elements 1/σ2

x, 1/σ2
y. Then,

fXY =
1

2πσxσy
e
− 1

2 [ (x−µx)2

σ2
x

+
(y−µy )2

σ2
y

]
(10.98)

=
1

σx
√

2π
e
− 1

2
(x−µx)2

σ2
x

1

σy
√

2π
e
− 1

2

(y−µy)2

σ2
y (10.99)

= fX(x)fY (y) (10.100)

The correlation coefficient ρxy is

ρxy =
σxy
σxσy

(10.101)

Because the determinant of Σ is never negative (10.84), it follows that, as we
already knew,

−1 ≤ ρxy ≤ 1 (10.102)

On the next page are depicted 3 jointly normal distributions, together with their
marginals fX , fY . The three distributions have the same parameters, except for
σxy.
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10.8.3 Conditional distributions

Proposition 4 If (X,Y ) ∼ N(µ, Σ), then the conditional distribution of fX|Y
is also normal, with parameters

µx|Y=y = µx + (y − µy)
σxy
σ2
y

(10.103)

σ2
x|Y=y = σ2

x(1− ρ2
xy) (10.104)

Intuitively, after we observe Y , the expectation of X deviates from µx by an
amount proportional to the deviation of the observed y from its own mean µy.
The proportionality constant is itself proportional to the covariance between the
two variables and inversely proportional to the noise in Y as measured by σ2

y.

Another way of expressing the above equation (prove it as an exercise) is

µx|Y=y − µx
σx

= ρxy
y − µy
σy

(10.105)

The covariance of X after Y is observed is decreased, since we gain information.
The decrease is proportional to the square of the correlation coefficient ρxy.
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Proof. With the previous notations we have

fX|Y (x, y) =
fXY (x, y)

fY (y)
=

1
2π|Σ|1/2 e

− 1
2 [Dxx

′2+2Dxyx
′y′+Dyy

′2]

1√
2πσy

e
− y′2

2σ2
y

(10.106)

For any fixed value of y this is obviously a normal distribution. By identifying
the above expression with the stardard expression for a (univariate normal)
we aim to uncover its parameters. First, note that the coefficient of x2 in the
exponential part of the density must be the inverse variance 1/σ2

x|Y=y. Hence,

σx|Y=y =
1

Dx
=

σ2
xσ

2
y − σ2

xy

σ2
y

= σ2
x(1 −

σ2
xy

σ2
xσ

2
y

) = σ2
x(1− ρ2

xy) (10.107)

Second, the expectation of x′ must be the coefficient of x′ in the exponent, times
− 1

2Dx
. This gives

2Dxy

−2Dx
=

σxy
σ2
y

y′ (10.108)

To obtain the expectation of x we add µx to the above expression. QED.

Note that the expected value of X changes with the observed value of Y , but
its variance is constant for all values of Y .

10.8.4 Estimating the parameters of a bivariate normal

We now turn to the problem of estimating the parameters of fXY from data by
the Maximum Likelihood (ML) method.

The data consists of n independent samples from fXY

D = { (x1, y1), (x2, y2), . . . (xn, yn) } (10.109)

The task is to find the parameters µ, Σ that maximize the likelihood of the data

(µML, ΣML) = argmax
µ,Σ

n∏

i=1

fXY (xi, yi) (10.110)

Because, µx, σx are at the same time the parameters of the marginal fX , a
Gaussian distribution in one variable, we can immediately derive that

µML
x =

1

n

n∑

i=1

xi (10.111)

(σML
x )2 =

1

n

n∑

i=1

(xi − µML
x )2 =

1

n

n∑

i=1

x2
1 − (µML

x )2 (10.112)
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and

µML
y =

1

n

n∑

i=1

yi (10.113)

(σML
y )2 =

1

n

n∑

i=1

(yi − µML
y )2 =

1

n

n∑

i=1

y2
1 − (µML

y )2 (10.114)

To obtain the last parameter, σxy, we have to actually equate the gradient of the
log-likelihood with 0, and use the previously obtained estimates of µx, µy, σx, σy.
Eventually, we get

σML
xy =

1

n

n∑

i=1

(xi − µML
x )(yi − µML

y ) (10.115)

10.8.5 An example

The following n = 20 data points were generated from a bivariate normal density
with µx = 1, µy = −1, σx = 0.5, σy = 0.3, σxy = 0.075 (which gives ρ = 0.5).
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1.383096 -0.712764
1.365463 -1.190579
1.127047 -0.911922
0.433800 -1.308288
1.518166 -0.932528
1.199770 -0.937261
0.634095 -1.220424
1.125638 -1.226752
1.438293 -0.762800
0.571201 -1.154991
0.204084 -1.740352
1.433606 -1.051744
1.183250 -0.901840
0.913308 -1.282981
0.499134 -1.198037
0.316031 -1.414655
1.727697 -0.841577
0.398874 -1.129591
0.315847 -1.492383
0.964255 -0.754558
Statistics:

∑
xi 18.752654 -22.166027

∑
x2
i 21.897914 25.938701

∑
xiyi -18.909045

ML estimates:
µ 0.937633 -1.108301
σ 0.464479 0.261922
ρ 0.770421

Unbiased ML estimates
µ 0.937633 -1.108301
σ 0.476545 0.268726
ρ 0.770421



Chapter 11

Bayesian estimation

Here we study two common examples of Bayesian estimation: the mean of a
normal distribution and the parameters of a discrete distribution. Recall that
Bayesian estimation assumes that you have a prior distribution on the param-
eter(s) you want to estimate. You also have samples from the unknown distri-
bution. The task is to combine the information from the samples, in the form
of the likelihood, with the prior, and to obtain another, updated, distribution
for the parameter, called the posterior.

11.1 Estimating the mean of a normal distribu-
tion

The data consists of n independent samples from fX , where fX is a normal
distribution with (unknown) parameters µtrue, σ

2
true.

D = { x1, x2, . . . xn} (11.1)

The prior distribution of µ is assumed to be also a normal distribution

µ ∼ N(m, s2) = f0 (11.2)

The parameters m, s2 are set by us (according to our presumed knowledge) so
they are known. The task is to obtain the posterior distribution of µ.

By Bayes’ formula, this is

f(µ | D) =
f0(µ)

∏n
i=1 fX(xi|µ, σ)

fD
(11.3)

143
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If we take logarithms and ignore the factors that don’t depend on µ, we obtain

ln f(µ | D) ∝ −1

2

[

(µ−m)2

s2
+

n∑

i=1

(xi − µ)2

σ2

]

(11.4)

∝ −1

2








(
1

s2
+

n

σ2

)

︸ ︷︷ ︸

1/s2new

µ2 − 2

(
m

s2
+

∑

i xi
σ2

)

︸ ︷︷ ︸

mnew/s2new

µ+ . . .








(11.5)

This shows that the posterior distribution of µ is also a normal distribution.
Let us determine its parameters. The coefficient of µ2 in the above expression
represents the inverse variance.

1

s2new
=

1

s2
+

1
σ2

n

(11.6)

Therefore

s2new =
1

1
s2 + n

σ2

(11.7)

Equation (11.6) shows that the inverse variance of the posterior is the sum of
the inverse variances given by the data and the prior’s inverse variance. Because
the sum is larger than either of its terms, it follows that

s2new ≤ min (s2,
σ2

n
) (11.8)

Hence, Bayesian estimation decreases the variance, both w.r.t ML estimation
and w.r.t the prior. Note that σ in the above expressions is undetermined. We
would like to use σtrue but since it is unknown, a reasonable choice in practice
is to use σML.

Next, let us estimate the mean. This is obtained from the coefficient of µ in
(11.5)

mnew =

1
s2m+ n

σ2

µML
︷ ︸︸ ︷∑

i xi
n

1
s2 + n

σ2

(11.9)

Hence, the posterior mean is a weighted average between the prior mean and
the ML mean. The weights depend on the respective variances of the prior and
ML estimate. In the above, the ideal formula makes use of the unknown σtrue;
in practice, σtrue is replaced with the ML estimate.

The prior variance s2 is a measure of the strength of the prior (or of the confi-
dence we put into the mean m). The larger s, the weaker the influence of the
prior and the closer the mnew, s

2
new parameters to the ML estimates. Note also

that, for sufficiently large n, the posterior will be dominated completely by the
data terms. The moral is, in other words, that even if the prior is wrong, with
enough data the initial mistakes can be overridden.
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11.2 Estimating the parameters of a discrete dis-

tribution

A discrete distribution on S = { 0, . . . ,m−1 } is parametrized by ~θ = (θ0, . . . , θm−1) ∈
Θ where

Θ = { ~θ |
m−1∑

0

θk = 1, θk ≥ 0, k = 0, . . .m− 1, }. (11.10)

The dataset is D = { x1, x2, . . . xn}. Recall that the likelihood of the data is
given by

L(~θ) ≡ P (D | ~θ) =

m−1∏

k=0

θnk

k (11.11)

where nk is the number of times outcome k appears in the dataset. The ML
parameter estimates are

θML
k =

nk
n

for k = 0, . . . ,m− 1 (11.12)

The prior is a density over Θ. We define it (ignoring the normalization constant)
as

f(~θ) ≡ D(~θ ; ~n′) ∝
m−1∏

k=0

θ
n′

k−1
k (11.13)

Note that we are free to choose any density over Θ as prior (or rather the density
that best reflects our knowledge about the parameters before we see the data).
We choose this one for reasons that will appear in the forthcoming, one of them
being mathematical and algorithmic convenience.

Let us make the notations

~n = (n0, . . . nm−1 ) ~n′ = (n′
0, . . . n

′
m−1 ) (11.14)

By Bayes’ rule, the posterior is proportional to the product of the prior and the
likelihood:

f(~θ | D) ∝
m−1∏

k=0

θ
n′

k−1
k

m−1∏

k=0

θnk

k (11.15)

∝
m−1∏

k=0

θ
nk+n′

k−1
k (11.16)

∝ D(~θ ; ~n+ ~n′) (11.17)

Hence if the prior is Dirichlet, the posterior is also in the Dirichlet family of
distributions. Moreover, the parameters ~n′

new of the posterior are the sum of



146 CHAPTER 11. BAYESIAN ESTIMATION

the prior parameters and the sufficient statistics of the data. This suggests that
the parameters ~n′ of a Dirichlet distribution are the sufficient statistics of a
“fictitious data set”. Thus the prior knowledge that the Dirichlet distribution
embodies is equivalent to the knowledge we’d have if we had seen a previous
data set with sufficient statistics ~n′. Note that the numbers n′ are not restricted
to integers, and in particular they can be smaller than 1. The sum

n′ =
m−1∑

k=0

n′
k (11.18)

is the “equivalent sample size” of the fictitious data set and it represents the
strength of the prior. The smaller n′, the weaker the confidence in our prior
knowledge and the weaker the influence the prior has on the parameter distri-
bution.

The mean of the Dirichlet distribution is given by

ED(~n′)[θk] =
n′
k

n′ (11.19)

[Exercise. Prove (11.19). It’s a non-trivial exercise in multivariate integration.]
Therefore, the mean values of θ under the posterior distribution is

ED( ~n+n′)[θk] =
nk + n′

k

n+ n′ (11.20)

Intuitively, if we want to make a “best guess” at the parameters after we compute
the posterior, we would obtain an estimate that is like the ML estimate from
the data and the fictitious data pooled together.



Chapter 12

Statistical estimators as
random variables. The
central limit theorem

12.1 The discrete binary distribution (Bernoulli)

Let S = {0, 1} and let a distribution P be defined on it by P (1) = p. If we have
a data set D = {x1, . . . xn} of independent samples from P , the ML estimate
of p is the well known

p̂ =

∑n
i=1 xi
n

(12.1)

Now, p̂ is obviously a function of the data set, hence a function of the outcome
of the experiment “sample n points from P”, hence a random variable. Let’s see
what are its mean and variance. In particular, if the formula (12.1) is a good
method for estimating p, we would expect that p̂ is close to p or even converges
to p when n is large.

By the linearity of the mean, we have that

E[p̂] = E[

∑n
i=1Xi

n
] =

∑n
i=1E[Xi]

n
= p (12.2)

We call a random variable (=function of the data) like p̂ an estimator for p. The
expectation of p̂ is equal to the true value of the parameter p. Such an estimator
is call unbiased. By contrast, an estimator for a parameter θ whose expectation
is different from the true value of the parameter it estimates is biased. The
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difference E[θ̂]− θ is called bias.

Bias(θ̂) = E[θ̂]− θ (12.3)

The bias is in general a function of θ. We’ll encounter an example of a biased
estimator in one of the following sections.

It is good that the expectation of our estimator is equal to the desired value,
but what about the variance?

V ar p̂ = E[(p̂− p)2] (12.4)

(by example 2 in Handout 9

=
V arX1

n
(12.5)

=
p(1− p)

n
(12.6)

Therefore, as n→∞, the variance of p̂ will tend to 0; in other words, p̂ converges
to the true value p1. This means that for large n with very high probability, p̂
will be close to p. How close? See the section on the central limit theorem to
find out.

12.2 General discrete distribution

A general discrete distribution on an outcome space of size m is defined by m
parameters θ0, . . . θm−1. The ML estimate of θi, i = 0, . . . m− 1 is

θ̂i =
ni
n

(12.7)

where n is the number of data points and ni is the number of times the outcome
is i. We can estimate the mean and variance of this estimator in a similar way
as above, if we note that ni is the sum of n random variables Yj that are defined
such that

Yj =

{
1 Xj = i
0 Xj 6= i

(12.8)

Hence,

θ̂i =

∑n
j=1 Yj

n
(12.9)

and therefore

E[θ̂i] = P (Y = 1) = θi (12.10)

V ar θi =
θi(1− θi)

n
(12.11)

1This kind of convergence is a weak form of convergence. There are stronger results about
the convergence of p̂ to p but the one we derived here suffices to illustrate the point
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This shows that for a general discrete distribution, the ML estimates converge
to the true values of the parameters in the limit of infinite data.

12.3 The normal distribution

The normal density function is given by

f(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (12.12)

and the ML estimates of its parameters are

µ̂ =
1

n

n∑

i=1

xi (12.13)

σ̂2 =
1

n

n∑

i=1

(xi − µ̂)2 (12.14)

Let us see how these estimates behave. For µ̂ we have (obviously by now)

E[µ̂] =
1

n

n∑

i=1

E[Xi] = µ (12.15)

Its variance is (also obviously)

V ar µ̂ =
1

n2

n∑

i=1

V arXi =
σ2

n
(12.16)

So, the estimate of the mean of the normal distribution is also converging to its
true values. But with the estimate of the variance there is a surprise in store.

To do the calculations easier, recall that in chapter 8 it was proved that for any
random variable Z and any real number a

E[(Z − a)2] = V ar Z + (E[Z]− a)2 (12.17)

For a = 0 we obtain
E[Z2] = V ar Z + E[Z]2 (12.18)

We shall use this relationship below.

E[σ̂2] = E[
1

n

n∑

i=1

(xi − µ̂)2]

=
1

n2
E

[
n∑

i=1

(X2
i − 2µ̂Xi + µ̂2)

]
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=
1

n2









n∑

i=1

E[X2
i ] + E[−2µ̂

n∑

i=1

Xi

︸ ︷︷ ︸

nµ̂

+nµ̂2]









=
1

n2




n(σ2 + µ2)
︸ ︷︷ ︸

by (12.18)

−nE[µ̂2]






=
1

n2






n(σ2 + µ2)− n (

σ2

n
+ µ̂2)

︸ ︷︷ ︸

by (12.18)







=
n− 1

n
σ2

This is an example of a biased estimator. The bias is

Bias(σ̂2) = E[σ̂2]− σ2 =
1

n
σ2 (12.19)

It is easy to fix this problem by using a different estimator for σ2

σ̄2 =
1

n− 1

n∑

i=1

(xi − µ̂)2 (12.20)

The above is the standard method for estimating the variance of the normal
distribution.

12.4 The central limit theorem

We shall end this discussion with a convergence result of another nature. The
central limit theorem says that if we add up a very large number of independent
random variables, the distribution of the sum (which is the convolution of the
distributions of the terms) will tend to a normal distribution. Let us make
things more simple, by assuming that all the variables are sampled from the
same distribution P . Denote the mean and variance of P respectively by M
and V (which are finite).

Let the sum of n samples from P be Zn. Then, naturally

E[Zn] = nM and V ar Zn = nV (12.21)

Let us now shift and scale Zn to obtain a RV with 0 mean and unit variance
Yn.

Yn =
Zn − nM√

nV
(12.22)
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Now, the Central Limit Theorem says that the CDF of Yn converges pointwise
to the CDF of the normal distribution with 0 mean and unit variance when
n→∞.

FYn(y) → G(y) (12.23)

where

G′(y) =
1√
2π
e−

y2

2 (12.24)

The convergence rate is pretty fast if P is “like a bump”, that is having one
maximum, being relatively smooth and symmetric.

Example 12.1 The sum of n = 100 independent tosses of a biased coin.
Assume that the probability of obtaining a 1 on any given toss is θ1 = 0.6 and
let Xi ∈ {0, 1} denote the outcome of toss i. Let Z = X1 +X2 + . . .Xn.

Find an approximation for the probability that 70 ≤ Z ≤ 90.

Solution Because E[X ] = θ1 and V ar(X) = θ1(1 − θ1) we have that E[Z] =
nE[X ] = nθ1 and V ar(Z) = nV ar(X). Define the random variable

Y =
Z − nθ1

√

nθ1(1− θ1)
(12.25)

Y has zero mean and unit variance and for n sufficiently large its CDF is well
approximated by the CDF of the standard normal distribution. Therefore

P (70 ≤ Z ≤ 90) = P

(

Y ∈
[

70− nθ1
√

nθ1(1− θ1)
,

90− nθ1
√

nθ1(1− θ1)

])

(12.26)

≈ Φ

(
90− 60

4.899

)

− Φ

(
70− 60

4.899

)

(12.27)

= 1− 0.9961 = 0.0039 (12.28)

Exercise Note that the exact value of this probability, as well as the exact
distribution of Z are known from chapter 4. Then, why is the approximation
described above useful?
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Chapter 13

Graphical models of
conditional independence

13.1 Distributions of several discrete variables

The “Chest clinic” example - a domain with several discrete variables.

Smoker ∈ {Y,N}

Dyspnoea ∈ {Y,N}

Lung cancer ∈ {no, incipient, advanced}

Bronchitis ∈ {Y,N}

The domain has 4 variables, 2 × 2 × 3 × 2 = 24 possible configurations. The
joint probability distribution PSDLB(s, d, l, b) is real valued function on
S{S,D,L,B} = SS × SD × SL × SB. We sometimes call it a multidimensional
probability table.

The marginal distribution of S,L is

PSL(s, l) =
∑

d∈SD

∑

b∈SB

PSDLB(s, d, l, b)

The conditional distribution of Bronchitis given Dyspnoea is

PB|D(b|d) =
PBD(b, d)

PD(d)

153
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Computing the probabilities of some variables (B) when we observe others (D)
and we don’t know anything about the rest (L, S) is a fundamental operation
in probabilistic reasoning. Often it is called inference in the model PSDLB.

13.2 How complex are operations with multi-

variate distributions?

Notations:

V = {X1, X2, . . . Xn} the domain
ri = |SXi |
PX1,X2,...Xn the joint distribution.

Number of configurations |SV | =
∏n
i=1 ri ≥ 2n. Required storage depends

exponentially on n!

Computing the marginal of X1, . . . Xk takes
(
∏k
i=1 ri

) (∏n
i=k+1 ri

)
= |SV |

additions. Also exponential.

Computing conditional distributions: they are ratios of two marginals ⇒ also
exponential.

Sampling: can be done in logarithmic time in the size of SV , thus is O(n).

Returning the probability of a configuration is also O(n).

In conclusion, a multivariate probability distribution becomes intractable when
the number of variables is large (practically over 10 – 20). A solution to alleviate
this problem (but ONLY in special cases) is offered by graphical probability
models. They have the potential for compact representation and for efficient
computations.

If A,B ⊆ V are disjoint subsets of variables and C = V \ (A ∪B) then

PA|B =
PA∪B
PB

(13.1)

PA∪B(a, b) =
∑

c∈SC

PV (a, b, c) (13.2)

PB(b) =
∑

a∈SA

∑

c∈SC

PV (a, b, c) (13.3)

=
∑

a∈SA

PA∪B(a, b) (13.4)
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Hence, PB(b) is the normalization constant that turns PA∪B(·, b) into PA|B(·|b).

Computing PB directly : |SV | = |SA|.|SB|.|SC | operations
PB as normalization constant |SA|.|SB| operations

13.3 Why graphical models?

A graphical model is a joint distribution represented in a certain way. We
use the joint distribution to “reason” about the variables of interest (i.e. to
compute their conditional probabilities given the evidence). We know that a
discrete multivariate distribution represented by its values becomes intractable
for high dimensions. Graphical models attempt to alleviate this problem - the
model structure controls the computational complexity.

Tasks and domains - noise
- many dimensions
- (usually) large data sets
- task is not precisely defined (or more than one task)

For example: Image analysis/segmentation/restauration
Medical and technical diagnosis
Maximum likelihood decoding, error correcting codes

Related to: statistics
optimization
algorithms and computability
database management

13.4 What is a graphical model?

Graphical model = graphical representation of (conditional) independence rela-
tionships in a joint distribution

= the distribution itself

graphical model - structure (a graph)
- parametrization (depends on the graph, parameters are “local”)

A graph is defined as G = (V,E) where

• V is the set of graph vertices (or nodes); each node represents a variable

• E is the set of graph edges; edges encode the dependencies. More pre-
cisely:



156CHAPTER 13. GRAPHICAL MODELS OF CONDITIONAL INDEPENDENCE

A missing edge encodes a conditional independence relationship.

13.5 Representing probabilistic independence in

graphs

Idea: Independence in the joint distribution ←→ Separation in graph

This mapping is not unique and not perfect.

Reasoning in graphical models (i.e computing P ( variables of interest | evidence
)) is performed by propagating beliefs along paths in the graph. We call these
mechanisms local propagation because they corresponds to operations between
variables that are close to each other in terms of graph distance. See the example
of Markov chains below.

13.5.1 Markov chains

X1 X2 X3 X4 X5

The joint distribution

PX1X2X3X4X5 = PX1PX2|X1
PX3|X2

PX4|X3
PX5|X4

is a product of conditional distributions involving Xt+1, Xt. Xt+1, Xt are neigh-
bors in the chain, hence we say that PX1X2X3X4X5 can be computed from local
(conditional) distributions.

13.5.2 Trees

X1 X2

X3

X4

X5

X6
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Tree = connected graph with no cycles (we also call it spanning tree). If
disconnected and no cycles, we call it a forest. Sometimes we use the term tree
to mean either a spanning tree or a forest.

Property: between every two variables in a spanning tree there is exactly one
path (at most one path for forests).

A ⊥ B | C ⇐⇒ all paths between sets A and B pass through set C

We say that C blocks the paths between A and B. Think of it as “blocking
the flow of information”.

13.5.3 Markov Random Fields (MRF)

Arbitrary undirected graphs.

U1 ⊥ U2 | U3 ⇐⇒ all paths between sets U1 and U2 pass through set U3

A

B

D

C

A E F

G

Examples: F,G ⊥ A,B,C,D | E
A ⊥ C | B,D
A ⊥ C | B,D,E, F

n(A) = the neighbors of variable A

Markov property for MRFs:

A ⊥ everything else | n(A)
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13.5.4 Bayesian Networks

Directed acyclic graphs (DAGs)

this is a DAG this is not a DAG

X-ray Dyspnoea

Tuberculosis Lung cancer Bronchitis

Asia Smoker

Terminology: parent Asia is parent of Tuberculosis
pa(variable) the set of parents of a variable

pa( X-ray ) = { Lung cancer, Tuberculosis }
child Lung cancer is child of Smoker
ancestor Smoker is ancestor of Dyspnoea
descendent Dyspnoea is descendent of Smoker
family a child and its parents

Dyspnoea, Tuberculosis, Lung cancer, Bronchitis are a family

A ⊥ B | C ⇐⇒ A d-separated from B by C

D-separation : A is d-separated from B by C if all the paths between sets
A and B are blocked by elements of C. The three cases of d-separation:
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X Z Y

if Z ∈ C the path is blocked, otherwise open

X

Z

Y

if Z ∈ C the path is blocked, otherwise open

X

Z

Y

if Z or one of its descendents ∈ C the path is open, otherwise blocked

The directed Markov property: X ⊥ its non-descendants | pa(X)

13.6 Bayes nets

Here we show how to construct joint probability distributions that have the
independencies specified by a given DAG. Assume the set of discrete variables
is V = {X1, X2, . . . Xn} and that we are given a DAG G = (V,E). The goal is
to construct the family of distributions that are represented by the graph. This
family is given by

P (X1, X2, . . . Xn) =
n∏

i=1

P (Xi|pa(Xi)) (13.5)

In the above P (Xi|pa(Xi)) represents the conditional distribution of variable
Xi given its parents. Because the factors P (Xi|pa(Xi)) involve a variable and
its parents, that is, nodes closely connected in the graph structure, we often call
them local probability tables (or local distributions).

Note that the parameters of each local table are (functionally) independent of
the parameters in the other tables. We can choose them separately, and the set
of all parameters for all conditional probability distributions form the family of
distributions for which the graph G is an I-map.

If a distribution can be written in the form (13.5) we say that the distribu-
tion factors according to the graph G. A joint distributions that factors
according to some graph G is called a Bayes net.

Note that any distribution is a Bayes net in a trivial way: by taking G to be the
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complete graph, with no missing edges. In general, we want a Bayes net to be
as sparse as possible, because representing independences explicitly has many
computational advantages.

X D

T L B

A S

The Bayes net described by this graph is

P (A,S, T, L,B,X,D) = P (A)P (S)P (T |A)P (L|S)P (B)P (X |T, L)P (D|T, L,B)

A way of obtaining this decomposition starting from the graph is

1. Construct a topological ordering of the variables. A topological order-
ing is an ordering of the variables where the parents of each variable are
always before the variable itself in the ordering.
A,S, T, L,B,X,D is a topological ordering for the graph above.

2. Apply the chain rule following the topological ordering.

P (A,S, T, L,B,X,D) = P (A)P (S|A)P (T |A,S)P (L|A,S, T )P (B|A,S, T, L)

P (X |A,S, T, L,B)P (D|A,S, T, L,B,X)

3. Use the directed Markov property to simplify the factors

P (S|A) = P (S)

P (T |A,S) = P (T |A)

P (L|A,S, T ) = P (L|S)

P (B|A,S, T, L) = P (B), etc.

Let us now look at the number of parameters in such a model. Assume that in
the example above all variables are binary. Then the number of unconstrained
parameters in the model is

1 + 1 + 2 + 2 + 1 + 4 + 8 = 19
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The number of parameters in a 7 way contingency table is 27 − 1 = 127 so we
are saving 118 parameters. As we shall see, there are also other computational
advantages to joint distribution representations of this form.

13.7 Markov nets

Now we look at joint distributions that factor according to undirected graphs.
Such distributions are called Markov nets or Markov random fields. Just
like Bayes nets, Markov nets are a product of local functions, called clique
potentials.

A clique is a completely connected subset of nodes in a graph. For example, in
the graph below, {A,D}, {D,E}, {C,D,E}, {E,F,G} are cliques. In particu-
lar, every node and every edge in a graph is clique. {A,B,C,D} is not a clique.
A clique of size four is {H, I, J,K}.

A

B

D

C

A E F

G

H I

J K

Some cliques are included in other cliques (for example {D,E} is included in
{C,D,E}). A clique which is not included in any other clique is called maxi-
mal. In the example above, {B,C} and {C,D,E} are some maximal cliques.

A clique potential ψ(XC) is a non-negative function of the variables in the clique
C. A joint distribution P factors according to the undirected graph G if
it can be written as a product of potentials over the maximal cliques of G.

P (X1, X2, . . . Xn) =
∏

C
ψ(XC) (13.6)

For example, a joint distribution that factors according to the undirected graph
above has the form

P (A,B,C,D,E, F,G, ) = ψ(A,B)ψ(A,D)ψ(B,C)ψ(C,D,E)ψ(E,F,G)
(13.7)

Note that this factorization is not unique. One can obtain equivalent factor-
izations by dividing/multiplying with functions of variables that are common
between cliques. For example, let φ(B) be a postive function of variable B.
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Then the following is also a factorization of P (A,B,C,D,E, F,G, ) according
to the same graph.

P (A,B,C,D,E, F,G, ) = [ψ(A,B)φ(B)
︸ ︷︷ ︸

ψ′(A,B)

]ψ(A,D)[ψ(B,D)/φ(B)]
︸ ︷︷ ︸

ψ′(B,D)

ψ(C,D,E)ψ(E,F,G)

(13.8)

Unlike in Bayes nets, the potentials ψ do not represent probability distributions.

Again, the savings in terms of number of parameters are significant. Assume
that all variables are binary, and all potentials are represented by (unnormal-
ized) tables. Then for the graph above, the total number of parameters is

3× 22 + 2× 23 = 28

The size of a probability table over 7 binary variables is 27 − 1 = 127 thus in
this example we save 99 parameters (almost 80%).

13.8 Decomposable models

Decomposable models are a category of graphical probability models that factor
according to triangulated graphs.

We say that an undirected graph is triangulated (or chordal) if every cycle
of length greater than 3 has a chord.

A D

B C

A D

B C

A B

F

E C

D

not triangulated triangulated not triangulated

In a triangulated graph, the maximal cliques and their intersections, called
separators, play an important role. A triangulated graph can be represented
as a tree of maximal cliques. Below is an example.
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A C

B D

E

graph

ABC BCD

BE

BC

B

tree of cliques; separators are edges

A joint probability distribution that factors according to a junction tree has the
form:

P (X1, X2, . . . Xn) =

∏

C P (XC)
∏

S P (XS)
(13.9)

where C,S are respectively indices over the cliques and separators of the graph
G.

For the graph above, the factorization is

P (A,B,C,D,E) =
P (A,B,C)P (B,C,D)P (B,E)

P (B,C)P (B)
(13.10)

Any junction tree factorization can be easily seen as a Markov net factorization.
Obviously, any decomposable model is a Markov net. Therefore, we often refer
to PC , PS as clique/separator potentials. However, in decomposable models
the potentials are in a form that exhibits the local probability tables. Note that
local, in this context, means within a clique or a separator. In contrast with
Bayes nets, the local probability distributions that build a decomposable model
are marginal probabilities.

The junction tree structure is not unique. A junction tree is always a Maximum
Spanning tree w.r.t separator size. (A maximum spanning tree is a tree over
V whose sum of edge weights has a maximum value. Here the edge weights are
the sizes of the separators.)

ABC BCD

BE

BC

BB

ABC BCD

BE

BC

B

ABC BCD

BE

BB

graph of cliques and separators a junction tree not a junction tree
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13.9 Relationship between Bayes nets, Markov

nets and decomposable models

Decomposable

DAGs Undirected
graphs

Triangulated graphs/
  junction trees

Bayes nets Markov nets

models

13.10 D-separation as separation in an undirected

graph

Here we show that D-separation in a DAG is equivalent to separation in an
undirected graph obtained from the DAG and the variables we are interested
in. First two definitions, whose meaning will become clear shortly.

Moralization is the graph operation of connecting the parents of a V-structure.
A DAG is moralized if all nodes that share a child have been connected. After
a graph is moralized, all edges, be they original edges or new edges added by
moralization, are considered as undirected. If G is a DAG the graph obtained
by moralizing G is denoted by Gm and is called the moral graph of G.
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X D

T L B

A S

X D

T L B

A S

marrying the parents dropping the directions

For any variable X the set an(X) denotes the ancestors of X (including X
itself). Similarly, if A is a set of nodes, an(A) denotes the set of all ancestors of
variables in A.

an(A) =
⋃

X∈A
an(X)

The ancestral graph of a set of nodes A ⊆ V is the graph GA = (an(A), EA)
obtained from G by removing all nodes not in an(A).

Now we can state the main result.

Theorem Let A,B, S ⊆ V be three disjoint sets of nodes in a DAG G. Then
A,B are D-separated by S in G iff they are separated by S in the moral ancestral
graph of A,B, S.

A ⊥ B |S in G iff A ⊥ B |S in (GA∪B∪S)m

The intuition is that observing/conditioning on a variable creates a dependence
between its parents (if it has any). Moralization represents this link. Now why
the ancestral graph? Note that an unobserved descendent cannot produce de-
pendencies between its ancestors (ie cannot open a path in a directed graph).
So we can safely remove all descendents of A,B that are not in S. The descen-
dents of S itself that are not in A,B, and all the nodes that are not ancestors of
A,B, S can be removed by a similar reasoning. Hence, first the graph is pruned,
then dependencies between parents are added by moralization. Now directions
on edges can be removed, because DAG’s are just like undirected graphs if it
weren’t for the V-structures, and we have already dealt with those.

The Theorem immediately suggests an algorithm for testing D-separation using
undirected graph separation.

1. remove all nodes in V \ an(A ∪B ∪ S) to get GA∪B∪S

2. moralize the remaining graph to get (GA∪B∪S)m

3. remove all nodes in S from (GA∪B∪S)m to get G′
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4. test if there is a path between A and B in G′

For example, test if S ⊥ B |D in the chest clinic DAG.
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Chapter 14

Probabilistic reasoning

The concept of conditional independence, together with the formula of condi-
tional probability and the derived formulas (Bayes’ rule, total probability), when
pieced together, allow us to process complicated systems of (probabilistically)
related concepts and to draw conclusions within these systems about events that
interest us from observing other events. This is called probabilistic reasoning
and is one of the most spectacular and successful applications of probability in
Artificial Intelligence.

Below is an example concerning an imaginary problem of medical diagnosis.

Example 14.1 Probabilistic medical diagnosis. A patient tests HIV pos-
itive on a test (call this event T ) and the doctor wants to know what is the
probability that the patient is actually HIV positive (call this event HIV ). What
the doctor knows is that

• The HIV test is not perfect; it will be positive if the patient has HIV with
probability

P (T |HIV ) = 0.99 (14.1)

and negative otherwise. The test may also be positive if the patient is not
infected with HIV; this happens with probability

P (T |HIV ) = 0.03. (14.2)

• The incidence of the HIV virus in the population of the US is P (HIV ) =
0.001. (These figures are not real figures!)

How can the doctor compute what he wants to know, namely P (HIV |T ) from
the information he has?
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P (HIV |T ) =
P (T |HIV )P (HIV )

P (T )
(14.3)

We now compute P (T ) by the law of total probability

P (T ) = P (T |HIV )P (HIV ) + P (T |HIV )P (HIV )

Replacing the numbers we get

P (HIV |T ) =
0.99× 0.001

0.99× 0.001 + 0.03× 0.999
= 0.032

This probability is very small, but it is about 30 times larger than the P (HIV )
before seeing the positive result of the test. This is due mainly to the fact that
the prior probability of HIV in the population P (HIV ) is very small.

Let us now add to the scenario the fact that, when trying to diagnose the HIV in-
fection, the doctor may take into account other evidence then the test, namely
the patient’s symptoms and history. Denote the events “history suggesting HIV
infection” and “symptoms suggesting HIV infection” by H and S respectively.
The doctor’s knowledge gives him the following conditional probabilities relating
HIV with S and H :

P (HIV |H) = 0.1 (14.4)

P (S|HIV ) = 0.8 (14.5)

P (S|HIV ) = 0.1 (14.6)

The doctor also knows that the presence of the symptoms depends on nothing
else but the HIV infection, the test result T and the symptoms S are independent
if we know whether HIV is present or not, and that the test and symptoms are
related to the patient history only through the HIV state. This knowledge can
be expressed in the probabilistic independencies:

T ⊥ S | HIV (14.7)

T ⊥ H | HIV (14.8)

S ⊥ H | HIV (14.9)

The graph below describes the cause-effect relationship between the 4 events
involved and lets us easier remember the conditional independencies (14.7–14.9).

Let us now assume that the doctor learns about the patient’s history H . How
can the doctor merge the two observations he now posseses T and H to improve
his guess about HIV the event he cannot observe directly? In other words, how
to compute the conditional probability P (HIV |T,H)?

The intuitive solution is to replace P (HIV ) by P (HIV |H) in formula (14.3).
This gives us after calculations

P (HIV |T,H) =
0.99× 0.1

0.99× 0.1 + 0.03× 0.9
= 0.79 (14.10)
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P(HIV|H)

P(S|HIV)P(T|HIV)

HIV

S − symptoms

T S

T − tests
H − history

H

Let us do the same calculation another way. We will work on P (HIV |T,H)
trying to put it in a form that lets us use the probabilites we already know.

P (HIV |T,H) =
P (T |HIV,H)P (HIV |H)

P (T |H)
(Bayes for HIV, T only)(14.11)

=
P (T |HIV )P (HIV |H)

P (T |H)
(because T ⊥ H |HIV )(14.12)

The denominator is computed again by total probability, keeping H behind the
conditioning bar.

P (T |H) = P (T |HIV,H)P (HIV |H) + P (T |HIV ,H)P (HIV |H)(14.13)

= P (T |HIV )P (HIV |H) + P (T |HIV )P (HIV |H) (14.14)

= 0.99× 0.1 + 0.03× 0.9 = 0.126 (14.15)

Putting it all together we get again

P (HIV |T,H) =
0.99× 0.1

0.99× 0.1 + 0.03× 0.9
= 0.79

Let us now take into account history, test and symptoms. We need to compute
P (HIV |H,T, S). Again, we will turn it around to exhibit the probabilities that
we know, using conditional independence whenever we can.

P (HIV |T, S
︸ ︷︷ ︸

Bayes

, H) =
P (T, S|HIV,H)P (HIV |H)

P (T, S|H)
(14.16)

=
P (T, S|HIV )P (HIV |H)

P (T, S|H)
(because T, S ⊥ H |HIV ) (14.17)

=
P (T |HIV )P (S|HIV )P (HIV |H)

P (T, S|H)
(because T ⊥ S |HIV ) (14.18)

=
P (T |HIV )P (S|HIV )P (HIV |H)

P (T |HIV )P (S|HIV )P (HIV |H) + P (T |HIV )P (S|HIV )P (HIV |H)
(total pr)

=
0.99× 0.8× 0.1

0.99× 0.8× 0.1 + 0.03× 0.1× 0.9
= 0.967 (14.19)



170 CHAPTER 14. PROBABILISTIC REASONING

Let us take a qualitative look at the series of probabilities P (HIV ) = 0.001, P (HIV |T ) =
0.032, P (HIV |T,H) = 0.79, P (HIV |T, S,H) = 0.967. The first is the prior,
which gives HIV a very low probability. The test is strong evidence for HIV ,
but in view of the low prior, the probabilityofHIV is still very low. The patient
history is weak evidence (P (HIV |H) = 0.1) but it replaces the uninformed prior
P (HIV ) with something 100 times stronger; in corroboration with the positive
test, the probability of HIV is now significant. The symptoms represent rel-
atively weak evidence compared to the test, but in the context of the other
two observations H,T that they corroborate, they make the probability of HIV
almost a certainty.

Exercises. What would be the probability of HIV if the symptoms are nega-
tive, i.e what is P (HIV |T, S,H)?

What if the doctor, upon seeing that the test is positive, instead of examining
the history and symptoms orders the repetition of the test?

Denote T 1 = “the first test is positive”, T 2 = “the second test is positive”.
Assume

T 1 ⊥ T 2 | HIV (14.20)

T 1 ⊥ T 2 | HIV (14.21)

The results of the tests are independent given the HIV state. The probabil-
ities of the test outcomes are given by (14.1,14.2) for both tests. Compute
P (HIV |T 1, T 2).



Chapter 15

Statistical Decisions

Example 15.1 Optimizing the number of servers

An Internet company offers a certain service. The number of requests for service
in a second follows a discrete exponential (or geometric) distribution with λ =
2/3

P (n) = (1− λ)λn (15.1)

The distribution is plotted in figure 15.1, a. (Exercise Verify that P (n) sum
to 1 and that the expectation E[n] is equal to λ

1−λ for λ < 1).

The company wants to choose the number of servers m so that it’s operation
costs are as low as possible. Serving one request takes exactly 1 second and
a server can serve only one request at a time. The costs associated with the
operation are are:
request refused R = 5
idle server I = 1
request served S = −10 (a gain)

To pose the problem in probabilistic terms, we want to minimize the expected
cost incurred per second.

First idea. The cost as a function of n the number of requests can be expressed
as:

cost(n) =

{
nS + (m− n)I if 0 ≤ n ≤ m
mS + (n−m)R if n > m

(15.2)

The average cost C(m) will then be

C(m) = E[cost] =

∞∑

n=0

cost(n)P (n) (15.3)
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Figure 15.1: The discrete exponential (geometric) distribution for λ = 2/3 (a);
the cost as a function of the number of servers m (b)

Computing this value for every m in a reasonable range we obtain the plot in
figure 15.1, b and the optimal values m = 6, C = −13.2. Thus, for the optimal
value of m, the company gains 13.2 monetary units per second on average.

Second idea. The cost is equal to S×ns + R×nR + I×nI where nS , nR, nI
are respectively the number of requests that are served, the number of requests
refused and the number of idle servers. Therefore, we can compute the average
cost as

E[cost] = S × E[nS ] + R× E[nR] + I × E[nI ] (15.4)

We have

E[nS ] = mP (n ≥ m) +
∑

n<m

nP (n) (15.5)

E[nR] =
∑

n>m

(n−m)P (n) = E[n]− E[nS ] (15.6)

E[nI ] =
∑

n<m

(m− n)P (n) (15.7)

This is actually the way that the plots in figure 15.1 were obtained. The mat-
lab file is statistical-decision-server-geometric.m on the Handouts web
page.

Variation: Poisson distribution A more realistic model for the requests
distribution is the Poisson model. A Poisson distribution with λ = 2 is shown
in figure 15.2, a. Recall that the Poisson distribution is

P (n) = e−λ
λn

n!
(15.8)



173

a b

0 2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

n
0 5 10 15

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

m

Figure 15.2: The Poisson distribution with λ = 2 (a); the cost as a function of
the number of servers m (b)

and its expectation is λ.

If we redo the calculations above (see the file statistical-decision-server-poisson.m
on the Handouts web page) assuming a Poisson distribution, we obtain the plot
in figure 15.2,b and the optimal values m = 4, C = −16.8.
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Example 15.2 Testing for HIV

Should a doctor test his patient for HIV?

What the doctor knows is that

• The HIV test is not perfect; it will be positive if the patient has HIV with
probability

P (T |HIV ) = 0.99 (15.9)

and negative otherwise. The test may also be positive if the patient is not
infected with HIV; this happens with probability

P (T |HIV ) = 0.03. (15.10)

• The incidence of the HIV virus in the population of the US is P (HIV ) =
0.001. (These figures are not real figures!)

Note that for brevity we use HIV to mean HIV = 0 or equivalently “no HIV”;
similarly T means T = 0 or “test result negative”.

The doctor also knows that the patient associates the folowing costs with the
possible actions and outcomes:
taking the test 3
correct diagnosis 0
undiagnosed HIV infection (miss) 100
false HIV diagnosis (false alarm) 10

Like many diagnosis situations, this is a one where the costs of errors are asym-
metric: missing a developing infection is much worse than giving the patient a
false alarm.

The doctor has the choice of prescribing the test or not, and he will choose the
alternative with the lowest expected cost for the patient.

Let us start by evaluating the expected cost in the case the test is not taken.
In this case the doctor’s diagnosis is “no HIV”, therefore the costs table looks
like this (C being the cost):
HIV 0 1
C 0 100

The expected cost is

E[C | no test] = P (HIV )× 100 + P (HIV )× 0 = 0.1 (15.11)
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In the second case, the outcome is described by the two variables: HIV ∈ {0, 1}
and T ∈ {0, 1}.

E[C | test] = 3 + P (HIV, T )× 100 + P (HIV , T )× 10 (15.12)

= 3 + 10−3 × 0.01× 100 + 0.999× 0.03× 10 (15.13)

≈ 3.3 (15.14)

Hence, not taking the test is much cheaper for an average person.

Exercise Assume that the test is taken and is positive. Should the doctor
repeat the test? If the test is repeated and the result is negative, the doctor will
diagnose “no HIV”. The results of the tests are independent conditioned on the
variable HIV . All the other costs and probabilities remain the same.
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Chapter 16

Classification

16.1 What is classification?

In classification, we are given an input x which can be an integer, a real number
or another type of discrete variable (it can also be a vector of variables) and a
set of possible categories, or classes. The input x always belongs to one of the
classes and only one; we call it the class of x. The task is to determine c(x) the
class of x for every possible x.

Classification appears in a wide variety of circumstances. It is also known as
pattern recognition, concept learning, categorization.

Example 16.1 Handwritten digit recognition The inputs x are 8-by-8 ma-
trices of black and white pixels (see fig 16.1). There are 10 classes, the digits 0
through 9. The task is to recognize the digits.

Example 16.2 Document categorization The inputs are documents (in some
representation), for example news articles, books, scientific articles. The classes
are categories of documents: sport, politics, international, economic if the doc-
uments are news articles.

Example 16.3 Protein classification A protein is a sequence of aminoacids.
The inputs are proteins, reprented as strings of aminoacids (there are 20 aminoacids)
and the output is a class to which the protein belongs (e.g peptides).
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Figure 16.1: Two examples of handwritten digits.

16.2 Likelihood ratio classification

Here, for simplicity we will assume that there are only two classes, labeled 0
and 1. A possible method of classifying data is to assume that for each class
there is a distribution PX|c that generates the data belonging to that class. We
assign

c(x) = 1 ⇔ PX|C(x|1) > PX|C(x|0) (16.1)

otherwise, we decide that the class of x is 0. The above is equivalent to writing

c(x) = 1 ⇔ PX|C(x|1)

PX|C(x|0)
> 1 (16.2)

and because PX|C(x|c) is the likelihood that x belongs to class c the method is
known as the likelihood ratio method. If x belongs to a continuous set, i.e. x is
a real number or a vector of real numbers, then the above becomes:

c(x) = 1 ⇔ fX|C(x|1)

fX|C(x|0)
> 1 (16.3)

16.2.1 Classification with different class probabilities

Very often, classes do not appear in the data with the same probability.

Example 16.4 Automatic meteorite classification The robot NOMAD,
constructed by CMU, was deployed in Antarctica to search for meteorites. It
would pick up a stone, inspect it visually and chemically and decide whether the
stone is one of three types of meteorites or a rock from the nearby mountain.
In this situation, there are four classes, but one of them (terrestrial rocks) is
thousands of times more frequent then the others.
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In this case, it is good to take into account the class prior probability PC . Then
by Bayes’ formula, we have

PC|X(c|x) =
PC(c)PX|C(x|c)

∑

c′ PC(c′)PX|C(x|c′) (16.4)

This gives us a probability distribution PC|X over the possible classes. If we
want to decide for a class, we choose the class with highest posterior probability
PC|X .

For two classes, we choose class 1 if

PC|X(1|x) > PC|X(0|x) ⇐⇒ 1 <
PC|X(1|x)
PC|X(0|x) =

PX|C(x|1)PC(1)

PX|C(x|0)PC(0)
(16.5)

Or, equivalently, we choose

c(x) = 1 ⇔ PX|C(x|1)

PX|C(x|0)
>

PC(0)

PC(1)
(16.6)

This is again a likelihood ratio method, where the threshold PC(0)
PC(1) depends on

the relative probabilities of the two classes.

16.2.2 Classification with misclassification costs

Example 16.5 Diagnosis as classification A doctor is faced with a classifi-
cation problem when she has to decide whether a patient has a certain disease or
not. This is a decision in uncertainty, so there is always a non-zero probability
of making a diagnosis error. There are two kinds of errors a doctor can make:
to diagnose the disease when the patient is healty (false alarm), or, to decide
the patient is healty when he is in fact ill. The second error is potentially more
damaging than the first.

One can assign a loss L to each kind of possible error and look at classification
as a statistical decision problem where the objective is to minimize the expected
loss. For a problem with 2 classes, assuming that the loss of a correct guess is
0, that ĉ is our guess and c is the truth, we have the loss matrix

ĉ 0 1
c = 0 0 L01

1 L10 0

The expected losses for guessing 0, respective 1 are

E[L|ĉ = 0] = PC|X(1|x)× L10 + PC|X(0|x)× 0 (16.7)

E[L|ĉ = 1] = PC|X(1|x)× 0 + PC|X(0|x)× L01 (16.8)
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Assuming the losses are positive, we choose

c(x) = 1 ⇔ 1 <
E[L|ĉ = 0]

E[L|ĉ = 1]
=

PC|X(1|x)× L10

PC|X(0|x)× L01
(16.9)

After a little calculation we obtain

c(x) = 1 ⇔ PX|C(x|1)

PX|C(x|0)
>

PC(0)

PC(1)

L01

L10
(16.10)

This shows that in the case of asymmetric misclassification loss, the classification
rule is again a likelihood ratio method, where the threshold depends on the losses
incurred by each kind of error.

Example 16.6 Two Normal Distributions

If both classes are generated by normal distributions, the resulting likelihood ratio
can be brought to a simple form. Let

fX|C(x|c) =
1

σc
√

2π
e
− (x−µc)2

2σ2
c (16.11)

and PC(1) = p. Then we choose class 1 if

log
PC|X(1|x)
PC|X(0|x) > 0 (16.12)

But

log
PC|X(1|x)
PC|X(0|x) = − (x− µ1)

2

2σ2
1

− log σ1 +
(x− µ0)

2

2σ2
0

+log σ0 +log
p

1− p (16.13)

This is a quadratic function in x. If the two class variances are equal σ0 = σ1

then the decision simpifies to

− (x− µ1)
2

2σ2
− log σ +

(x− µ0)
2

2σ2
− log σ + log

p

1− p > 0 (16.14)

−(x− µ1)
2 + (x− µ0)

2 + 2σ2 log
p

1− p > 0 (16.15)

−2x(µ0 − µ1) + µ2
0 − µ2

1 + 2σ2 log
p

1− p > 0 (16.16)

x >
µ1 + µ0

2
− σ2

µ1 − µ0
log

p

1− p

(assuming µ1 > µ0). Hence in this case classification boils down to a comparison
between x and a threshold.
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Figure 16.2: Two normal distributions scaled by their prior probabilities; p = 0.1
and 0.5, µ0 = 0, µ1 = 2, σ1 = σ0 = 1

16.3 The decision boundary

Likelihood ratio classification can be translated into the following “rule”:

If x is in the set R1 = {x :
PC|X (1|x)
PC|X (0|x) > 1} choose C = 1

else choose C = 0.

The set R1 is called the decision region for class 1, and its complement, denoted
by R0 is the decision region for 0. The boundary between R0 and R1 is the
decision boundary.

For two classes, the above can usually be summarized in the rule

If φ(x) > 0 choose class 1, else choose class 0.

In this case the curve φ(x) = 0 is the decision boundary.

A classifier (i.e a program that classifies the x’s) is anything that specifies the
decision regions for each class, whether it uses a probability model or not. In
the following sections we shall see some examples of classifiers that are based
on decision regions rather than on probability models for the classes.

If we don’t need probability to construct a classifier, why even mention them
together? As it turns out, we do need probability in order to analyze classifiers:
for example to predict its average error, or how many examples we need in
order to learn it accurately. Probability and statistics also provide methods
for learning a classifier from examples and for choosing between two classifiers.
Last but not least, probabilistic methods often lead us to classification methods
that might not have been invented otherwise. Such classifiers are among the
best performing classifiers in existence.
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16.4 The linear classifier

The linear classifier takes as input a vector of real numbers x. A zero-one valued
variable can be also viewed as a real number. The decision rule is

If

bTx =

m∑

i=1

bixi > γ (16.17)

choose C = 1 else choose 0. Here b is an m dimensional vector of
real numbers and γ is a real number; b, γ are the parameters of the
classifier.

In terms of the decision function φ(x) a linear classfier is a classifier for which
φ(x) is linear (plus a constant).

For example, the likelihood ratio classifier for two normal distributions seen in
the previous handout is a linear classifier. Indeed, the decision rule for that
classifier is

If

x > γ =
µ1 + µ0

2
− σ2

µ1 − µ0
log

p

1− p (16.18)

choose class 1 else class 0.

In this case
φ(x) = x− γ (16.19)

The same is true if x = [x1 x2]
T a two-dimensional vector and PX|C are normal

densities with means µc, c = 0, 1 (two-dimensional vectors) and equal covariance
matrices Σ0 = Σ1 = Σ. As before, the prior probability of class 1 is p. Denote

D = Σ−1 (16.20)

Then

φ(x) = logPC|X(1|x) − logPC|X(0|x) (16.21)

= −1

2
(x− µ1)

TD(x− µ1)− log p+
1

2
(x− µ0)

TD(x− µ0) + log(1− p)

=
1

2

[
−xTDx+ 2µT1Dx− µT1Dµ1 − log p

+xTDx− 2µT0Dx+ µT0Dµ0 + log(1− p)
]

(16.22)

= (µ1 − µ0)
TD

︸ ︷︷ ︸

bT

x− 1

2

[

µT1 Dµ1 − µT0 Dµ0 + log
p

1− p

]

︸ ︷︷ ︸

γ

(16.23)
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Figure 16.3: Linear classification for two normal distributions with equal co-
variance matrices. In case a σx = σy = 1, ρ = 0, µ0 = [−1 − 1], µ1 = [1 1];
in case b σx = 1, σy = 0.3, ρ = 0, µ0 = [−1 − 1], µ1 = [1 1] and the decision
boundary is not perpendicular to the line connecting the class means.

For example, if Σ is the unit matrix, meaning that σx1 = σx2 = 1, ρx1x2 = 0
then D is also the unit matrix. Then the above decision function simplifies to

φ(x) = (µ1 − µ0)
Tx− 1

2

[

||µ1||2 − ||µ0||2 + log
p

1− p

]

(16.24)

where ||a|| is the length of vector a. This function is a line perpendicular to the
line connecting the two means µ0, µ1. The line is closer to µ1 if p is small, closer
to µ0 otherwise and in the middle of the segment if p = 0.5. (Can you prove
this?)

In general, for m-dimensional input x, if both classes have normal distributions
the decision rule will be linear.

16.5 The classification confidence

If our classifier is obtained from a likelihood ratio, the decision function φ(x) is

φ(x) = log
PC|X(1|x)
PC|X(0|x) (16.25)

Hence, if φ(x) is close to 0, then the confidence in our classification is low, since
the corresponding PC|X is close to 0.5. If φ(x) is positive or negative with a large
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magnitude, then the confidence in the chosen class is high. We can interpret
φ(x) as a confidence even if it wasn’t explicitly obtained from a likelihood ratio.

16.6 Quadratic classifiers

A quadratic classifier is a classifier for which φ(x) is a polynomial of degree 2.
For example, for x in 1 dimension

φ(x) = x2 − bx+ c (16.26)

is a quadratic classifier. Can you show that this classifier is obtained when the
two classes have normal distributions with same µ and different σ2?

In two dimensions, a quadratic classifier is

φ(x) = a1x
2
1 + a2x

2
2 + a12x1x2 + b1x1 + b2x2 + c (16.27)

The curve φ(x) = 0 is a quadratic curve – ellipse, parabola or hyperbola, de-
pending on the values of the parameters.

In m dimensions, the quadratic classifier is

φ(x) =

m∑

i=1

aix
2
i +

m∑

i=1

m∑

j=i+1

aijxixj +

m∑

i=1

bixi + c (16.28)

In a similar way, one can obtain classifiers from polynomials of higher degrees.
More generally any function φ(x) depending on some set of parameters θ corre-
sponds to a classifier for x. These are called parametric classifiers. Of course the
problem is what are the correct parameters for a given classifier and this is usu-
ally solved by learning (that is estimating) the best parameters from examples,
as we shall see shortly.

16.7 Learning classifiers

Classification has strong ties to learning from data, since for the vast majority
of classification tasks, the “classification rule” is not known, or is to long and
complicated to implement. Take for example the digit recognition task; a human
can do a good job on this task, meaning that (s)he has a fairly accurate decision
rule. Implementing this rule, however, is an entirely different story and in
practice it is easier (although not easy!) to derive a classification rule from
examples than to have an “expert” write one.

Learning a classifier from examples is done in two stages: First, one decides on
the type of classifier to be used (e.g linear, quadratic, likelihood ratio, decision
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tree, etc); this is calles selecting a model class. The model class is chosen based
on knowledge about the problem and on the amount of data available. Next, the
parameters for the model are estimated using the data. Parameter estimation
is often called learning or training.

16.8 Learning the parameters of a linear classi-
fier

Usually for this problem the inputs are vectors of real numbers (or integers)
having dimension m. The data set (or training set) consists of n examples and
their classes

D = {(x(1), c(1)), . . . (x(n), c(n))} (16.29)

By this notation, x
(i)
j is the coordinate j of the i-th example and c(i) is its class.

When estimating the parameters of a linear binary classifier, it is sometimes
practical to consider the class as taking values in {+1,−1} instead of {0, 1}.
This will make the forthcoming mathematical expressions more compact and
easy to read without changing the basic problem.

A linear classifier is defined by

If φ(x) > 0 choose class 1, else choose class −1.

φ(x) =
m∑

j=1

bjxj + γ (16.30)

where (b1, . . . bm, γ) are the classifier’s parameters.

The problem is to estimate these parameters from the data and for this purpose
we use the Maximum Likelihood (ML) approach. To obtain a probability model
from φ(x) we use (16.25) and the fact that PC|X(1|x) + PC|X(0|x) = 1. We
obtain

PC|X(1|x) =
1

1 + e−φ(x)

∆
= σ(φ(x)) (16.31)

and

PC|X(−1|x) = 1− 1

1 + e−φ(x)
(16.32)

=
e−φ(x)

1 + e−φ(x)
(16.33)

=
1

1 + eφ(x)
(16.34)

= σ(−φ(x)) (16.35)
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Figure 16.4: Examples of handwritten digits. The images of the digits were
rotated and scaled to fit in a square. (They are also right-left reflected but this
is an artefact caused by the way the image was generated.)

We can summarize the last two equations into

PC|X(c|x) =
1

1 + e−cφ(x)

∆
= σ(cφ(x)) (16.36)

In the next section we shall use the following property of the sigmoid function
σ:

σ′(u) = σ(u)(1 − σ(u)) (16.37)

This property can be proved directly by taking the derivative of 1
1+e−u .

16.8.1 Maximizing the likelihood

We define the likelihood of the data as

L(b1, . . . bm, γ) =

n∏

i=1

PC|X(c(i)|x(i), b1, . . . bm, γ) (16.38)

and the log-likelihood

l(b1, . . . bm, γ) =

n∑

i=1

logPC|X(c(i)|x(i), b1, . . . bm, γ) (16.39)

=

n∑

i=1

log σ(c(i)φ(x(i))) (16.40)



16.9. ML ESTIMATION FOR QUADRATIC AND POLYNOMIAL CLASSIFIERS187

This expression cannot be maximized analytically. To find the optimal param-
eters we use gradient ascent. Let us compute the expression of the gradient of
l w.r.t the parameters.

∂l

∂bj
=

n∑

i=1

∂ log σ(c(i)φ(x(i)))

∂bj
(16.41)

=
n∑

i=1

∂σ(c(i)φ(x(i)))

∂bj

/

σ(c(i)φ(x(i))) (16.42)

=
n∑

i=1

σ(c(i)φ(x(i)))(1 − σ(c(i)φ(x(i)))) · c(i)x(i)
j

σ(c(i)φ(x(i)))
(16.43)

=

n∑

i=1

(1 − σ(c(i)φ(x(i)))) · c(i)x(i)
j (16.44)

Similarly, we obtain

∂l

∂γ
=

n∑

i=1

(1− σ(c(i)φ(x(i)))) · c(i) (16.45)

A word about the computational complexity of this optimization. Note
that all the partial derivatives involve the factor (1−σ(c(i)φ(x(i)))). Computing
it once requires m + 1 multiplications (and an exponentiation), rougtly O(m)
operations. We have to compute this term for every data point, which requires
O(mn) operations. The additional multiplications to obtain the gradient once
we have the values of the sigmoids are also O(mn) hence one step of the gradient
ascent takes O(mn) operations. Note that this is the same order of magnitude
as classifying all the points in the data set.

Unlike the previous gradient ascent problem that we have encountered, this
problem generally has local optima. It means that the solution we obtain may
depend on the initial point of the iteration. It is wise in such cases to repeat
the ascent several times starting from different point to increase the chance of
obtaining a good solution.

16.9 ML estimation for quadratic and polyno-

mial classifiers

The quadratic classifier is defined by

φ(x) =

m∑

j=1

ajx
2
j +

m∑

k=1

m∑

j=k+1

akjxkxj +

m∑

j=1

bjxj + γ (16.46)
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and its parameters are (aj , j = 1, . . . m, akj k = 1, . . . m j = k+1, . . . m, bj j =
1, . . . m, γ).

Following the same steps that led to (16.44) we obtain

∂l

∂aj
=

n∑

i=1

(1− σ(c(i)φ(x(i)))) · c(i)x(i)
j

2 (16.47)

∂l

∂akj
=

n∑

i=1

(1− σ(c(i)φ(x(i)))) · c(i)x(i)
k x

(i)
j (16.48)

∂l

∂bj
=

n∑

i=1

(1− σ(c(i)φ(x(i)))) · c(i)x(i)
j (16.49)

∂l

∂γ
=

n∑

i=1

(1− σ(c(i)φ(x(i)))) · c(i) (16.50)

The number of computations is proportional to the number of parameters times
the number of data points.

The procedure generalizes readily to decision functions φ(x) that are polynomial
or in general linear in the parameters, i.e

φ(x) =
∑

j

θjgj(x) (16.51)

16.10 Non-parametric classifiers

16.10.1 The Nearest-Neighbor (NN) classifier

The NN classifier uses the following classification rule:

To classify point x find the point in the dataset D that is nearest
to x and assign its class to x. Let this point be x(i). Then, c(x) =
c(x(i)) = c(i).

Nearest neighbor classification eliminates the decision on the model class. It
also eliminates learning altogether. On the other hand, you need to keep the
dataset around in order to classify subsequent data. The method has low bias
– it can represent any decision surface, given enough data. But the variance is
rather high. A popular method to reduce variance is the k-NN method. The
k-NN method classifies a point x the following way:

Find the k points in the data set that are closest to x. Choose the
class of x to be the class of the majority of the k neighbors.
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In practice k is small (usually 3, 5). Both NN and k-NN can be applied to
multi-class problems as well.

The most important draw-back of NN methods in general is not the variance
but the dependence of the distance function. If the data are scaled, the results
of the classification change as well. Moreover, if there are inputs xj that have
no relevance for the class, then the results of the NN method become very poor.
This is often the case with very high dimensional inputs.
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Chapter 17

Clustering

17.1 What is clustering?

Clustering is the task of grouping observations into categories. It is the first
step in data analysis. Figure 17.1 shows an example of data where 3 groups are
visible.

Clustering problems occur very often in the real world and in computer appli-
cations. Here are just a few examples:

• In a newspaper, the article topics are grouped into sections like politics,
sports, buisness, etc. If we were to do the grouping starting from a collec-
tion of mixed articles we would be “clustering” the articles.

• Foods can be clustered into breads, cereal, fruit, vegetables, meats, sweets,
etc. Some of the categories, or clusters can be further subdivided (for
example meats can be grouped into fish, poultry, beef, lamb, etc.)

• An airline groups its passengers into buisness and leisure travellers and
offers distinctive fares, discounts and other incentives to the two groups.
Of course, the airline does not ask the passengers to identify themselves
as “buisness” or “leisure”; it has to realize what cluster the passenger falls
into based solely on the characteristics of the passenger that it can observe
(for example: that the trip starts on a Friday evening, travel with a child,
etc.).

• Image segmentation means finding the groups of pixels in an image
that correspond to the same object. In other words, a computer receives
an images represented as a matrix of pixels and it has to group together

191
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Figure 17.1: A set of points that can be partitioned into 3 clusters. The crosses
represent the clusters’ centers of mass.

the pixels corresponding to the same object (or object part). Image seg-
mentation is performed naturally by us people, but it is a very difficult
task for a computer. In fact, the problem has not been solved satisfactorily
to date.

Note that in this task, the computer is not told in advance what the
objects would be; it does not even know how many objects ( = clusters of
pixels) there are. This is a fundamental characteric of clustering, which
contributes to making it a difficult task.

• Gene clustering. The analysis of DNA has identified large numbers
of genes in humans and other living species, but for most of them the
functionality is yet unknown. One method that scientists use is to cluster
the genes (looking at characteristics like: the gene structure, or behaviour
in certain experiments). After clustering, if in one cluster fall some genes
who function is already known, we may reasonably guess that the other
genes in the cluster may be involved in similar processes. In this task,
unlike in image segmentation, neigher humans, no computers know the
“right” clustering. Again, it is not known in advance how many clusters
there are, or what each of them might represent.

17.2 The K-means algorithm

The K-means algorithm is one of the simplest algorithms for clustering. It
assumes that the clusters are spherical; in other words, every cluster has a
center, and points belonging to the cluster are near that center. The centers
are represented as crosses superimposed on the data set of figure 17.1.
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To run the algorithm we need to know the number of clusters K. The algorithm
starts with assinging the K centers random positions. Then it finds the data
points that are nearest to each center. With this as an initial clustering, it
can find better positions for the centers, i.e exaclty at the center of mass of
each cluster. With the new centers a new clustering is found, and so on. The
algorithm is given below in pseudocode: Ck denotes the set of points assigned
to cluster k; for a data point i, clust(i) is a number between 1 and K that
represents the cluster that point i belongs to.

Algorithm K-Means

Input {x1, x2, . . . xn} the data points
K the number of clusters

Output clust(i) for i = 1, . . . n
c1, c2, . . . cK the positions of the K centers

Initialize c1, c2, . . . cK with random values
Do

fori = 1, . . . n
find k such that ||xi − ck|| ≤ ||xi − ck′ || for all k′ = 1, . . . K
clust(i) ← k

for k = 1, . . .K
Ck = {xi, clust(i) = k}
ck = 1

|Ck|
∑

i∈Ck
xi

until clust(i), i = 1, . . . n remain unchanged

A succesful run of the algorithm is depicted in figure 17.2.

Computations per iteration. An algorithm that arrives at the result by
gradually improving the current solution in a loop, is called an iterative al-
gorithm. The sequence of operations in the loop form an iteration. In each
iteration, the algorithm has to compute the distance of every data point xi to
all the centers. This takes Kn distance computations, or O(Knd) elementary
operations, if the data lie in d dimensions. Recomputing the centers takes a
number of operations equal to the number of data points n. Therefore, the
total number of operations required for one iteration of the K-means algorithm
is O(Knd).

Convergence. Note that, if none of the cluster assignments changes between
two consecutive steps of the algorithm, then neither the cluster assignments
or the cluster centers will change in the future. We say that the algorithm
has converged. For the K-means algorithm, convergence always occurs after a
finite number of iterations, but we cannot know in advance how many iterations
it will take.

Local optima. If the initial conditions change, the result of the K-means



194 CHAPTER 17. CLUSTERING

−2 −1 0 1 2 3 4
3

4

5

6

7

8

9

10

11

12

Figure 17.2: The K-means algorithm on the 3 clusters data. The triangles
represent the trajectories of the 3 centers from their initial values to the final
ones.
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Figure 17.3: An unsuccessful run of the K-means algorithm. The initial values
of the centers are such that the algorithm converges to a local optimum where
one of the centers is assigned no points.
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algorithm may be different. This happens because the algorithm works by
improving the current solution; starting in a very defavorable configuration
may lead to a bad clustering. An example of this behavior is shown in figure
17.3. We say that the K-means algorithm finds local optima of the clustering
problem.

17.3 The confusion matrix

Sometimes we want to compare two clusterings of the same data set. For exam-
ple, when we are given the correct solution, we want to see how well K-means
(or another algorithm) has performed on the data, for the purpose of testing
the algorithm. To compare two clusterings (with possibly different number of
clusters) we use the confusion matrix.

Let the two clusterings have K, respectively K ′ clusters and be described by
clust(i), respectively clust′(i) for i = 1, . . . n. Define the set Akk′ to contain the
points that belong to cluster k in the first clustering and to cluster k′ in the
second clustering

Akk′ = {xi, clust(i) = k, clust′(i) = k′} = Ck ∩C′
k′ (17.1)

The confusion matrix A has K rows and K ′ colums. An element akk′ of A
represents the number of points in Akk′ .

akk′ = |Akk′ | (17.2)

If the two clusterings are identical, then each row or column of A will contain
exactly one non-zero element. The position k, k′ of the non-zero element indi-
cates the mapping between the two clusterings: for example if a13 is a non-zero
element of A, it means that C1 ∼ C′

3. If the two clusterings are not identical
but are very similar, then A will have some large elements (that indicate the
mapping between the two clusterings) and some small elements for the data
points on which the two clusterings don’t agree. The more different the two
clusterings are, the more blurred the difference between the “large” and “small”
elements of the confusion matrix.

Example The table below shows two possible clusterings of a set of 10 points.

point i 1 2 3 4 5 6 7 8 9 10
clust(i) 1 1 1 2 2 3 3 3 3 3
clust(i) 3 3 3 1 2 2 2 2 1 1

The confusion matrix correspoding to the two clusterings is
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C′
1 C′

2 C′
3

C1 0 0 3 3
C2 1 1 0 2
C3 2 3 0 5

3 4 3

In this example, there perfect correspondence between two clusters (C1 = C′
3)

which is reflected in row 1 and column 3 of the confusion matrix. The corre-
spondence between the remaining two clusters of each clustering is very weak,
which is reflected in the block A2:3,1:2 of the confusion matrix.

17.4 Mixtures: A statistical view of clustering

17.4.1 Limitations of the K-means algorithm

The K-means algorithm is simple to understand and implement, but has some
serious limitations. For example, the K-means algorithm may fail to find the
correct clustering when

• the clusters have different sizes

• the clusters are not spherical, but have elongated (and possibly different)
shapes

• the data is rescaled, so that clusters that were previously round become
elongated

Another problem is finding the correct number of clusters K, which the algo-
rithm requires as an input. In this context note that clustering data has a
subjective component: figure 17.4 shows a three different possibilities of clus-
tering the same data set.

The clustering method that will be presented now, although similar to K-means,
is much more flexible, allowing for clusters of arbitrary shape or elongation. It
is also rooted in probability, which will provide us eventually with additional
insights.
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Figure 17.4: Clustering data depends on the problem. Does this data set contain
many circular clusters (a), two elliptical clusters (b), or just one cluster?

17.4.2 Mixture models

A mixture of Gaussians is a probability density given by

f(x) =

K∑

k=1

λkfk(x) (17.3)

where

• fk(x) are normal (Gaussian) densities with parameters µk, σ
2
k called the

mixture components

• λk ≥ 0 are real numbers satisfying
∑K
k=1 λk = 1 called mixture coeffi-

cients

Figure 17.5 depicts a mixture of Gaussians and its components. Here we assume
for simplicity that the data x are one dimensional but the model and algorithm
can be generalized for any number of dimensions.

Intuitively, adopting a mixture (of Gaussians) model reflects the assumption
that there areK sources that generate data independently (these are the f1, f2, . . . fK).
The probability that an arbitrary data point is generated by fk is λk. Thus,
(λ1, . . . λK) describe a discrete distribution over the sources. A new data
point is generated in two steps: first, the source fk is picked randomly from
f1, f2, . . . fK according to the probability given by (λ1, . . . λK); second, the
data point x is sampled from the chosen fk. We observe x but we do not observe
k, the index of the source that generated x. Because k is unobserved, it is called
a hidden variable.
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Figure 17.5: A mixture of normal distributions (full line) and its components
(dotted line). The mixture components parameters are µ1 = 0, σ2

1 = 1, µ2 =
5, σ2

2 = 3, µ3 = 10, σ2
3 = 1. The mixture coefficients are λ1 = 0.4, λ2 =

0.4, λ3 = 0.2.

One can rewrite f(x) so as to exhibit the two-step data generation model:

f(x) =
K∑

k=1

P (k)f(x | k) (17.4)

where of course

P (k) = λk for k = 1, . . . K (17.5)

f(x|k) = fk(x) (17.6)

In this probabilistic framework, the clustering problem can be translated as
follows. Finding the clusters is equivalent to estimating the densities of the K
data sources f1, . . . fK . Assigning the data to the clusters means recovering the
values of the hidden variable k for each data point.

17.5 The EM algorithm

The Expectation-Maximization (EM) algorithm solves the clustering prob-
lem as a Maximum Likelihood estimation problem. It takes as input the data
D = {x1, x2, . . . xn} and the number of clusters K, and it outputs the model
parameters Θ = {λ1, . . . λK , µ1, . . . µK , σ

2
1 , . . . σ

2
K} and the posterior proba-

bilities of the clusters for each data point γi(k), for i = 1, . . . n, k = 1, . . . K.

For any given set of model parameters Θ, we compute the probability P (k|xi)
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that observation xi was generated by the k-th source fk using Bayes formula

P (k|xi) =
P (k)f(xi|k)

∑K
k′=1 P (k′)f(xi|k′)

=
λkfk(xi)

∑K
k′=1 λk′fk′(xi)

= γi(k) (17.7)

The values γi(k), k = 1, . . .K sum to 1. They are called the partial assign-
ments of point xi to the K clusters.

Algorithm Expectation-Maximization

Input {x1, x2, . . . xn} the data points
K the number of clusters

Outputγi(k) for i = 1, . . . n, k = 1, . . . K
µk, σ

2
k for k = 1, . . . K the parameters of the K mixture components

λk for k = 1, . . . K the mixture coefficients

Initialize µk, σ
2
k, λk for k = 1, . . . K with random values

Do
E step
fori = 1, . . . n

γi(k) = λkfk(xi)
PK

k′=1
λk′fk′ (xi)

for k = 1, . . . K

M step
for k = 1, . . . K
nk =

∑n
i=1 γi(k)

λk = nk

n
µk = 1

nk

∑n
i=1 γi(k)xi

σ2
k = 1

nk

∑n
i=1 γi(k)(xi − µk)2

until convergence

It can be proved that the EM algorithm converges. The parameters Θ obtained
at convergence represent a local maximum of the likelihood L(Θ).

The complexity of each iteration is O(Kn).
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Figure 17.6: The results of the EM algorithm on a data set of size 300 sampled
from the mixture distribution in figure 17.5. The top plot shows the estimated
density (full) and the true density (dotted). The next three plots show the
partial assignments to the clusters for each point in the data set (row 2 is γ1,
row 3 is γ2, and row 4 is γ3). Note that the points lieing between two clusters
are have non-zero probabilities of belonging to each of the two clusters.
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Figure 17.7: The convergence of the 3 cluster centers µ1, µ2, µ3 from the initial
values to the final ones for the data and EM algorithm illustrated in figure 17.6.


