Lecture Notes III: Discrete probability in practice – Small Probabilities

Marina Meilă mmp@stat.washington.edu

> Department of Statistics University of Washington

> > April, 2022

The problem with estimating small probabilities

Definitions and setup

Additive methods (Laplace, Dirichlet, Bayesian, ELE)

Discounting (Ney-Essen)

Multiplicative smoothing: Estimating the next outcome (Witten-Bell, Good-Turing)

Back-off or shrinkage – mixing with simpler models

The problem with estimating small probabilities

Definitions and setup

We will look at estimating categorical distributions from samples, when the number of outcomes m is large.

- ▶ Let $S = \{1, ... m\}$ be the sample space, and $P = (\theta_1, ... \theta_m)$ a distribution over S.
- We draw n independent samples from P, obtaining the data set \mathcal{D}
- ▶ Define the counts $\{n_j = \#j \text{ appears in } \mathcal{D}, i = 1, \dots n\}$. The counts are also called sufficient statistics or histogram.
- ▶ Define the fingerprint (or histogram of histogram) of \mathcal{D} as the counts of the counts, i.e $\{r_k = \#\text{counts } n_j = k, \text{ for } k = 0, 1, 2 \dots\}$ Example m = 26 alphabet letters

```
Data
                              Counts n:
                                                                      Fingerprint r_k
                              n_i = 0:a,b,g,j,l,m,n,
                                                                     m = 12 = |\{a,b,g,\ldots,v,z\}|
                                                                      r_1 = 12 = |\{c,d,f,h,\ldots,u,x\}|
                              p,v,w,y,z
the red fox is quick
                              n_i = 1:c,d,f,h,k,o,q,r,s,t,u,x
                                                                    r_2 = 2 = |\{e,i\}|
n = 16 letters
                              n_i = 2 : e, i
                                                                      r_3 = \dots r_n = 0
                                                               m = 26 - 6 - 1 - 1 - 1 = 17
                              n_i = 0: a,b,c...,x,z
                                                            r_1 = 6 = |\{f, i, n, r, t, w\}|
                              n_i = 1 : f, i, n, r, t, w
                                                                      r_2 = 1 = |\{s\}|
ho ho who s on first
                              n_i = 2 : s
n = 15 letters
                              n_i = 3 : h
                                                                      r_3 = 1 = |\{h\}|
                              n_i = 4:0
                                                                      r_4 = 1 = |\{0\}|
```

▶ It is easy to verify that $n_j \in 0: n$, hence $r_{0:n}$ may be non-zero (but $r_{n+1,n+2,...} = 0$), and that

$$m = r_0 + r_1 + \dots r_n$$
 $n = 0 \times r_0 + 1 \times r_1 + \dots k \times r_k + \dots$ (1)

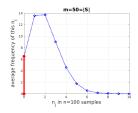
Smoothing on an example

- ▶ the counts $\{n_j = \#j \text{ appears in } \mathcal{D}, i = 1, ...n\}$ (or sufficient statistics or histogram)
- ▶ fingerprint (or histogram of histogram) of \mathcal{D} as the counts of the counts $\{r_k = \#\text{counts } n_j = k, \text{ for } k = 0, 1, 2 \dots \}$, and $R_k = \{j, n_i = k, \}$

Example m = 26 alphabet letters

Data $\begin{array}{c} \text{Counts } n_i \\ n_j = 0 : \text{a,b,g,j,l,m,n}, \\ n_i = 16 \text{ letters} \end{array}$ $\begin{array}{c} \text{Fingerprint } r_k \\ n_j = 0 : \text{a,b,g,j,l,m,n}, \\ n_j = 0 : \text{a,b,g,l,m,n}, \\ n_j = 0 : \text{a,b,g,l$

The problem with small probabilities and large m



- when θ_i is small n must be very large to be able to observe i w.h.p.
- \blacktriangleright when m is large most θ_i are small
- ▶ Hence, in a sample of size n, many outcomes j may have $n_j = 0$, that is will not appear at all.
- ▶ type k $R_k = \{j \in S, n_i = k\}$ is the subset of outcomes in S that appear k times in D
- Why are types important?
 - ▶ Because $\theta_j^{ML} = n_j/n$, all $i \in \text{type } k$ will have the same estimated value $\theta_j^{ML} = k/n$.
 - ▶ If $j,j' \in R_k$, no matter what correction method you use, there is no reason to distinguish between θ_j and $\theta_{j'}$. Hence $\theta_j = \theta_{j'}$ whenever $j,j' \in R_k$
 - Let $p_k = Pr[R_k]$. We have $p_k = r_k \theta_j$ for any $j \in R_k$.

Additive methods

- ▶ Idea: assume we have seen one more example of each value in S
- Algorithm: add 1 to each count and renormalize.

$$\theta_j^{Laplace} = \frac{n_j + 1}{n + m} \quad \text{for } i = 1 : m$$
 (2)

Can be used also with another value, $n_j^0 < 1$, in place of 1. Then, it is called **Bayesian mean smoothing** or **Dirichlet smothing** or **ELE**¹ Can be derived from Bayesian estimation, with the Dirichlet prior. In particular, we can take $n^0 = 1$, $n_i^0 = \frac{1}{m}$.

$$\theta_j^{\text{Bayes}} = \frac{n_j + n_j^0}{n + n_0} \text{ for } i = 1 : m$$
 (3)

The "fictitious sample size" $n^0 = \sum_{j=1}^m n_j^0$ reflects the strength of our belief about the θ_j 's; if we choose all $n_j \propto \frac{1}{m}$, we say that we have an *uninformative prior*,

¹In natural language processing.

Problems with aditive smoothing

- Reduces all estimates in the same proportion
- ▶ Does not distinguish between spread and concentrated distributions.
- ► "Naive" method DON'T USE IT

Ney-Essen discounting – tax and redistribute

ightharpoonup Let r= the number of distinct values observed

$$r = m - r_0$$

- ► Idea
 - substract an amount $\delta > 0$ from every n_i that "can afford it"
 - redistribute the total amount equally to all counts.
- This simple method works surprisingly well in practice.
- Algorithm

$$D = \sum_{i} \min(n_{j}, \delta) \quad \text{total substracted}$$
 (4)

$$n_j^{NE} = n_j - \min(n_j, \delta) + D/m$$
 redistribute (5)

$$\theta_j^{NE} = \frac{n_j^{NE}}{n}$$
 normalize (6)

Typically $\delta=1$

Properties of NE smoothing

Flexibility

- Note $D \leq \delta r$, redistributed mass $\frac{D}{m} \leq \delta \frac{r}{m}$
- \blacktriangleright For m large and r small
 - (probability mass is concentrated on a few values)
- ightharpoonup D small \Rightarrow unobserved outcomes receive little probability
- ► For *m* large and *r* large
 - ▶ $D \approx m \text{ (large)} \Rightarrow \text{unobserved outcomes get } n^{NE} \approx \delta \text{ (almost 1)}$
- For $\delta=1$ treats outcomes with $n_j=1$ and $n_j=0$ the same Intuition: any outcome i with $n_j<\delta$ is a rare outcome and should be treated in the same way, no matter how many observations it actually has.

Witten-Bell discounting – probability of a new value

Idea:

- ▶ Look at the sequence $(x_1, ... x_n)$ as a binary process: either we observe a value of X that was observed before, or we observe a new one.
- Assume that of m possible values r were observed (and m-r unobserved)
- ► Then the probability of observing a new value is $p_0 = \frac{r}{n}$.
- ▶ Hence, set the probability of all unseen values of X to p_0 . The other probability estimates are renormalized accordingly.

$$\theta_j^{WB} = \begin{cases} \frac{n_j}{n} \frac{1}{1+\rho_0} = \frac{n_j}{n+r} & n_j > 0\\ \frac{1}{m-r} \frac{\rho_0}{1+\rho_0} = \frac{1}{m-r} \frac{r}{n+r} & n_j = 0 \end{cases}$$
 (7)

Witten-Bell makes sense only when some n_j counts are zero. If all $n_j > 0$ then W-B smoothing has undefined results.

WB smoothing has no parameter to choose (GOOD!)

Good-Turing – Predicting the type of the next outcome

- ▶ This method has many versions (you will see why). Powerful for large data sets.
- ► First Idea
 - Remember $r_k = \#\{j, n_j = k\}$ the counts of the counts. Naturally, $n = \sum_{k=1}^{\infty} k r_k$.
 - Outcome *i* is of type *k* if $n_j = k$. GT uses the data to estimate the probability of type *k*

$$p_k = \frac{kr_k}{n} \quad \text{for } k = 1:n \tag{8}$$

- **Second Idea** is to use the probabilities $p_1, \dots p_k \dots$ to predict the **next** outcome
 - For example, what's the probability of seeing a new value? It must be equal to p_1 , because this observation will have count $n_i = 1$ once it is observed.
 - ightharpoonup Similarly, the probability of observing a type k outcome must be about p_{k+1} .
- ▶ Third There are r_k outcomes j in type k, hence the probability mass for each of these is $1/r_k$ of p_{k+1} which leads to (11).
- Algorithm

if
$$n_j = k$$
 $\theta_j^{GT} = \frac{p_{k+1}}{r_k} = \frac{(k+1)r_{k+1}}{nr_k} \stackrel{\text{def}}{=} \frac{n_k^{GT}}{n}$ with $n_j^{GT} = \frac{(k+1)r_{k+1}}{r_k}$ (9)

In particular if $n_j = 0$

$$\theta_j^{GT} = \frac{\rho_1}{r_0} \tag{10}$$

- ightharpoonup Remark GT transfers the probability mass of type k+1 to type k
- ▶ This implies that

$$n_j^{GT} r_k = (k+1)r_{k+1} \text{ if } n_j = k$$
 (11)

Problems with Good-Turing

- ▶ When k is large, r_k is small and noisy.
 - Example The word "Jimmy" appears $n_{Jimmy} = 8196$ times in a corpus. But there may be no word that appears 8197 times. Then, $\theta_{Jimmy}^{GT} = 0$!
- ▶ Remedy: "smooth" the r_k values, i.e use (an estimate of) $E[r_k]$
 - Many proposals exist
 - A simple one is to is to use Good-Turing only for type 0, and to rescale the other θ^{ML} estimates down to ensure normalization.

$$\theta_j^{GT} = \begin{cases} \frac{p_1}{r_0} = \frac{r_1}{nr_0} & \text{if } n_j = 0\\ \theta_j^{ML} \left(1 - \frac{r_1}{n} \right) & \text{if } n_j > 0 \end{cases}$$
 (12)

Comparison of the methods

Numerical values to exemplify the results: n = 1000, m = 1000, r = 100

Count n _j	U	1	$n_j\gg 1$
θ_i^{ML}	0	$\frac{1}{n} = \frac{1}{1000}$	$\frac{n_j}{1000}$
θ ^{Laplace} i	$\frac{1}{n+m} = \frac{1}{2000}$	$\frac{\frac{2}{n+m}}{\frac{1}{1000}}$	$\frac{n_j+1}{n+m} = \frac{n_j+1}{2000}$
$\theta_j^{Bayes},\ n^0=1,\ n_j^0=rac{1}{m}$	$\frac{1}{m(n+1)} \approx \frac{1}{10^6}$	$\frac{1+1/m}{n+1} pprox \frac{1}{10^3}$	$\frac{n_j+1/m}{n+1} \approx \frac{n_j}{1000}$
$\theta_{j}^{NE},\delta=1$	$\frac{r}{mn} = \frac{1}{10^4}$	$\frac{r}{mn} = \frac{1}{10^4}$	$\frac{n_j-1+r/m}{n} \approx \frac{n_j}{1000}$
θ ^{WB} j	$\frac{1}{m-r}\frac{r}{n+r}=\frac{1}{9900}$	$\frac{1}{n+r} = \frac{1}{1100}$	$\frac{n_j}{n+r} = \frac{n_j}{1100}$

Remarks

- Laplace shrinks ML estimates of large probabilities by factor of 2. Too much! (because large θ_i^{ML} are close to their true values)
- **\triangleright** Bayes (with uninformative prior) affects large θ_i^{ML} much less than small ones. Good
- Ney-Essen smooths more when r is larger; any n_i is affected by less than δ .
- Ney-Essen estimates of θ^{NE} for counts of 0 and 1 are equal to a fraction of $\frac{r}{m}$ (this grows with n as r grows with n).
- ▶ In Witten-Bell, the large θ_i^{ML} are shrunk depending on r, but independently of m. Proportional, bad
- \blacktriangleright ...but, if we overestimate m grossly, the overestimation will only affect the θ_i^{WB} for the 0 counts, but none of the θ_i^{WB} for the values observed. (true for NE as well).

Back-off or shrinkage - mixing with simpler models

(T B Written)

Ultimate test: which method is best?



Predict new data