Lecture VIII: Classic and Modern Data Clustering — Part |
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Paradigms for clustering

Parametric clustering algorithms (K given)
Cost based / hard clustering

Basic algorithms
K-means clustering and the quadratic distortion
Model based / soft clustering

Issues in parametric clustering
Selecting K

Reading: 14.3Ch 11.[1], 11.2.1-3, 11.3, Ch 25



What is clustering? Problem and Notation

» Informal definition Clustering = Finding groups in data

> Notation D = {xi1, x2, ... xn} a data set

n = number of data points

K = number of clusters (K << n)

A = {G,G,...,Ck} a partition of D into disjoint subsets

k(i) = the label of point i
L(A) = cost (loss) of A (to be minimized)
»> Second informal definition Clustering = given n data points, separate them into K
clusters

» Hard vs. soft clusterings

» Hard clustering A: an item belongs to only 1 cluster
. i=1:
» Soft clustering v = {7k }i'k
Yk = the degree of membership of point i to cluster k

Z’yk,- =1 forall/
Kk

(usually associated with a probabilistic model)
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Paradigms

Depend on type of data, type of clustering, type of cost (probabilistic or not), and constraints
(about K, shape of clusters)

> Data = vectors {x;} in RY
Parametric Cost based [hard]
(K known) Model based [soft]

Non-parametric  Dirichlet process mixtures [soft]
(K determined Information bottleneck [soft]
by algorithm) Modes of distribution [hard]
Gaussian blurring mean shift[?] [hard]
» Data = similarities between pairs of points [Sj]i j—1:n, Sjj = Sji > 0
Similarity based clustering
Graph partitioning spectral clustering [hard, K fixed, cost based]
typical cuts [hard non-parametric, cost based]
Affinity propagation  [hard/soft non-parametric]
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Classification vs Clustering

Classification Clustering
Cost (or Loss) £ Expectd error many! (probabilistic or not)
Supervised Unsupervised
Generalization Performance on new Performance on current
data is what matters data is what matters
K Known Unknown
“Goal” Prediction Exploration Lots of data to explore!
Stage Mature Still young

of field
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Parametric clustering algorithms

» Cost based
» Single linkage (min spanning tree)
» Min diameter
P Fastest first traversal (HS initialization)

» K-medians
» K-means

»> Model based (cost is derived from likelihood)
» EM algorithm
» “Computer science” /" Probably correct” algorithms
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Single Linkage Clustering

Algorithm Single-Linkage

Input Data D = {x;};=1.,, number clusters K
1. Construct the Minimum Spanning Tree (MST) of D
2. Delete the largest K — 1 edges

> Cost L(A) = —miny ;s distance(Cy, Cxr)
where distance(A, B) = argmin ||x — y||
x€A, yeB

» Running time O(n?) one of the very few costs £ that can be optimized in polynomial time
» Sensitive to outliers!
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Minimum diameter clustering

May, 2022

» Cost L(A) = max, max ||x; — x|
ij€Ck

diameter
» Mimimize the diameter of the clusters
P Optimizing this cost is NP-hard
> Algorithms
» Fastest First Traversal [?] — a factor 2 approximation for the min cost
For every D, FFT produces a A so that
L < L(A) < 2L

P rediscovered many times
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Algorithm Fastest First Traversal
Input Data D = {x;};=1.,, number clusters K
defines centers uy.x € D

(many other clustering algorithms use centers)

1. pick p1 at random from D
2. fork=2:K

pk < argmax distance(x;, {p1:k—1})
D

3. for i = 1: n (assign points to centers)
k(i) = k if py is the nearest center to x;



K-medians clustering

May, 2022

> Cost L(A) = >, 327 € Cyllxi — pl| with pye € D
» (usually) assumes centers chosen from the data points (analogy to median)
Exercise Show that in 1D argmin >, |xi — i is the median of {x;}
"

P optimizing this cost is NP-hard

P has attracted a lot of interest in theoretical CS (general from called “Facility location”
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Integer Programming Formulation of K-medians
> Define dj = ||x;i — x|,
ujj = 1 iff point i in cluster with center x; (0 otherwise),

yj = 1 iff point j is cluster center (0 otherwise)

N
a
S
&

3

5
b3

min Zij du ujj
uy
s.t. ZJ- uj = point 7 is in exactly 1 cluster for all i

Zj y; < k  there are at most k clusters
uj <y point i can only belong to a center forall/, j

Linear Programming Relaxation of K-medians

> Define djj, y; = 1, ujj as before, but y;, uj; € [0, 1]

(LP) wyin Xy euy
g st Djuj =1
ijf < k

uj <y

STAT 391 GoodNote: Lecture VIII: Cla:




Algorithm K-Medians (variant of [?])
Input Data D = {x;};=1.,, number clusters K
1. Solve (LP)
obtain fractionary “centers” yi., and “assignments” ui.p 1.5
2. Sample K centers pj ... uk by
» P[ux = pointj] o y; (without replacement)

May, 2022

3. Assign points to centers (deterministically)

k(i) = argmin [lx; — jul|

» Guarantees (Agarwal)
> Given tolerance ¢, confidence §, K’ = K(1+ 1)In &, A,/ obtained by K-medians with K’
centers
L(Dgr) < (L+e)L”
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K-means clustering

Algorithm K-Means|?]

Input Data D = {x;};=1.,, number clusters K

ialize centers py, o, ... ux € RY at random
erate until convergence
1. for i = 1: n (assign points to clusters = new clustering)

k(i) = argmin ||x; — pu|

2. for k = 1: K (recalculate centers)

1
MKk = =7 Z Xj
|Gl ieCy

» Convergence
P if A doesn't change at iteration m it will never change after that
> convergence in finite number of steps to local optimum of cost £ (defined next)
P therefore, initialization will matter
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The K-means cost

K
L) = > Ik — il 2

k=1i€Cy

P> K-means solves a least-squares problem
» the cost L is called quadratic distortion

Proposition The K-means algorithm decreases £(A) at every step.

Sketch of proof

> step 1: reassigning the labels can only decrease £
> step 2: reassigning the centers py can only decrease £
because p as given by (1) is the solution to

2
= min 37 I —ul 3)
i€Cy
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Equivalent and similar cost functions
» The distortion can also be expressed using intracluster distances
£(B) Z - > Ik —xl? )
i,j€Cx
> Correlation clustering is defined as optimizing the related criterion
K
2
=2 > lx—xll
k=1ijECk
» This cost is equivalent to the (negative) sum of (squared) intercluster distances
K
= — Z Z Z [|x; — xj||? + constant (5)
k=1i€Cy j&Cx

Proof of (6) Replace px as expressed in (1) in the expression of £, then rearrange the terms

Proof of (5) 3=, Z,‘chk [Ixi — XjH2 = Z Z [Ix — XJH -2k Zigck ngck [Ixi — XJHZ

i=1 j=1

N ——
independent of A



The K-means cost in matrix form — the assignment matrix

May, 2022

» [ as sum of squared intracluster distances

K
o) = 3 3 = xlf ©)
k=1 1=kl ;

| i,Jj€Ck

>

» Define the assignment matrix associated with A by Z(A)
Let A ={C ={1,2,3}, & = {4,5}}

Cl C2 G G
1 0 1/vV3 0
unnorm¢ Ay _ | 10 _ 1/vV3 0
Z(A) = | 1 o | point i 28 =143 o
0 1 0 1//2
0 1 0 1/V2

Then Z is an orthogonal matrix (columns are orthornormal) and
L(A) = traceZ"TDZ  with Dy = ||x; — x;||? (7)
Let Z = {Z € R™K K orthonormal }

Proof of (7) Start from (2) and note that trace Z'AZ = 3, >ijec, LndAi = X jec, ﬁAij
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The K-means cost in matrix form — the co-ocurrence matrix

May, 2022

n=5 A=(1,1,1,2,2), X(A) =

O O wl-wl-wl-
O O wlI-wWI-WI-
O O wl-wl-wl-
NI O O O
NI O O O

[y

. X(A) is symmetric, positive definite, > 0 elements
. X(A) has row sums equal to 1
3. trace X(A) = K

N

IX(A)2 = (X,X) = K
X(A) = Z(A)Z7(A)

K

=3 sl = S0ox@)

ijeCy

with Dj = ||x; —><j||2
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Spectral and convex relaxations

May, 2022

1
L(A) — (D, X(A) D squared distance matrix €

X (X eR™" X >=0,X; >0, traceX = K, X1 =1

nXK K orthonormal

Spectral relaxation of the K-means problem

min trace ZT DZ
ZeZ
This is solved by an eigendecomposition Z* = top K eigenvectors of D

Convex relaxation of the K-means problem

in (D, X
)rggg((,>

This is a Semi-Definite Program (SDP)
Minimizing £
» By K-means — clustering A, local optima
> By convex/spectral relaxation — matrix Z, X, global optimum
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Symmetries between costs

May, 2022

> K-means cost £(A) = miny, >y Yiec, |Ixi — pul?
> K-medians cost L(A) = minu, . 3¢ D iec, |1xi — pll

» Correlation clustering cost L(A) = >, Zi,jeck

> min Diameter cost £L2(A) = max, max; jec, |Ixi — X2

Ixi = xlI?
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Initialization of the centroids p1.x

May, 2022

» Idea 1: start with K points at random
P Idea 2: start with K data points at random
What's wrong with chosing K data points at random?

Prob[ K out of K]

s
08
08
07
06
05 o
0.4
03
02 L
0.1 ‘o

o
B n
o 2 4 6 8 10

The probability of hitting all K clusters with K samples approaches 0 when K > 5
> Idea 3: start with K data points using Fastest First Traversal [] (greedy simple approach
to spread out centers)
» ldea 4: k-means++ [] (randomized, theoretically backed approach to spread out centers)
> Idea 5: “K-logK"” Initialization (start with enough centers to hit all clusters, then prune
down to K)
For EM Algorithm [], for K-means [?]
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The “K-logK" initialization

May, 2022

The K-logK Initialization (see also [?])
1. pick pd ., at random from data set, where K’ = O(K log K)
(this assures that each cluster has at least 1 center w.h.p)
2. run 1 step of K-means
3. remove all centers ,LL(,)( that have few points, e.g |Cy| < e—,’%,
4. from the remaining centers select K centers by Fastest First Traversal
4.1 pick p1 at random from the remaining {ug:K,}

42 for k =2: K, pug < argronax minj_1.,_1 ||u2, — ]|, i.e next py is furthest away from the
F‘k/
already chosen centers

5. continue with the standard K-means algorithm
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The “kmeans+-+" initialization

[y

vyVYVYYVYY

. pick w1 uniformly at random from the data
Cfork=2:K,

P Define a distribution over data xj., by

. 2
Pi(x) o min | [xi — wll
» Sample px ~ Py (i.e next p is probabilistically far away from the already chosen centers

Comparison between FFT, K-logK, kmeans++

all three methods can be seen as variants of FFT

FFT alone tends to choose outliers

K-logK and kmeans++ can be seen as robust forms of FFT

K-logK guarantees w.h.p. that no outliers will be chosen (by elimnating all small clusters)
the most expensive step in K-logK method is the first K-means step, which takes

nK log(K) distance computations

the computational cost of kmeans++ is (K — 1)n distance computations and Knlog(n)
for sampling from Pj.x



May, 2022
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K-means clustering with K-logK Initialization

Example using a mixture of 7 Normal distributions with 100 outliers sampled uniformly

K-LocK K =7, T =100, n=1100, c =1

4
iteration

40 40 40
30 30 B35
20 20 g
5 30
M
10 10[
25|
0 0
-1 -1 0
=0 0 10 20 30 40 50 60 =0 0 10 2 30 40 50 60
40
30|
20|
10
0
“-i0 0 10 20 30

4 6
iteration



Coresets approach to K-medians and K-means

May, 2022

> A weighted subset of D is a (K, ¢) coreset iff for any u.x,
[L(p1:k,A) — L(p1:k; D)| < eL(p1:4; D)

Note that the size of A is not K
Finding a coreset (fast) lets use find fast algorithms for clustering a large D

vy

P “fast” = linear in n, exponential in e 9, polynomial in K
» Theorem(?], Theorem 5.7
One can compute an (1 + €)-approximate K-median of a set of n points in time
O(n+ K®log® n+ gK? log® n) where g = el€/¢ log(1+1/¢)]~ (where d is the dimension of the
data)
» Theorem[?],Theorem 6.5

One can compute an (1 + ¢)-approximate K-means of a set of n points in time
O(n+ K®log® n + KK+2g=(2d+1) |ogK+1 ogh é)
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Model based clustering: Mixture models

May, 2022

Mixture in 1D
» The mixture density
K
0 Fx) = > mefi(x)
0.14] k:1
o > fi(x) = the components of the mixture
o P each is a density
o » f called mixture of Gaussians if f, = Normal,,, 5,
a0s » 7, = the mixing proportions,
oo Zklewkzl, 7, > 0.
5 : m i > model parameters 6 = (71.x, p1:K, L1:K)
» The degree of membership of point i to cluster k
Tk e (x
'YkidéfP[X,'ECk] = %())forizl:n,kzlzK
Mixture in 2D x (8)

» depends on x; and on the model parameters
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Criterion for clustering: Max likelihood

May, 2022

\4

denote 0 = (m1.x, p1:k, X1:x) (the parameters of the mixture model)
Define likelihood P[D|0] = T]7, f(xi)
Typically, we use the log likelihood

10) = ] [f() = D > mefi(xi) (9)
i=1 i=1 k

vy

denote oML = arg(rgnaxl(e)

OML determines a soft clustering v by (8)
a soft clustering v determines a 6 (see later)
Therefore we can write

L) = —1(6(7))

vyvyvy v
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Algorithms for model-based clustering

May, 2022

Maximize the (log-)likelihood w.r.t 0

» directly - (e.g by gradient ascent in 6)
» by the EM algorithm (very popular!)
» indirectly, w.h.p. by "computer science” algorithms

w.h.p = with high probability (over data sets)
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The Expectation-Maximization (EM) Algorithm

May, 2022

Algorithm Expectation-Maximization (EM)
Input Data D = {x;};=1.,, number clusters K

ialize parameters m1.x € R, p1.x € R, L. € R at random?
erate until convergence

E step (Optimize clustering) fori=1:n, k=1: K

o kak(x)
Yki F(x)
M step (Optimize parameters) set [, = 3.7 ; i, k = 1: K (number of points in cluster k)
Mk
T = —, k=1:K
n
N
Hk T i

Py (6 — ) (6 — )"

> =
k e

> 1.k, U1K, X1:k are the maximizers of [c(6) in (13)
> 2Tk =mn
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15, need to be symmetric, positive definite matrices
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The EM Algorithm — Motivation

» Define the indicator variables

(1 ifieG
Zk =10 ifig G

denote z = {zj ;'(::11::"}(

» Define the complete log-likelihood

n K
1(0,2) = D> zig Inmifi(x)

i=1 k=1

> Elzi] = vii
» Then

n K
D> Elzllinm +Infi(xi)]

i=1 k=1

n K n K
DD im0 D i Infi(xi)]

i=1 k=1 i=1 k=1

E[l(0,2)]

(10)

(11)

(12)

(13)



» If & known, ~y4; can be obtained by (8)
(Expectation)

» If 4 known, Ty, uk, Xk can be obtained by separately maximizing the terms of E[lc]
(Maximization)

May, 2022
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Brief analysis of EM

vVvyVvVYYVYY

n

K
QRO = D > wilnmufi(x)
1 k=1 h’—’

i=

each step of EM increases Q(0,~)

Q converges to a local maximum

at every local maxi of Q, 6 < ~ are fixed point
Q(0*,~*) local max for Q = /(6*) local max for /(6)
under certain regularity conditions § — ML [7]

the E and M steps can be seen as projections [?]

Exact maximization in M step is not essential.
Sufficient to increase Q.
This is called Generalized EM



Probablistic alternate projection view of EM[?]

May, 2022

» let z; = which gaussian generated i? (random variable), X = (x1.n), Z = (z1:n)
» Redefine Q . .
Q(P,0) = L(6) — KL(P|[P(Z]X,0)
where P(X, Z|0) =TT, 1, Plzi = k]P[xi|6k]
B(Z) is any distribution over Z,

KL(P(W)I|Q(w)) = X, P(w) In G the Kullbach-Leibler divergence

Then,
> Estep maxs Q & KL(P||P(Z|X,6)
> M step maxg Q & KL(P(X|Z, GOM)HP(XW))

> Interpretation: KL is “distance”, “shortest distance” = projection
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The M step in special cases

May, 2022

» Note that the expressions for px, Xy = expressions for p, > in the normal distribution,
with data points x; weighted by ?—i’
M step
general case Y=, ?—:"(x,- — )i — )T
Y, =% Y o X SRy i =) =) T
n
“same shape & size" clusters
S il i — el
T = oy o & SRR
“round” clusters
K 2
_ 2 2 Sog P vhillXi— gl
Y = o°ly o° ! d

“round, same size" clusters

Exercise Prove the formulas above
» Note also that K-means is EM with X, = 02ly, 02 — 0 Exercise Prove it
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More special cases [?] introduce the following description for a covariance matrice in terms of volume, shape, alignment with axes (=determinant, trace,
e-vectors). The letters below mean: I=unitary (shape, axes), E=equal (for all k), V=unequal

Ell: equal volume, round shape (spherical covariance)

VII: varying volume, round shape (spherical covariance)

EEl: equal volume, equal shape, axis parallel orientation (diagonal covariance)
VEI: varying volume, equal shape, axis parallel orientation (diagonal covariance)
EVI: equal volume, varying shape, axis parallel orientation (diagonal covariance)
VVI: varying volume, varying shape, equal orientation (diagonal covariance)
EEE: equal volume, equal shape, equal orientation (ellipsoidal covariance)

EEV: equal volume, equal shape, varying orientation (ellipsoidal covariance)
VEV: varying volume, equal shape, varying orientation (ellipsoidal covariance)
VVV: varying volume, varying shape, varying orientation (ellipsoidal covariance)
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EM versus K-means

> Alternates between cluster assignments and parameter estimation
» Cluster assignments ~yy; are probabilistic
» Cluster parametrization more flexible

15

» Converges to local optimum of log-likelihood
Initialization recommended by K-logK method []

» Modern algorithms with guarantees (for e.g. mixtures of Gaussians)
» Random projections
» Projection on principal subspace [?]
» Two step EM (=K-logK initialization 4+ one more EM iteration) []



" Computer science” algorithms for mixture models

May, 2022

» Assume clusters well-separated (S)
> eg [l — ll 2 Cmax(ox, 01)
» with o} = max eigenvalue(Xy)

» true distribution is mixture

» of Gaussians
» of log-concave f;'s (i.e. Infy is concave function)

» then, w.h.p. (n, K,d, C)
» we can label all data points correctly
» = we can find good estimate for 6
Even with (S) this is not an easy task in high dimensions
Because fi (k) — 0 in high dimensions (i.e there are few points from Gaussian k near pux)
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The Vempala-Wang algorithm|[?]

Idea
Let # = span(u.x)
Projecting data on H
» =~ preserves ||x; — x;j|| if k(i) # k(j)
» =~ reduces ||x; — x;|| if k(i) = k(j)
P density at iy increases

(Proved by Vempala & Wang, 2004[?]) H ~ K-th principal subspace of data

Algorithm Vempala-Wang (sketch)
1. Project points {x;} € R on K — 1-th principal subspace = {y;} € R¥
2. do distance-based " harvesting” of clusters in {y;}



Other "CS" algorithms

May, 2022

» [?] round, equal sized Gaussian, random projection
» [?] arbitrary shaped Gaussian, distances
» [?] log-concave, principal subspace projection

Example Theorem (Achlioptas & McSherry, 2005) If data come from K Gaussians,
n>> K(d + log K) /7 min, and

[k — will > 4ok\/1/mk + 1/ + 4ok /K log nK + K2

then, w.h.p. 1 —§(d, K, n), their algorithm finds true labels
Good

» theoretical guarantees

» no local optima
> suggest heuritics for EM K-means

» project data on principal subspace (when d >> K)
But

> strong assuptions: large separation (unrealistic), concentration of f's (or fi known), K
known
> try to find perfect solution (too ambitious)
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A fundamental result

The Johnson-Lindenstrauss Lemma For any ¢ € (0,1] and any integer n, let d’ be a positive
integer such that d’ > 4(¢2/2 —£3/3)~ Inn. Then for any set D of n points in RY, there is a

map f : RY — R4 such that for all u,vevV,
(1= )llu—vI? <If(u) = FW)II? < (L +e)lJu—v|[? (14)

Furthermore, this map can be found in randomized polynomial time.

> note that the embedding dimension d’ does not depend on the original dimension d, but
depends on n, €

» [?] show that: the mapping f is linear and that w.p. 1 — % a random projection (rescaled)
has this property

P their proof is elementary Projecting a fixed vector v on a a random subspace is the same as projecting a random vector v on a
fixed subspace. Assume v = [vq, ... vg] with v ~ i.i.d. and let ¥ = projection of v on axes 1 : d’. Then

’
E[l9]12 = d’ E[vjz] = %EH |v||2]. The next step is to show that the variance of ||#] |2 is very small when d’ is sufficiently large.
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A two-step EM algorithm [?]

ow A WN

eorem

Assumes K spherical gaussians, separatlon [|ufue — pyre > CVdoy

. Pick K’ = O(K In K) centers 119 at random from the data
. Set crgzgmin,#k/H,uk pl |2, 7 =1/K’

Run one E step and one M step :> {wk,uk,ai}k:hw

) _ Hl‘k Nk/H
O'}(*O'l

Compute “distances” d(,uk,uk,
k/

. Prune all clusters with 7rk <1/4K’
. Run Fastest First Traversal with distances d(ui,ui,) to select K of the remaining centers.

Set m} = 1/K.

. Run one E step and one M step —> {ﬂ'i,ui,o’i}k:LK

For any 8,& > 0 if d large, n large enough, separation C > d'/4 the Two step EM
algorithm obtains centers p so that

Il = 1| < ||lmean(C{™®) — || + eoxVd



Experimental exploration [?]

May, 2022

»> High d

> True model: centers uj at corners of hypercube, X} = oly spherical equal covariances,
e =1/K

» n, K, separation variable

» Algorithm: EM with Power initialization and projection on (K — 1)-th principal subspace
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STAT 391 GoodNote: Lecture VIII: Cla:

Experimental exploration [?] (2)

k=16 d=512 sep=4.0

a  “fair” EM

label error

1= EM from true centers
Max likelihood (fair or not)

True centers

Difference between likelihood of “fair”
EM runs and EM from true centers

2 run attaining max likelihood

0
sl LS
&
B A A
L Ed Bls
g:“ EAA’Q*LA%
&
2,0 b
DI
10°

figures from [?]




Experimental exploration [?] (3)
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k=16 d=1024 sep=6c

012l 22 & “fair’ EM
o)
ol mot'u%wm’hAAAM = EM from true centers

8005 AAAAAA 0 Max likelihood (fair or not)

o +  True cen

50.06]

2

S04 1

0.02]
0100, & & 300 1000
5" aalut sample size Difference between likelihood of “fair”

- o Ls A% EM runs and EM from true centers
E E' 3 At
| g 2 MAAA&A 2 run attaining max likelihood
= I I sy ]
3 S 9 & e
2 A
E - (Y 1
s 22 L E
= 100 300 1000 3000
] sample size
5
2 & “fair" EM
2 k=8 ¢=128 sep=3.0 = EM from true centers
i Max likelihood (fair or not)
S N +  True centers

g

s L
s k
© 2
£ &
g
4
d [ t t
2 asa " I -
3 - Difference between likelihood of “fair”
8 L2188 & EM runs and EM from true centers

£ “aie
= jas
g g W fam - o
o g 1 il &  run attaining max likelihood
s,
A Yotne s
T




Experimental exploration [?] (4)

May, 2022

P Practical limits vs theoretical limits

Dasgupta |s > 0.5d% n= Q(klﬂg2 18) Random projection,
1999 then mode finding
Dagupta | s=0(d%) n = poly(k) 2 round EM with
Schulamn O(klogk) centers

8 1000 2000 (large d) (klogk)

2 Arora s =Q(d*log d) Distance based

£ Kannan

§ 2001

E o — yvempala s=0Q(k*log dk) |n= Spectral projection,

o FomprErene an i

informational limit 20049 Q(d*klog(dk/s8)) then distances
i 1o % General mixture of Gaussians:
k [Kannan Salmasian Vempala 2005] s=Q(k%2log(kd)), n=Q(k2d-log®(d))
n o k' — k18 for all d, separation [Achliopts McSherry 2005] s>4k+o(k), n=Q(k2d)

figures from [?]
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Selecting K

May, 2022

» Run clustering algorithm for K = Kpin : Kmax
> obtain Ak .. Dkmay OF YKoins -+ - VRmax
» choose best Ak (or k) from among them

» Typically increasing K = cost L decreases

» (L cannot be used to select K)
» Need to "penalize” £ with function of number parameters

5}
g
5
[=]
k]
3
b3

H
g
&
=
S

[
S

A
3
3

]
H
]

H

8
o
=
3
3
il
<
E
&




May, 2022

[s]
g
5
[=]
k]
3
s
H
g
&
[s]
S
[
S
A
3
3
]
H
]
H
8
o
=
3
3
il
<
E
&

Selecting K for mixture models

The BIC (Bayesian Information) Criterion

> let Ok = parameters for yx
> let #60x=number independent parameters in Ok
» e.g for mixture of Gaussians with full X,'s in d dimensions

Ok =K —1+ Kd +Kd(d —1)/2
#0k ( )/
1K H1:K 1Kk

» define

#0k
2

BIC(GK) = /(0;()— Inn

» Select K that maximizes BIC(0k)
P selects true K for n — 0O and other technical conditions (e.g parameters in compact set)
> but theoretically not justified (and overpenalizing) for finite n
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Number of Clusters vs. BIC Eil (A), Vil (B), EEI (C), VEI (D),

EVI (E), WVI (F), EEE (G), EEV (H), VEV (1), VWV (J)

38000
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—41000

—42000

number of clusters

(from [7])
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Number of Clusters vs. BIC Eil (A), Vil (B), EEI (C), VEI (D),

EEV, 8 Cluster Solution
EVI (E), WVI (F), EEE (G), EEV (H), VEV (I), VWV (J)

E 2
g
]
2
g
7 e |
]
o
N x
2
<
S
71 o
S
g |
g
T T T T T T T T T
2 4 3 8 10 12 0.0 0.2 0.4 0.6
number of clusters x1

(from [7])
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