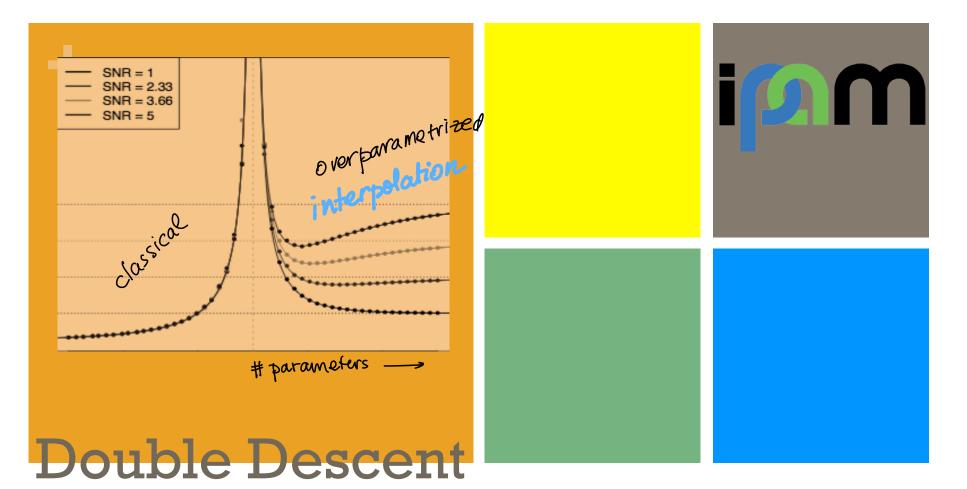


5/23/23

Lecture 17 chis miles Participation

Regression - double descent Logisfic regression

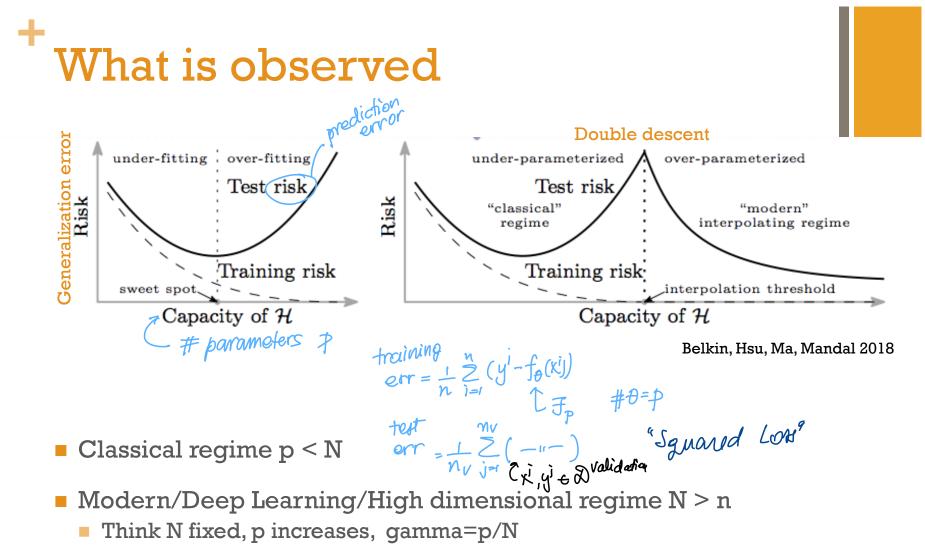
HWG toposfed due Friday 6/1 Optional All HW t.b. graded on Friday 6/1 Exam week Exam reviews SR t.b scheduled MAR



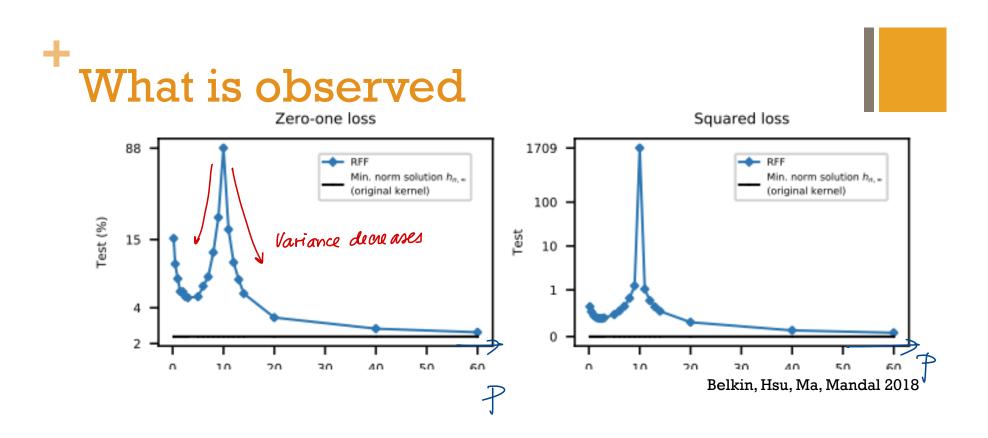
STAT 535+LPL2019

Beyond the Bias-Variance trade-off

Marina Meila University of Washington



- Training error = 0 (interpolation)
- Test error decreases with p (or gamma)

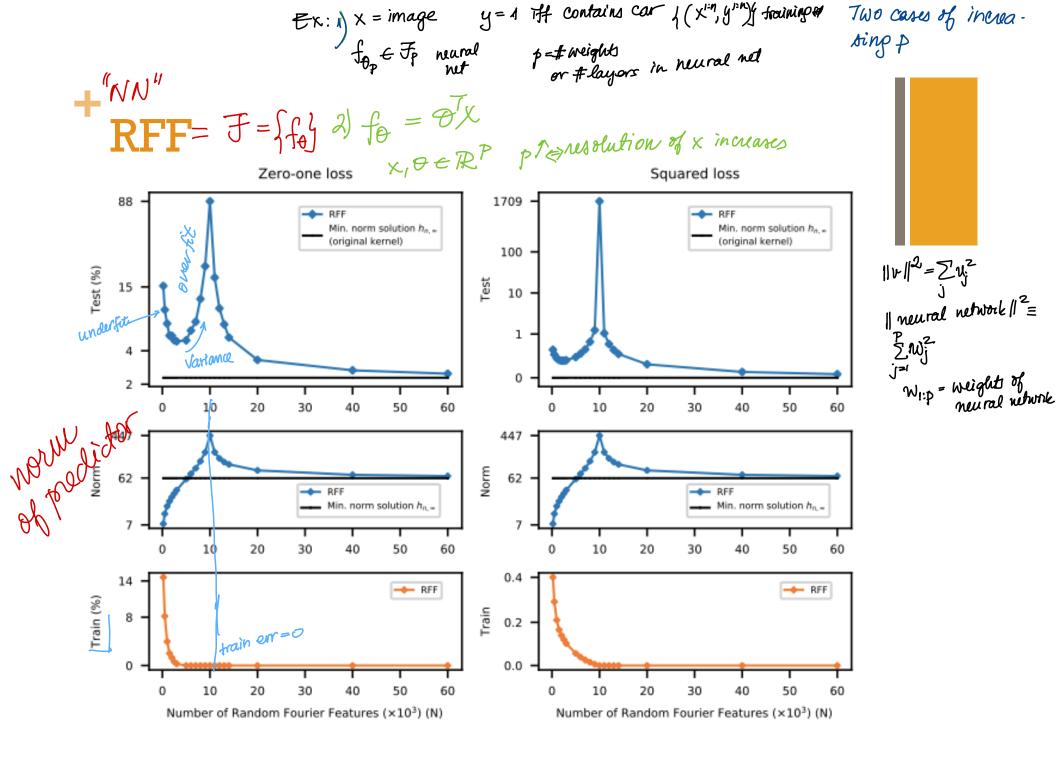


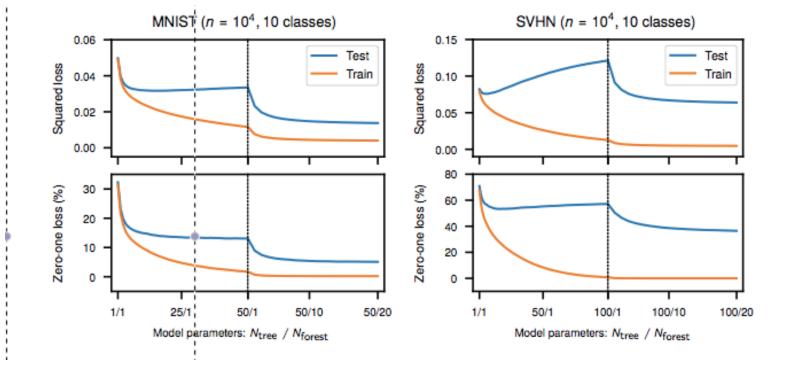
Double descent curves for the generalization error

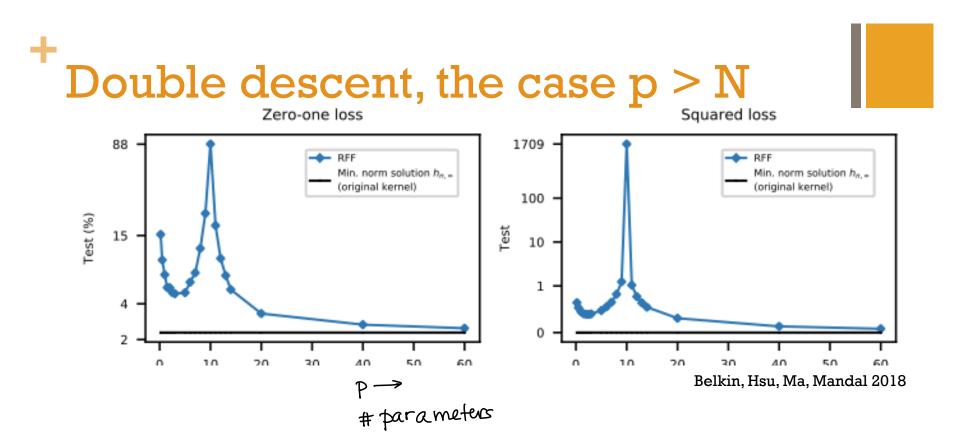
- Random Fourier Features (RFF) SVM
- ReLU 2 layer networks (with random first layer weights)
- Random Forests, 12-Adaboost
- Linear regression

bserved for many classes of predictors

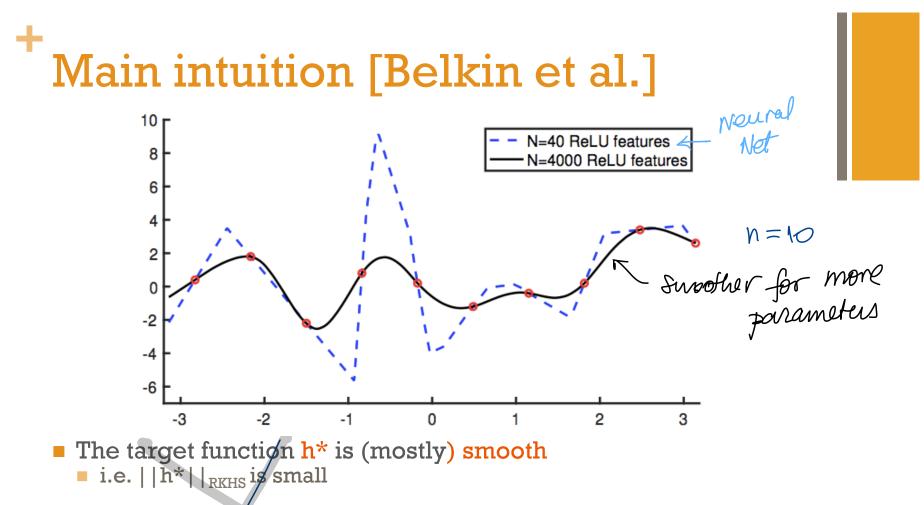
With and without noise



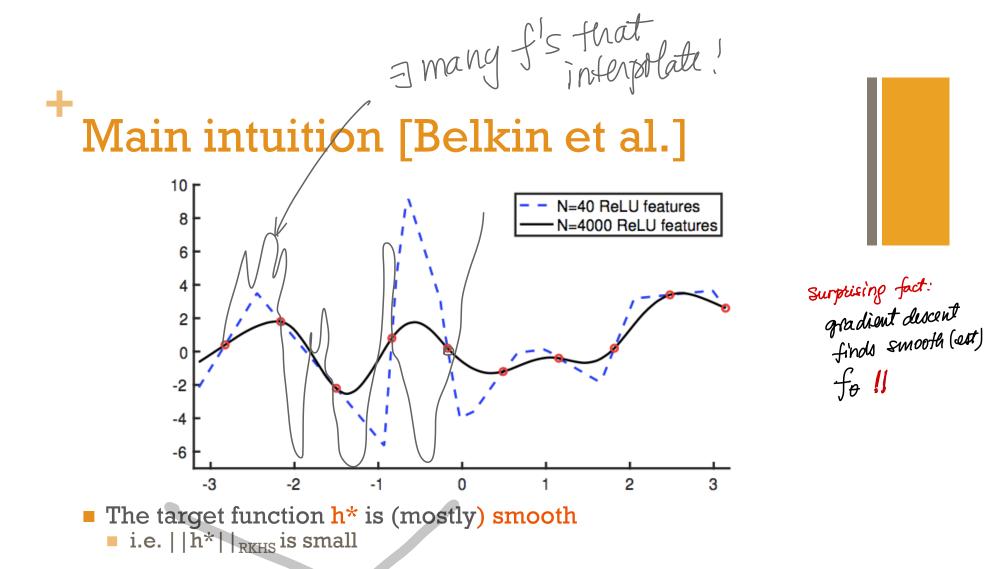




- Model y = <phi(x), beta >
- Large N (cover a compact data domain)
- Features random
- Min-norm solution beta*



- p > N, no noise, hence h_p interpolates data
- Train to minimize | |h_p| | subject to 0 training error
- Then ||h_p/| will decrease with p!



- p > N, no noise, hence h_p interpolates data
- Train to minimize | |h_p| | subject to 0 training error
- Then ||h_p|| will decrease with p!

Line ar requision
True nodel
$$y = (\beta^*)^T x + z$$
 $\Rightarrow g^i = (\beta^*)^T x^i + z^i \quad i = t:n$
 $True nodel $y = (\beta^*)^T x + z$ $\Rightarrow g^i = (\beta^*)^T x^i + z^i \quad i = t:n$
 $n < d x_1\beta_1\beta^* \in \mathbb{R}^d$
 $y = x_\beta \text{ has } \Rightarrow f = (x^i, y^i)^2 i = t:n$
 $y = x_\beta \text{ has } \Rightarrow f = (x^i, y^i)^2 x^i y$
 $x^T x \in \mathbb{R}^d x^d \text{ with rank } n < d \text{ contrative order}$
 $b = gradient ducent helead$
 $min - l(\beta) = min \sum_{i=1}^{n} (y^i - \beta^* x^i)^2$
Exercise
 $-\frac{2l}{2\beta} = 2(x^T x \beta - x^T y)$
 $\frac{2l}{2\beta} - [\frac{3l}{2\beta_i}]_{j=1:d}$
 $d = \frac{2}{2\beta_i} x^i + \frac{2}{\beta_i} x^i$$

Properties of
$$\beta$$

 $\frac{1}{2}$ $Y = X \beta$ interpolation
 $\frac{1}{2}$ $Y = X \beta$ interpolation
 $\frac{1}{2}$ $\frac{1}{$

dogistic Regression used for: Classification XERq parametrization y ∈ 10,13 "Label" $\mathcal{D} = \mathcal{Q}(X^{i}, Y^{i})^{i=1:n} \mathcal{J}$ meaning Model $f(x) = ln \frac{P_{y|x}(y=1|x)}{P_{y|x}(y=0|x)} = \beta \overline{x}$ BERd odds t(0,00) $\log odds \in (-\infty,\infty)$ Classification with $f = \beta^T \times (\beta k nown)$ $\hat{y} = sign f(x) + 1 \iff f(x) > 0 \iff P(y=1|x) > P(y=0|x)$ Probabilistic classifier L 4-1 Ŷ=0 ß linear classifier (=) decision boundary Linear

•
$$R_{y|x}[y=1|x] = p$$

 $f = ln \frac{p}{1-p} = ln \frac{R_{y|x}(y=1|x)}{R_{y|x}(y=0|x)} \Rightarrow e^{f} = \frac{p}{1-p} \Rightarrow p = \frac{e^{f}}{1+e^{f}}e^{(p_{1})}$
 $P = \frac{1}{1+e^{f}}$
 $P = \frac{1}{1+e^{f}$

 $l(p) = \sum_{i=1}^{n} \left[y^{i} \beta^{T} x^{i} - ln \left(1 + e^{\beta^{T} x^{i}} \right) \right]$ Gradient $\frac{\partial \ell}{\partial \beta} \in \mathbb{R}^d$ $\frac{\partial \ell}{\partial \beta_j} = \frac{\partial \ell}{\partial f} \cdot \frac{\partial f}{\partial \beta_j}$