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Paradigms for clustering e—

Parametric clustering algorithms (K given)
Cost based / hard clustering b’
K-means clustering and the quadratic distortion e-
Model based / soft clustering b

Issues in parametric cIusterin%‘ °
Selecting K

Reading: Ch. 18
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What is clustering? Problem and Notation

» Informal definition Clustering = Finding groups in data

> Notation D = {xi1, x2, ... xp} a data set

n = number of data points

K = number of clusters (K << n)

A = {G,G,...,Ck} a partition of D into disjoint subsets

k(i) = the label of point i
L(A) = cost (loss) of A (to be minimized)
»> Second informal definition Clustering = given n data points, separate them into K
clusters

» Hard vs. soft clusterings
» Hard clustering A: an iter_'nlbelongs to only 1 cluster
» Soft clustering v = {7k }i 'k
Yk = the degree of membership of point i to cluster k

Z’yk,- =1 foralli/
Kk

(usually associated with a probabilistic model)
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Paradigms

Depend on type of data, type of clustering, type of cost (probabilistic or not), and constraints
(about K, shape of clusters)
> Data = vectors {x;} in RY
—_
Parametric Cost based [hard] = K-wmeans

(K known)” Model based | soft]e Mioture madils <« XéC-é V\Ow[y?-
atly

Non-parametric  Dirichlet process mixtures [soft]
(K determined Information bottleneck Tsoft]
by algorithm) Modes of distribution [hard]
Gaussian blurring mean shift [hard]
» Data = similarities between pairs of points [Sj]i j—1.n, Sj = Sji > 0 Similarity based
clustering

Graph partitioning spectral clustering [hard, K fixed, cost based)]

typical cuts [hard non-parametric, cost based]
Affinity propagation  [hard/soft non-parametric]

« Simlar ?am:(i in Jamd

ﬁ?ﬁ; Syandeds,




Parametric clustering algorithms

» Cost based
» Single linkage (min spanning tree)
» Min diameter
P Fastest first traversal (HS initialization)

» K-medians
» K-means
»> Model based (cost is derived from likelihood)
» EM algorithm
P “Computer science” /" Probably correct” algorithms
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[Supplement: Single Linkage Clustering]

Algorithm Single-Linkage

Input Data D = {x;};=1.,, number clusters K
1. Construct the Minimum Spanning Tree (MST) of D
2. Delete the largest K — 1 edges

> Cost L(A) = —miny ;s distance(Cy, Cyr)
where distance(A, B) = argmin ||x — y||
x€A, yeB

» Running time O(n?) one of the very few costs £ that can be optimized in polynomial time
» Sensitive to outliers!
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[Supplement: Single Linkage Clustering]

Height

Observations




[Supplement: Minimum diameter clustering]
> Cost L(A) = max, max ||x; — x|
ij€Ck

diameter
» Mimimize the diameter of the clusters
P Optimizing this cost is NP-hard
> Algorithms
P Fastest First Traversal — a factor 2 approximation for the min cost
For every D, FFT produces a A so that
L7 < L(A) < 2L

P rediscovered many times




[Supplement: Minimum diameter clustering]

Algorithm Fastest First Traversal
Input Data D = {x;};=1.,, number clusters K
defines centers py.x € D

(many other clustering algorithms use centers)

1. pick p1 at random from D
2. for k=2:K

i < argmax distance(x;, {p1:k—1})
D

3. for i =1: n (assign points to centers)
k(i) = k if py is the nearest center to x;




[Supplement: K-medians clustering]

> Cost L(A) = >, >0 i € Cyllxi — pl| with pye € D
» (usually) assumes centers chosen from the data points (analogy to median)
Exercise Show that in 1D argmin >, |xi — | is the median of {x;}
"

P optimizing this cost is NP-hard

P has attracted a lot of interest in theoretical CS (general from called “Facility location’




K-means clustering

Algorithm K-Means

Input Data D = {x;};=1.,, number clusters K

L V=
ialize «centers ji1, 112, .. . ux € R9 at random
erate until convergence —_——

1. for i = 1: n (assign points to clusters = new clustering)

k(i) = argmlnHX,*P‘kH o M@’M “fﬂ
oot hy

2. for k = 1: K (recalculate centers)

1)

»

y/Qu

>




K-means clustering

Algorithm K-Means

Input Data D = {x;};=1.,, number clusters K

ialize centers 1, pi2, ... ux € RY at random
erate until convergence

1. for i =1 : n (assign points to clusters = new clustering)

KG) = argmin|l — |\ - COMUNGERCE
2. for k =1: K (recalculate centers)L T‘F m/ﬁﬁww
e = %l D% zt@u"t dW (1)




The K-means cost—Qag;( rise" ) = how good s K 7
o L(A) owalleris

K
L(a) = lIxi — el 2 )
T kz::ugczk H A= '{Cl)"cd

i
P> K-means solves a least-squares proble n= ,C‘GI
» the cost L is called quadratic dli'stortion w
’O.SS /y)‘_‘. .o Y\k_
Proposition The K-means algorithm decreases £L(A) at every step.

Sketch of proof

> step 1: reassigning the labels can only decrease £
> step 2: reassigning the centers py can only decrease £
because py as given by (1) is the solution to

= min Z lIxi — ull? ®3)

i€Cy
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[Supplement: Equivalent and similar cost functions]
» The distortion can also be expressed using intracluster distances
L(A) Z Z lIxi =12 4
i,j€Cy
> Correlation clustering is defined as optimizing the related criterion
K
2
=> > lxi—xll
k=1ijECk

» This cost is equivalent to the (negative) sum of (squared) intercluster distances

K
= 72 Z Z [|x; — x;||* + constant 5)

k=1i€C, jgCy
Proof of (6) Replace pix as expressed in (1) in the expression of £, then rearrange the terms

Proof of (5) 3=, Z,‘chk [Ixi — XJH2 = Z Z [Ix — XJH -2k Zigck ngck [Ixi — XJHZ

i=1 j=1

N ———
independent of A



[Supplement: The K-means cost in matrix form — the assignment matrix]

» [ as sum of squared intracluster distances

K
1
£8) = 321 3 Il (6)
k=1 "kl jec,

>

» Define the assignment matrix associated with A by Z(A)
Let A ={C ={1,2,3}, & ={4,5}}

Cl C2 G G
1 0 1/vV3 0
unnorm¢ Ay _ | 10 _ 1/vV3 0
Z7(A) = | 1 o | point i 28 =143 o
0 1 0 1//2
0 1 0 1/V2

Then Z is an orthogonal matrix (columns are orthornormal) and
L(A) = traceZ"™DZ  with Dy = ||x; — x;||? (7)
Let Z = {Z € R™K K orthonormal }

Proof of (7) Start from (2) and note that trace Z'AZ = 3, >ijec, LndAi = X jec, ﬁAij




[Supplement: The K-means cost in matrix form — the co-ocurrence
matrix|

n=5 A=(1,1,1,2,2), X(A) =

O O Wlrwl-wl=
O O WlFwl—w|—
O O wlrwl—wl=
NI O O O
NI O O O

1. X(A) is symmetric, positive definite, > 0 elements
2. X(A) has row sums equal to 1
3. trace X(A) = K

IX()IE = (X, X) = K
X(B) = Z(n)Z7(A)

K
20(8) = 3 &t O Ik —xlP = 3(D.X(8))

with Dj = |x; — x|




[Supplement: Symmetries between costs]

> K-means cost £(A) = minuy, >y e, |IXi — pul?
> K-medians cost L(A) = minu, . > ¢ > iec, |1xi — pll

> Correlation clustering cost L(A) = 37,37 icc, |IXi — xi|?
> min Diameter cost £L2(A) = max, max; jec, |Ixi — X2




Initialization of the centroids 1.k

> |dea 1: start with K points at random




Initialization of the centroids 1.

P, Idea 1: start with K points at random
\Aldea 2: start with K data points at random




Initialization of the centroids 1.k

» Idea 1: start with K points at random
P ldea 2: start with K data points at random
What's wrong with chosing K data points at random?
Prob[ K out of K ]

0.1 o
o

el
[ 2 4 6 8 10

The probability of hitting all K clusters with K samples approaches 0 when K > 5




Initialization of the centroids 1.k

» Idea 1: start with K points at random
P ldea 2: start with K data points at random
What's wrong with chosing K data points at random?

, Prob[ K out of K ]
08
08
07
06
05 a
04
03
02] s
0.1 o
° L]
0 2 4 6 8 10

The probability of hitting all K clusters with K samples approaches 0 when K > 5
> ldea 3: start with K data points using Fastest First Traversal (greedy simple approach to
spread out centers)
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More special cases introduce the following description for a covariance matrice in terms of volume, shape, alignment with axes (=determinant, trace,
e-vectors). The letters below mean: I=unitary (shape, axes), E=equal (for all k), V=unequal

3

N\

Ell: equal volume, round shape (spherical covariance)

VII: varying volume, round shape (spherical covariance)

EELl: equal volume, equal shape, axis parallel orientation (diagonal covariance)
VEI: varying volume, equal shape, axis parallel orientation (diagonal covariance)
EVI: equal volume, varying shape, axis parallel orientation (diagonal covariance)
VVI: varying volume, varying shape, equal orientation (diagonal covariance)
EEE: equal volume, equal shape, equal orientation (ellipsoidal covariance)

EEV: equal volume, equal shape, varying orientation (ellipsoidal covariance)
VEV: varying volume, equal shape, varying orientation (ellipsoidal covariance)
VVV: varying volume, varying shape, varying orientation (ellipsoidal covariance)

)

VYVYVYVYVVYYVYY

=
S
3




EM versus K-means

> Alternates between cluster assignments and parameter estimation
» Cluster assignments ~yy; are probabilistic

» Cluster parametrization more flexible

15 7 \ 15}
</
10 N 10

5|

» Converges to local optimum of log-likelihood
Initialization recommended by K-logK method

»> Modern algorithms with guarantees (for e.g. mixtures of Gaussians)

» Random projections
P Projection on principal subspace
» Two step EM (=K-logK initialization 4+ one more EM iteration)




o & wWwN R

. Compute “distances” d(:“kn“k/

[Supplement: A two-step EM algorithm ]

Similar to K-logK initialization for K-means

Assumes K spherical gaussians, separat|on [|ufie — pyre > CVdoy

. Pick K’ = O(K In K) centers p{ at random from the data
. Set 0'2 = %mink#k/ HH‘?( — },62,”2, 7Tk = l/K/

Run one E step and one M step = {ﬂk,uk,zy}(}k:l:w

HNk Mk/”
)7 1 1

T~

. Prune all clusters with 7} < 1/4K’
. Run Fastest First Traversal with distances d(,ui,,ui/) to select K of the remaining centers.

Set mp = 1/K.

. Run one E step and one M step = {72, ;2,02 }y=1.k

For any d,& > 0 if d large, n large enough, separation C > d'/* the Two step EM
algorithm obtains centers i so that

Il = 1| < |lmean(C{) — pf || + cowV/d



Selecting K

» Run clustering algorithm for K = Kpin : Kmax
> obtain Ak ... Dkmay OF YKois -+ - VRmax
» choose best Ak (or k) from among them

> Typically increasing K = cost L decreases

» (L cannot be used to select K)
» Need to "penalize” £ with function of number parameters




Selecting K for mixture models

The BIC (Bayesian Information) Criterion

> let O = parameters for yx

> let #60x=number independent parameters in Ok
» e.g for mixture of Gaussians with full X,'s in d dimensions

Ok =K —1+ Kd +Kd(d —1)/2
#0k ( )/
K H1:K 1Kk

» define 40
K

BIC(0k) = 1(0x) — —

Inn

» Select K that maximizes BIC(0k)
P selects true K for n — 0O and other technical conditions (e.g parameters in compact set)
> but theoretically not justified (and overpenalizing) for finite n



Number of Clusters vs. BIC Eil (A), Vil (B), EEI (C), VEI (D),

EEV, 8 Cluster Solution
EVI (E), WVI (F), EEE (G), EEV (H), VEV (1), VWV (J)
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Number of Clusters vs. BIC Eil (A), Vil (B), EEI (C), VEI (D),
EVI (E), WVI (F), EEE (G), EEV (H), VEV (1), VWV (J)
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[Supplement: Stability methods for choosing K]

> like bootstrap, or crossvalidation
» Idea (implemented by )

for each K
1. perturb data D — D’
2. cluster D' — A},
3. compare Ak, A;(. Are they similar?
If yes, we say Ay is stable to perturbations

Fundamental assumption If Ak is stable to perturbations then K is the correct number of
clusters

> these methods are supported by experiments (not extensive)
» not YET supported by theory ...see for a summary of the area




Clustering with outliers

» What are outliers?

> let p = proportion of outliers (e.g 5%-10%)

> Remedies
» mixture model: introduce a K + 1-th cluster with large (fixed) k.1, bound 4 away from 0
» K-means and EM

» robust means and variances

e.g eliminate smallest and largest pny /2 samples in mean computation (trimmed mean)
»  K-medians
P replace Gaussian with a heavier-tailed distribution (e.g. Laplace)

P single-linkage: do not count clusters with < r points

Is K meaningful when outliers present?
P alternative: non-parametric clustering




