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Paradigms for clustering

Parametric clustering algorithms (K given)
Cost based / hard clustering
K-means clustering and the quadratic distortion
Model based / soft clustering

Issues in parametric clustering
Selecting K

Reading: Ch. 18
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What is clustering? Problem and Notation

I Informal definition Clustering = Finding groups in data
I Notation D = {x1, x2, . . . xn} a data set

n = number of data points

K = number of clusters (K << n)
� = {C1,C2, . . . ,CK} a partition of D into disjoint subsets

k(i) = the label of point i
L(�) = cost (loss) of � (to be minimized)

I Second informal definition Clustering = given n data points, separate them into K

clusters
I Hard vs. soft clusterings

I Hard clustering �: an item belongs to only 1 cluster
I Soft clustering � = {�ki}i=1:n

k=1:K
�ki = the degree of membership of point i to cluster k

X

k

�ki = 1 for all i

(usually associated with a probabilistic model)
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from Carreira-Perpinan, 2006

step 0
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Paradigms

Depend on type of data, type of clustering, type of cost (probabilistic or not), and constraints
(about K , shape of clusters)

I Data = vectors {xi} in Rd

Parametric Cost based [hard]
(K known) Model based [soft]

Non-parametric Dirichlet process mixtures [soft]
(K determined Information bottleneck [soft]
by algorithm) Modes of distribution [hard]

Gaussian blurring mean shift [hard]
I Data = similarities between pairs of points [Sij ]i,j=1:n, Sij = Sji � 0 Similarity based

clustering

Graph partitioning spectral clustering [hard, K fixed, cost based]
typical cuts [hard non-parametric, cost based]

A�nity propagation [hard/soft non-parametric]



S
T
A
T

3
9
1
G
o
o
d
N
o
t
e
:
L
e
c
t
u
r
e

8

Parametric clustering algorithms

I Cost based
I Single linkage (min spanning tree)
I Min diameter

I Fastest first traversal (HS initialization)

I K-medians
I K-means

I Model based (cost is derived from likelihood)
I EM algorithm
I “Computer science”/”Probably correct” algorithms
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[Supplement: Single Linkage Clustering]

Algorithm Single-Linkage

Input Data D = {xi}i=1:n, number clusters K

1. Construct the Minimum Spanning Tree (MST) of D
2. Delete the largest K � 1 edges

I Cost L(�) = �mink,k0 distance(Ck ,Ck0 )

where distance(A,B) = argmin
x2A, y2B

||x � y ||

I Running time O(n2) one of the very few costs L that can be optimized in polynomial time
I Sensitive to outliers!
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[Supplement: Single Linkage Clustering]
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[Supplement: Minimum diameter clustering]

I Cost L(�) = maxk max
i,j2Ck

||xi � xj ||

| {z }
diameter

I Mimimize the diameter of the clusters
I Optimizing this cost is NP-hard

I Algorithms

I Fastest First Traversal – a factor 2 approximation for the min cost
For every D, FFT produces a � so that

Lopt  L(�)  2Lopt

I rediscovered many times
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[Supplement: Minimum diameter clustering]

Algorithm Fastest First Traversal

Input Data D = {xi}i=1:n, number clusters K

defines centers µ1:K 2 D

(many other clustering algorithms use centers)
1. pick µ1 at random from D

2. for k = 2 : K
µk  argmax

D
distance(xi , {µ1:k�1})

3. for i = 1 : n (assign points to centers)
k(i) = k if µk is the nearest center to xi
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[Supplement: K-medians clustering]

I Cost L(�) =
P

k

P
i 2 Ck ||xi � µk || with µk 2 D

I (usually) assumes centers chosen from the data points (analogy to median)
Exercise Show that in 1D argmin

µ

P
i
|xi � µ| is the median of {xi}

I optimizing this cost is NP-hard

I has attracted a lot of interest in theoretical CS (general from called “Facility location”
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K-means clustering

Algorithm K-Means

Input Data D = {xi}i=1:n, number clusters K

Initialize centers µ1, µ2, . . . µK 2 Rd at random
Iterate until convergence

1. for i = 1 : n (assign points to clusters ) new clustering)

k(i) = argmin
k

||xi � µk ||

2. for k = 1 : K (recalculate centers)

µk =
1

|Ck |
X

i2Ck

xi (1)

I Convergence
I if � doesn’t change at iteration m it will never change after that
I convergence in finite number of steps to local optimum of cost L (defined next)
I therefore, initialization will matter
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The K-means cost

L(�) =
KX

k=1

X

i2Ck

||xi � µk ||
2 (2)

I K-means solves a least-squares problem
I the cost L is called quadratic distortion

Proposition The K-means algorithm decreases L(�) at every step.

Sketch of proof

I step 1: reassigning the labels can only decrease L

I step 2: reassigning the centers µk can only decrease L

because µk as given by (1) is the solution to

µk = min
µ2Rd

X

i2Ck

||xi � µ||2 (3)
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[Supplement: Equivalent and similar cost functions]

I The distortion can also be expressed using intracluster distances

L(�) =
KX

k=1

1

nk

X

i,j2Ck

||xi � xj ||
2 (4)

I Correlation clustering is defined as optimizing the related criterion

L(�) =
KX

k=1

X

i,j2Ck

||xi � xj ||
2

I This cost is equivalent to the (negative) sum of (squared) intercluster distances

L(�) = �

KX

k=1

X

i2Ck

X

j 62Ck

||xi � xj ||
2 + constant (5)

Proof of (6) Replace µk as expressed in (1) in the expression of L, then rearrange the terms

Proof of (5)
P

k

P
i,j2Ck

||xi � xj ||2 =
nX

i=1

nX

j=1

||xi � xj ||2

| {z }
independent of �

�
P

k

P
i2Ck

P
j 62Ck

||xi � xj ||2
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[Supplement: The K-means cost in matrix form – the assignment matrix]

I L as sum of squared intracluster distances

L(�) =
KX

k=1

1

|Ck |

X

i,j2Ck

||xi � xj ||
2 (6)

I
I Define the assignment matrix associated with � by Z(�)

Let � = {C1 = {1, 2, 3}, C2 = {4, 5}}

Z
unnorm(�) =

C1 C22

6664

1 0
1 0
1 0
0 1
0 1

3

7775
point i

Z(�) =

C1 C22

66664

1/
p
3 0

1/
p
3 0

1/
p
3 0

0 1/
p
2

0 1/
p
2

3

77775

Then Z is an orthogonal matrix (columns are orthornormal) and

L(�) = traceZT
DZ with Dij = ||xi � xj ||

2 (7)

Let Z = {Z 2 Rn⇥K , K orthonormal }

Proof of (7) Start from (2) and note that trace ZT
AZ =

P
k

P
i,j2Ck

ZikZjkAij =
P

k

P
i,j2Ck

1
|Ck |

Aij
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[Supplement: The K-means cost in matrix form – the co-ocurrence
matrix]

n = 5, � = (1, 1, 1, 2, 2), X (�) =

2

664

1
3

1
3

1
3 0 0

1
3

1
3

1
3 0 0

1
3

1
3

1
3 0 0

0 0 0 1
2

1
2

0 0 0 1
2

1
2

3

775

1. X (�) is symmetric, positive definite, � 0 elements
2. X (�) has row sums equal to 1
3. traceX (�) = K

kX (�)k2
F

= hX ,X i = K

X (�) = Z(�)ZT (�)

2L(�) =
KX

k=1

1
|Ck |

X

i,j2Ck

||xi � xj ||
2 =

1

2
hD,X (�)i

with Dij = ||xi � xj ||
2
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[Supplement: Symmetries between costs]

I K-means cost L(�) = minµ1:K

P
k

P
i2Ck

||xi � µk ||
2

I K-medians cost L(�) = minµ1:K

P
k

P
i2Ck

||xi � µk ||

I Correlation clustering cost L(�) =
P

k

P
i,j2Ck

||xi � xj ||
2

I min Diameter cost L2(�) = maxk maxi,j2Ck
||xi � xj ||

2
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Initialization of the centroids µ1:K

I Idea 1: start with K points at random

I Idea 2: start with K data points at random
What’s wrong with chosing K data points at random?

The probability of hitting all K clusters with K samples approaches 0 when K > 5
I Idea 3: start with K data points using Fastest First Traversal (greedy simple approach to

spread out centers)
I Idea 4: k-means++ (randomized, theoretically backed approach to spread out centers)
I Idea 5: “K-logK” Initialization (start with enough centers to hit all clusters, then prune

down to K)
For EM Algorithm , for K-means
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More special cases introduce the following description for a covariance matrice in terms of volume, shape, alignment with axes (=determinant, trace,
e-vectors). The letters below mean: I=unitary (shape, axes), E=equal (for all k), V=unequal

I EII: equal volume, round shape (spherical covariance)
I VII: varying volume, round shape (spherical covariance)
I EEI: equal volume, equal shape, axis parallel orientation (diagonal covariance)
I VEI: varying volume, equal shape, axis parallel orientation (diagonal covariance)
I EVI: equal volume, varying shape, axis parallel orientation (diagonal covariance)
I VVI: varying volume, varying shape, equal orientation (diagonal covariance)
I EEE: equal volume, equal shape, equal orientation (ellipsoidal covariance)
I EEV: equal volume, equal shape, varying orientation (ellipsoidal covariance)
I VEV: varying volume, equal shape, varying orientation (ellipsoidal covariance)
I VVV: varying volume, varying shape, varying orientation (ellipsoidal covariance)

(from )
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EM versus K-means

I Alternates between cluster assignments and parameter estimation
I Cluster assignments �ki are probabilistic
I Cluster parametrization more flexible

I Converges to local optimum of log-likelihood
Initialization recommended by K-logK method

I Modern algorithms with guarantees (for e.g. mixtures of Gaussians)
I Random projections
I Projection on principal subspace
I Two step EM (=K-logK initialization + one more EM iteration)
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[Supplement: A two-step EM algorithm ]

Similar to K-logK initialization for K-means

Assumes K spherical gaussians, separation ||µtrue

k
� µtrue

k0 � C
p
d�k

1. Pick K 0 = O(K lnK) centers µ0
k
at random from the data

2. Set �0
k
= d

2 mink 6=k0 ||µ
0
k
� µ0

k0 ||
2, ⇡0

k
= 1/K 0

3. Run one E step and one M step =) {⇡1
k
, µ1

k
,�1

k
}k=1:K 0

4. Compute “distances” d(µ1
k
, µ1

k0 ) =
||µ1

k
�µ1

k0 ||
�1
k
��1

k0

5. Prune all clusters with ⇡1
k
 1/4K 0

6. Run Fastest First Traversal with distances d(µ1
k
, µ1

k0 ) to select K of the remaining centers.

Set ⇡1
k
= 1/K .

7. Run one E step and one M step =) {⇡2
k
, µ2

k
,�2

k
}k=1:K

Theorem For any �, " > 0 if d large, n large enough, separation C � d1/4 the Two step EM

algorithm obtains centers µk so that

||µk � µtrue

k
||  ||mean(Ctrue

k
)� µtrue

k
||+ "�k

p

d
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Selecting K

I Run clustering algorithm for K = Kmin : Kmax

I obtain �Kmin
, . . . �Kmax

or �Kmin
, . . . �KmaxI choose best �K (or �K ) from among them

I Typically increasing K ) cost L decreases
I (L cannot be used to select K)
I Need to ”penalize” L with function of number parameters
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Selecting K for mixture models

The BIC (Bayesian Information) Criterion

I let ✓K = parameters for �K
I let #✓K=number independent parameters in ✓KI e.g for mixture of Gaussians with full ⌃k ’s in d dimensions

#✓K = K � 1
| {z }
⇡1:K

+ Kd|{z}
µ1:K

+Kd(d � 1)/2
| {z }

⌃1:K

I define

BIC(✓K ) = l(✓K )�
#✓K
2

ln n

I Select K that maximizes BIC(✓K )I selects true K for n ! 1 and other technical conditions (e.g parameters in compact set)
I but theoretically not justified (and overpenalizing) for finite n
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Number of Clusters vs. BIC EII (A), VII (B), EEI (C), VEI (D),

EVI (E), VVI (F), EEE (G), EEV (H), VEV (I), VVV (J)
EEV, 8 Cluster Solution

(from )
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Number of Clusters vs. BIC EII (A), VII (B), EEI (C), VEI (D),

EVI (E), VVI (F), EEE (G), EEV (H), VEV (I), VVV (J)
EEV, 8 Cluster Solution

(from )
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[Supplement: Stability methods for choosing K ]

I like bootstrap, or crossvalidation
I Idea (implemented by )

for each K

1. perturb data D ! D0

2. cluster D0 ! �0
K

3. compare �K ,�
0
K
. Are they similar?

If yes, we say �K is stable to perturbations

Fundamental assumption If �K is stable to perturbations then K is the correct number of
clusters

I these methods are supported by experiments (not extensive)
I not YET supported by theory . . . see for a summary of the area
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Clustering with outliers

I What are outliers?
I let p = proportion of outliers (e.g 5%-10%)
I Remedies

I mixture model: introduce a K + 1-th cluster with large (fixed) ⌃K+1, bound ⌃k away from 0
I K-means and EM

I robust means and variances
e.g eliminate smallest and largest pnk/2 samples in mean computation (trimmed mean)

I K-medians
I replace Gaussian with a heavier-tailed distribution (e.g. Laplace)

I single-linkage: do not count clusters with < r points

Is K meaningful when outliers present?
I alternative: non-parametric clustering


