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Paradigms for clustering

Parametric clustering algorithms (K given)
Cost based / hard clustering
K-means clustering and the quadratic distortion
Model based / soft clustering

Issues in parametric clustering
Selecting K

Reading: Ch. 18
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What is clustering? Problem and Notation

I Informal definition Clustering = Finding groups in data
I Notation D = {x1, x2, . . . xn} a data set

n = number of data points

K = number of clusters (K << n)
� = {C1,C2, . . . ,CK} a partition of D into disjoint subsets

k(i) = the label of point i
L(�) = cost (loss) of � (to be minimized)

I Second informal definition Clustering = given n data points, separate them into K

clusters
I Hard vs. soft clusterings

I Hard clustering �: an item belongs to only 1 cluster
I Soft clustering � = {�ki}i=1:n

k=1:K
�ki = the degree of membership of point i to cluster k

X

k

�ki = 1 for all i

(usually associated with a probabilistic model)
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Paradigms

Depend on type of data, type of clustering, type of cost (probabilistic or not), and constraints
(about K , shape of clusters)

I Data = vectors {xi} in Rd

Parametric Cost based [hard]
(K known) Model based [soft]

Non-parametric Dirichlet process mixtures [soft]
(K determined Information bottleneck [soft]
by algorithm) Modes of distribution [hard]

Gaussian blurring mean shift [hard]
I Data = similarities between pairs of points [Sij ]i,j=1:n, Sij = Sji � 0 Similarity based

clustering

Graph partitioning spectral clustering [hard, K fixed, cost based]
typical cuts [hard non-parametric, cost based]

A�nity propagation [hard/soft non-parametric]
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Initialization of the centroids µ1:K

I Idea 1: start with K points at random
I Idea 2: start with K data points at random

What’s wrong with chosing K data points at random?

The probability of hitting all K clusters with K samples approaches 0 when K > 5
I Idea 3: start with K data points using Fastest First Traversal (greedy simple approach to

spread out centers)
I Idea 4: k-means++ (randomized, theoretically backed approach to spread out centers)
I Idea 5: “K-logK” Initialization (start with enough centers to hit all clusters, then prune

down to K)
For EM Algorithm , for K-means
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The “K-logK” initialization

The K-logK Initialization (see also )
1. pick µ0

1:K 0 at random from data set, where K 0 = O(K logK)
(this assures that each cluster has at least 1 center w.h.p)

2. run 1 step of K-means
3. remove all centers µ0

k
that have few points, e.g |Ck | <

n

eK 0
4. from the remaining centers select K centers by Fastest First Traversal

4.1 pick µ1 at random from the remaining {µ0
1:K0}

4.2 for k = 2 : K , µk  argmax
µ0
k0

minj=1:k�1 ||µ0
k0 � µj ||, i.e next µk is furthest away from the

already chosen centers

5. continue with the standard K-means algorithm
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K-means clustering with K-logK Initialization

Example using a mixture of 7 Normal distributions with 100 outliers sampled uniformly
K-logK K = 7, T = 100, n = 1100, c = 1
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Naive K = 7 T = 100, n = 1100
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Model based clustering: Mixture models

Mixture in 1D
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I The mixture density

f (x) =
KX

k=1

⇡k fk (x)

I fk (x) = the components of the mixture
I each is a density
I f called mixture of Gaussians if fk = Normalµk ,⌃k

I ⇡k = the mixing proportions,P
k
= 1K⇡k = 1, ⇡k � 0.

I model parameters ✓ = (⇡1:K , µ1:K , ⌃1:K )

I The degree of membership of point i to cluster k

�ki
def
= P[xi 2 Ck ] =

⇡k fk (x)

f (x)
for i = 1 : n, k = 1 : K

(8)
I depends on xi and on the model parameters
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Criterion for clustering: Max likelihood

I denote ✓ = (⇡1:K , µ1:K , ⌃1:K ) (the parameters of the mixture model)
I Define likelihood P[D|✓] =

Q
n

i=1 f (xi )I Typically, we use the log likelihood

l(✓) = ln
nY

i=1

f (xi ) =
nX

i=1

ln
X

k

⇡k fk (xi ) (9)

I denote ✓ML = argmax
✓

l(✓)

I ✓ML determines a soft clustering � by (8)
I a soft clustering � determines a ✓ (see later)
I Therefore we can write

L(�) = �l(✓(�))
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Algorithms for model-based clustering

Maximize the (log-)likelihood w.r.t ✓

I directly - (e.g by gradient ascent in ✓)
I by the EM algorithm (very popular!)
I indirectly, w.h.p. by ”computer science” algorithms

w.h.p = with high probability (over data sets)
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The Expectation-Maximization (EM) Algorithm

Algorithm Expectation-Maximization (EM)

Input Data D = {xi}i=1:n, number clusters K

Initialize parameters ⇡1:K 2 R, µ1:K 2 Rd , ⌃1:K 2 Rd⇥d at random1

Iterate until convergence
E step (Optimize clustering) for i = 1 : n, k = 1 : K

�ki =
⇡k fk (x)

f (x)

M step (Optimize parameters) set �k =
P

n

i=1 �ki , k = 1 : K (number of points in cluster k)

⇡k =
�k

n
, k = 1 : K

µk =
nX

i=1

�ki

�k

xi

⌃k =

P
n

i=1 �ki (xi � µk )(xi � µk )
T

�k

I ⇡1:K , µ1:K ,⌃1:K are the maximizers of lc (✓) in (13)
I P

k
�k = n

1⌃k need to be symmetric, positive definite matrices
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[Supplement: The EM Algorithm – Motivation]

I Define the indicator variables

zik =

⇢
1 if i 2 Ck

0 if i 62 Ck

(10)

denote z̄ = {zki}
i=1:n
k=1:KI Define the complete log-likelihood

lc (✓, z̄) =
nX

i=1

KX

k=1

zki ln⇡k fk (xi ) (11)

I E [zki ] = �ki
I Then

E [lc (✓, z̄)] =
nX

i=1

KX

k=1

E [zki ][ln⇡k + ln fk (xi )] (12)

=
nX

i=1

KX

k=1

�ki ln⇡k +
nX

i=1

KX

k=1

�ki ln fk (xi )] (13)
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I If ✓ known, �ki can be obtained by (8)
(Expectation)

I If �ki known, ⇡k , µk ,⌃k can be obtained by separately maximizing the terms of E [lc ]
(Maximization)
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Brief analysis of EM

Q(✓, �) =
nX

i=1

KX

k=1

�ki ln⇡k fk (xi )| {z }
✓

I each step of EM increases Q(✓, �)
I Q converges to a local maximum
I at every local maxi of Q, ✓ $ � are fixed point
I Q(✓⇤, �⇤) local max for Q ) l(✓⇤) local max for l(✓)
I under certain regularity conditions ✓ �! ✓ML

I the E and M steps can be seen as projections

I Exact maximization in M step is not essential.
Su�cient to increase Q.
This is called Generalized EM
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The M step in special cases

I Note that the expressions for µk ,⌃k = expressions for µ,⌃ in the normal distribution,
with data points xi weighted by �ki

�k

M step

general case ⌃k =
P

n

i=1
�ki

�k
(xi � µk )(xi � µk )T

⌃k = ⌃ ⌃  
P

n

i=1
P

K

k=1 �ki (xi�µk )(xi�µk )
T

n

“same shape & size” clusters

⌃k = �2
k
Id �2

k
 

P
n

i=1 �ki ||xi�µk ||2
d�k

“round” clusters

⌃k = �2Id �2
 

P
n

i=1
P

K

k=1 �ki ||xi�µk ||2
nd

“round, same size” clusters

Exercise Prove the formulas above
I Note also that K-means is EM with ⌃k = �2Id , �2

! 0 Exercise Prove it
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More special cases introduce the following description for a covariance matrice in terms of volume, shape, alignment with axes (=determinant, trace,
e-vectors). The letters below mean: I=unitary (shape, axes), E=equal (for all k), V=unequal

I EII: equal volume, round shape (spherical covariance)
I VII: varying volume, round shape (spherical covariance)
I EEI: equal volume, equal shape, axis parallel orientation (diagonal covariance)
I VEI: varying volume, equal shape, axis parallel orientation (diagonal covariance)
I EVI: equal volume, varying shape, axis parallel orientation (diagonal covariance)
I VVI: varying volume, varying shape, equal orientation (diagonal covariance)
I EEE: equal volume, equal shape, equal orientation (ellipsoidal covariance)
I EEV: equal volume, equal shape, varying orientation (ellipsoidal covariance)
I VEV: varying volume, equal shape, varying orientation (ellipsoidal covariance)
I VVV: varying volume, varying shape, varying orientation (ellipsoidal covariance)

(from )
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EM versus K-means

I Alternates between cluster assignments and parameter estimation
I Cluster assignments �ki are probabilistic
I Cluster parametrization more flexible

I Converges to local optimum of log-likelihood
Initialization recommended by K-logK method

I Modern algorithms with guarantees (for e.g. mixtures of Gaussians)
I Random projections
I Projection on principal subspace
I Two step EM (=K-logK initialization + one more EM iteration)
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Selecting K

I Run clustering algorithm for K = Kmin : Kmax

I obtain �Kmin
, . . . �Kmax

or �Kmin
, . . . �KmaxI choose best �K (or �K ) from among them

I Typically increasing K ) cost L decreases
I (L cannot be used to select K)
I Need to ”penalize” L with function of number parameters



S
T
A
T

3
9
1
G
o
o
d
N
o
t
e
:
L
e
c
t
u
r
e

35

Selecting K for mixture models

The BIC (Bayesian Information) Criterion

I let ✓K = parameters for �K
I let #✓K=number independent parameters in ✓KI e.g for mixture of Gaussians with full ⌃k ’s in d dimensions

#✓K = K � 1
| {z }
⇡1:K

+ Kd|{z}
µ1:K

+Kd(d � 1)/2
| {z }

⌃1:K

I define

BIC(✓K ) = l(✓K )�
#✓K
2

ln n

I Select K that maximizes BIC(✓K )I selects true K for n!1 and other technical conditions (e.g parameters in compact set)
I but theoretically not justified (and overpenalizing) for finite n
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Number of Clusters vs. BIC EII (A), VII (B), EEI (C), VEI (D),

EVI (E), VVI (F), EEE (G), EEV (H), VEV (I), VVV (J)
EEV, 8 Cluster Solution

(from )
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Number of Clusters vs. BIC EII (A), VII (B), EEI (C), VEI (D),

EVI (E), VVI (F), EEE (G), EEV (H), VEV (I), VVV (J)
EEV, 8 Cluster Solution

(from )
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[Supplement: Stability methods for choosing K ]

I like bootstrap, or crossvalidation
I Idea (implemented by )

for each K

1. perturb data D ! D0

2. cluster D0 ! �0
K

3. compare �K ,�
0
K
. Are they similar?

If yes, we say �K is stable to perturbations

Fundamental assumption If �K is stable to perturbations then K is the correct number of
clusters

I these methods are supported by experiments (not extensive)
I not YET supported by theory . . . see for a summary of the area
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Clustering with outliers

I What are outliers?
I let p = proportion of outliers (e.g 5%-10%)
I Remedies

I mixture model: introduce a K + 1-th cluster with large (fixed) ⌃K+1, bound ⌃k away from 0
I K-means and EM

I robust means and variances
e.g eliminate smallest and largest pnk/2 samples in mean computation (trimmed mean)

I K-medians
I replace Gaussian with a heavier-tailed distribution (e.g. Laplace)

I single-linkage: do not count clusters with < r points

Is K meaningful when outliers present?
I alternative: non-parametric clustering


