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Paradigms for clustering v

Parametric clustering algorithms (K given) 8=
Cost based / hard clustering &
K-means clustering and the quadratic distortion &~

Model based / soft clustering i

Issues in parametric clustering
Selecting K

Reading: Ch. 18

o
g

8
3
s

]
=

8

8
o
a3
3
il
<
E
&




What is clustering? Problem and Notation

» Informal definition Clustering = Finding groups in data

> Notation D = {xi1, x2, ... xp} a data set

n = number of data points

K = number of clusters (K << n)

A = {G,G,...,Ck} a partition of D into disjoint subsets

k(i) = the label of point i
L(A) = cost (loss) of A (to be minimized)
»> Second informal definition Clustering = given n data points, separate them into K
clusters

» Hard vs. soft clusterings
» Hard clustering A: an iter_'nlbelongs to only 1 cluster
» Soft clustering v = {7k }i 'k
Yk = the degree of membership of point i to cluster k

Z’yk,- =1 foralli/
Kk

(usually associated with a probabilistic model)
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Paradigms

Depend on type of data, type of clustering, type of cost (probabilistic or not), and constraints
(about K, shape of clusters)
> Data = vectors {x;} in RY
Parametric Cost based [hard]

(K known) Model based [soft] == M;)‘-’um Qg W

Non-parametric  Dirichlet process mixtures [soft]
(K determined Information bottleneck [soft]
by algorithm) Modes of distribution [hard]
Gaussian blurring mean shift [hard]
» Data = similarities between pairs of points [Sj]i j—1.n, Sj = Sji > 0 Similarity based
clustering

Graph partitioning spectral clustering [hard, K fixed, cost based)]

typical cuts [hard non-parametric, cost based]
Affinity propagation  [hard/soft non-parametric]



Initialization of the centroids 1. G=
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A_ P Idea 1: start with K points at rando
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Initialization of the centroids 1.k

» Idea 1: start with K points at random
P ldea 2: start with K data points at random
What's wrong with chosing K data points at random?

, Prob[ K out of K ]
08
08
07
06
05 a
04
03
02] s
0.1 o
° L]
0 2 4 6 8 10

The probability of hitting all K clusters with K samples approaches 0 when K > 5
» Idea 3: start with K data points using Fastest First Traversal (greedy simple approach to
spread out centers)
> /ldea 4: k-means++ (randomized, theoreticilly ‘backedapproachlto spread out centers)
» \ldea 5: “K-logK"” Initialization (start with enough centers to hit all clusters, then prune
down to K)
For EM Algorithm , for K-means




The “K-logK" initialization

The K-logK Initialization (see also )

. pick “?:K’ at random from data set, where K’ = O(K log K) "
(this assures that each cluster has at least 1 center w.h.p) n£= —_—
run 1 step o means

V2. run 1 step of K- 8
3. remove all centers :“k that have few points, e.g |Cy| < eK/
4. from the remaining centers select K centers by Fastest First Traversal
@ plck w1 at random from the remaining {}Ll K,}

—> 4.2 for k=2: K, px « argmax minj_1.,_1 ||uk, ]|, i.e next p is furthest away from the

k
s —already chosen centers

5. continue with the standard K-means algorithm




K means ++
1. Select iy ot pomdlom from. &)
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K-means clustering with K-logK Initialization

Example using a mixture of 7 Normal distributions with 100 outliers sampled uniformly

K-LocK K =7, T =100, n=1100, c =1
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Model based clustering: Mixture models

Mixture in 1D
» The mixture density

K
u fx) = > mefi(x)
0.14] k:1
" » fi(x) = the components of the mixture
o P each is a density
o P f called mixture of Gaussians if f, = Norma/uky):k
a0s » 7, = the mixing proportions,
002) Zk:]_KTrk:L 7Tk20.

5 ; 0 ; > model parameters 6 = (m1.x, p1:K, L1:K)

Mixture in 2D




Model based clustering: Mixture models

Mixture in 1D
» The mixture density
K
0 fx) = > mefi(x)
0.14] k:1
" » fi(x) = the components of the mixture
o P each is a density
o » f called mixture of Gaussians if f, = Normal,,, 5,
a0s » 7, = the mixing proportions,
I Zklewkzl, 7, > 0.
5 ; 0 ; > model parameters 6 = (m1.x, p1:K, L1:K)
» The degree of membership of point i to cluster k
Tk i (X))
’YkidéfP[X,-ECk] = %(')forizl:n,kzlzK
X,
Mixture in 2D ;) (8)
9 » depends on x; and on the model parameters

e -1

&qll




Criterion for clustering: Max likelihood + ggﬁmaﬂ-, W

» denote 0 = (m1.k, 1.k, L1:x) (the parameters of the mixture model)

» Define likelihood P[D|0] = TT"; f(x;) )
» Typically, we use the log likelihood N (}1&)
() = Ian(x,) = Zln(% Efrkfk(x, )

» denote ML = argmax /(0 —

enote gmax /(9) Comt ﬁn/ Wmc
> OML determines a soft clustering v by (8)
> a soft clustering v determines a 0 (see later)
» Therefore we can write E ]

L) = ~16() — max)fm%e nlmj]l%,
ng 3
wuh Wk fpead gptima




Algorithms for model-based clustering

Maximize the (log-)likelihood w.r.t 0

» directly - (e.g by gradient ascent in 6)
» by the EM algorithm (very popular!)
» indirectly, w.h.p. by "computer science” algorithms

w.h.p = with high probability (over data sets)



The Expectation-Maximization (EM) Algorithm zlo'z = 1y

Algorithm Expectation-Maximization (EM) '“‘ = ’/K
Input Data D = {x;}i—1.n, humber clusters K ’
ialize parameters m1.x € R, p1.x € R , Y16 € R9%9 at random?
erate until convergence
E step (Optimize clustering) fori=1:n, k=1: K

. kak(x)
Vi F(x)
M step (Optimize parameters) set [y = 3.7 | i, k = 1: K (number of points in cluster k)
r
Tk = —k, k=1:K
n

N i mea.l
moo= L Ew G plighded

D ¥ B R 119 C el T LA W?“k‘ﬂ
k Tk COVENMOMEL

> 1K, U1K, X1:k are the maximizers of [c(6) in (13)
> 2Tk =mn

o
“ adtemate. o iZaten W

15, need to be symmetric, positive definite matrices
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[Supplement: The EM Algorithm — Motivation]

» Define the indicator variables

(1 ifieG
Zk =10 ifig G

s _ i=l:n
denote z = {zi} =5’k

» Define the complete log-likelihood

n K
1e(0,2) = > > zii Inmifi(xi)

i=1 k=1

> Elzi] = vii
» Then

n K
D> Elzllinm +Infi(xi)]

i=1 k=1

n K n K
DD wilnme+ D> D> i Infi(xi)]

i=1 k=1 i=1 k=1

E[l(0,2)]

(10)

(11)

(12)

(13)



» If & known, ~y,; can be obtained by (8)
(Expectation)

» If 4 known, Ty, uk, Xk can be obtained by separately maximizing the terms of E[lc]
(Maximization)




Brief analysis of EM

vVvyVvVYYVYY

n

K
Q(8,7) = Vi In 70 fie (i)
Zkz:l h/—’

i=1

each step of EM increases Q(0,~)

Q converges to a local maximum

at every local maxi of Q, 6 <> ~ are fixed point
Q(0*,~*) local max for Q = /(6*) local max for /(6)
under certain regularity conditions § — ML

the E and M steps can be seen as projections

Exact maximization in M step is not essential.
Sufficient to increase Q.
This is called Generalized EM



The M step in special cases

» Note that the expressions for s, Xy = expressions for p, > in the normal distribution,
with data points x; weighted by ?—i’
M step
general case Y=, ?—:"(x,- — )i — )T
Y, =% Y o Zi SRy i =) =) T
n
“same shape & size" clusters
S il i — el
T = oy o & SRR
“round” clusters
K 2
_ 2 2 Sog Pk kil lXi— gl
Y = o°ly o° ! d

“round, same size" clusters

Exercise Prove the formulas above
» Note also that K-means is EM with X, = 02ly, 02 — 0 Exercise Prove it




:
O
0

o

-
om RN

More special cases introduce the following description for a covariance matrice in terms of volume, shape, alignment with axes (=determinant, trace,
e-vectors). The letters below mean: I=unitary (shape, axes), E=equal (for all k), V=unequal

3

N\

Ell: equal volume, round shape (spherical covariance)

VII: varying volume, round shape (spherical covariance)

EELl: equal volume, equal shape, axis parallel orientation (diagonal covariance)
VEI: varying volume, equal shape, axis parallel orientation (diagonal covariance)
EVI: equal volume, varying shape, axis parallel orientation (diagonal covariance)
VVI: varying volume, varying shape, equal orientation (diagonal covariance)
EEE: equal volume, equal shape, equal orientation (ellipsoidal covariance)

EEV: equal volume, equal shape, varying orientation (ellipsoidal covariance)
VEV: varying volume, equal shape, varying orientation (ellipsoidal covariance)
VVV: varying volume, varying shape, varying orientation (ellipsoidal covariance)

)
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EM versus K-means

> Alternates between cluster assignments and parameter estimation
» Cluster assignments ~yy; are probabilistic
» Cluster parametrization. more flexible

15

5|

» Converges to local optimum of log-likelihood
Initialization recommended by K-logK method

»> Modern algorithms with guarantees (for e.g. mixtures of Gaussians)

» Random projections
P Projection on principal subspace
» Two step EM (=K-logK initialization 4+ one more EM iteration)






Selecting K

» Run clustering algorithm for K = Kpin : Kmax
> obtain Ak ... Dkmay OF YKois -+ - VRmax
» choose best Ak (or k) from among them

> Typically increasing K = cost L decreases

» (L cannot be used to select K)
» Need to "penalize” £ with function of number parameters




Selecting K for mixture models —> Model $ots chon

The BIC (Bayesian Information) Criterion

> let O = parameters for yx
> let #60x=number independent parameters in Ok
» e.g for mixture of Gaussians with full X,'s in d dimensions
Ok =K -1+ Kd +Kd(d —1)/2
#0k ( )/
K H1:K Y1k
> define
#0k
2

BIC(GK) = /(0;()— Inn

» Select K that maximizes BIC(0k)
P selects true K for n — 0O and other technical conditions (e.g parameters in compact set)
> but theoretically not justified (and overpenalizing) for finite n



Number of Clusters vs. BIC Eil (A), Vil (B), EEI (C), VEI (D),

EEV, 8 Cluster Solution
EVI (E), WVI (F), EEE (G), EEV (H), VEV (1), VWV (J)
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Number of Clusters vs. BIC Eil (A), Vil (B), EEI (C), VEI (D),
EVI (E), WVI (F), EEE (G), EEV (H), VEV (1), VWV (J)
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[Supplement: Stability methods for choosing K]

> like bootstrap, or crossvalidation
» Idea (implemented by )

for each K
1. perturb data D — D’
2. cluster D' — A},
3. compare Ak, A;(. Are they similar?
If yes, we say Ay is stable to perturbations

Fundamental assumption If Ak is stable to perturbations then K is the correct number of
clusters

> these methods are supported by experiments (not extensive)
» not YET supported by theory ...see for a summary of the area




Clustering with outliers

» What are outliers?

> let p = proportion of outliers (e.g 5%-10%)

> Remedies
» mixture model: introduce a K + 1-th cluster with large (fixed) k.1, bound 4 away from 0
» K-means and EM

» robust means and variances

e.g eliminate smallest and largest pny /2 samples in mean computation (trimmed mean)
»  K-medians
P replace Gaussian with a heavier-tailed distribution (e.g. Laplace)

P single-linkage: do not count clusters with < r points

Is K meaningful when outliers present?
P alternative: non-parametric clustering




