Lecture Notes III: Discrete probability in practice - Small Probabilities

Marina Meilă mmp@stat.washington.edu

> Department of Statistics University of Washington

The problem with estimating small probabilities

Definitions and setup

Additive methods (Laplace, Dirichlet, Bayesian, ELE)

Discounting (Ney-Essen)

Multiplicative smoothing: Estimating the next outcome (Witten-Bell, Good-Turing)

Back-off or shrinkage - mixing with simpler models

The problem with estimating small probabilities

Definitions and setup

We will look at estimating categorical distributions from samples, when the number of outcomes m is large.

- Let $S = \{1, ..., m\}$ be the sample space, and $P = (\theta_1, ..., \theta_m)$ a distribution over S.
- ▶ We draw *n* independent samples from *P*, obtaining the data set *D*
- ▶ Define the counts $\{n_j = \#j \text{ appears in } \mathcal{D}, i = 1, ..., n\}$. The counts are also called sufficient statistics or histogram.

▶ Define the fingerprint (or histogram of histogram) of D as the counts of the counts, i.e { $r_k = \#$ counts $n_j = k$, for k = 0, 1, 2...} Example m = 26 alphabet letters

Data	Counts n _i	Fingerprint r _k
the red fox is quick $n = 16$ letters	<pre>n_j = 0:a,b,g,j,l,m,n, p,v,w,y,z n_j = 1:c,d,f,h,k,o,q,r,s,t,u,x n_j = 2:e,i</pre>	$ \begin{array}{l} r_0 = 12 = \{\texttt{a},\texttt{b},\texttt{g},\ldots,\texttt{y},\texttt{z}\} \\ r_1 = 12 = \{\texttt{c},\texttt{d},\texttt{f},\texttt{h},\ldots,\texttt{u},\texttt{x}\} \\ r_2 = 2 = \{\texttt{e},\texttt{i}\} \\ r_3 = \ldots r_n = 0 \end{array} $
ho ho who s on first $n=15$ letters	$n_j = 0$: a,b,c,x,z $n_j = 1$: f,i,n,r,t,w $n_j = 2$: s $n_j = 3$: h $n_j = 4$: o	$\begin{array}{l} r_0 = 26 - 6 - 1 - 1 - 1 = 17 \\ r_1 = 6 = \{\texttt{f},\texttt{i},\texttt{n},\texttt{r},\texttt{t},\texttt{w}\} \\ r_2 = 1 = \{\texttt{s}\} \\ r_3 = 1 = \{\texttt{h}\} \\ r_4 = 1 = \{\texttt{o}\} \end{array}$

▶ It is easy to verify that $n_j \in 0$: *n*, hence $r_{0:n}$ may be non-zero (but $r_{n+1,n+2,...} = 0$), and that

$$m = r_0 + r_1 + \ldots r_n \quad n = 0 \times r_0 + 1 \times r_1 + \ldots + k \times r_k + \ldots$$
(1)

Smoothing on an example

- **•** the counts $\{n_j = \#j \text{ appears in } D, i = 1, ..., n\}$ (or sufficient statistics or histogram)
- ▶ fingerprint (or histogram of histogram) of \mathcal{D} as the counts of the counts $\{r_k = \# \text{counts } n_j = k, \text{ for } k = 0, 1, 2...\}$, and $R_k = \{j, n_j = k, \}$

Example m = 26 alphabet letters

Data	Counts n _i	Fingerprint rk
the red fox is quick $n=16$ letters	$n_j = 0:a,b,g,j,l,m,n,$	$r_0 = 12 = \{a, b, g, \dots, y, z\} $
	p,v,w,y,z	$r_1 = 12 = \{\texttt{c,d,f,h,\ldots,u,x}\} $
	$n_j = 1:c,d,f,h,k,o,q,r,s,t,u,x$	$r_2 = 2 = \{e,i\} $
	$n_j = 2:$ e,i	$r_3 = \ldots r_n = 0$

The problem with small probabilities and large m

- when θ_i is small *n* must be very large to be able to observe *i* w.h.p.
- when m is large most θ_i are small
- Hence, in a sample of size n, many outcomes j may have $n_j = 0$, that is will not appear at all.

type k R_k = {j ∈ S, n_j = k} is the subset of outcomes in S that appear k times in D
 Why are types important?

- ▶ Because $\theta_j^{ML} = n_j/n$, all $i \in \text{type } k$ will have the same estimated value $\theta_j^{ML} = k/n$.
- ▶ If $j, j' \in R_k$, no matter what correction method you use, there is no reason to distinguish between θ_j and $\theta_{i'}$. Hence $\theta_j = \theta_{i'}$ whenever $j, j' \in R_k$
- Let $p_k = Pr[R_k]$. We have $p_k = r_k \theta_j$ for any $j \in R_k$.

Additive methods

Idea: assume we have seen one more example of each value in S

Algorithm: add 1 to each count and renormalize.

$$\theta_j^{\text{Laplace}} = \frac{n_j + 1}{n + m} \quad \text{for } j = 1:m$$
(2)

Can be used also with another value, $n_j^0 < 1$, in place of 1. Then, it is called Bayesian mean smoothing or Dirichlet smothing or ELE¹ Can be derived from Bayesian estimation, with the Dirichlet prior. In particular, we can take $n^0 = 1$, $n_j^0 = \frac{1}{m}$.

$$\theta_j^{\text{Bayes}} = \frac{n_j + n_j^0}{n + n_0} \quad \text{for } j = 1:m$$
(3)

The "fictitious sample size" $n^0 = \sum_{j=1}^m n_j^0$ reflects the strength of our belief about the θ_j 's; if we choose all $n_j \propto \frac{1}{m}$, we say that we have an *uninformative prior*,

Problems with aditive smoothing

- Reduces all estimates in the same proportion
- Does not distinguish between spread and concentrated distributions.
 - ▶ the unseen outcomes have the same probability no matter how the counts are distributed
 - "Naive" method DON'T USE IT

Ney-Essen discounting - tax and redistribute

Let r = the number of distinct values observed

 $r = m - r_0$

Idea

Tax substract 1 observation from every $n_i > 0$

- i.e from each n_i that "can afford it"
- total amount = r

Red redistribute the total amount equally to all counts.

This simple method works surprisingly well in practice.

Algorithm

$$r = \sum_{j=1:m} \min(n_j, 1)$$
 total tax collected (4)

$$n_j^{NE} = \max(n_j - 1, 0) + r/m$$
 redistribute (5)

$$\theta_j^{NE} = \frac{n_j^{NE}}{n}$$
 estimate from new counts (6)

Algorithm can be generalized to any "tax amount" $\delta > 0$.

- Then, the total tax collected is $D = \sum_{j} \min(n_j, \delta)$
- The smoothed counts are $n_j^{NE} = \max(n_j \delta, 0) + D/m$

Properties of NE smoothing

Flexibility

• treats outcomes with $n_i = 1$ and $n_i = 0$ the same

Intuition: any outcome i with $n_j < \delta$ is a rare outcome and should be treated in the same way, no matter how many observations it actually has.

- For m large and r small
 - (probability mass is concentrated on a few values)
 - ▶ r small \Rightarrow unobserved outcomes receive little probability
- For m large and r large
 - $r \approx m$ (large) \Rightarrow unobserved outcomes get $n^{NE} \approx 1$
- ▶ For tax $\delta \neq 1$, note $D \leq \delta r$, redistributed mass $\frac{D}{m} \leq \delta \frac{r}{m}$

Witten-Bell discounting - probability of a new value

Idea:

- Look at the sequence (x₁,...x_n) as a binary process: either we observe a value of X that was observed before, or we observe a new one.
- Assume that of m possible values r were observed (and m r unobserved)
- Then the probability of observing a new value is $p_0 = \frac{r}{n}$.
- Hence, set the probability of all unseen values of X to p_0 . The other probability estimates are renormalized accordingly.

$$\theta_{j}^{WB} = \begin{cases} \frac{n_{j}}{n} \frac{1}{1+\rho_{0}} = \frac{n_{j}}{n+r} & n_{j} > 0\\ \frac{1}{m-r} \frac{\rho_{0}}{1+\rho_{0}} = \frac{1}{m-r} \frac{r}{n+r} & n_{j} = 0 \end{cases}$$
(7)

Witten-Bell makes sense only when some n_j counts are zero. If all $n_j > 0$ then W-B smoothing has undefined results.

WB smoothing has no parameter to choose (GOOD!)

Good-Turing - Predicting the type of the next outcome

- This method has many versions (you will see why). Powerful for large data sets.
 First Idea
 - Remember $r_k = \#\{j, n_i = k\}$ the counts of the counts. Naturally, $n = \sum_{k=1}^{\infty} kr_k$.
 - Outcome i is of type k if $n_i = k$. GT uses the data to estimate the probability of type k

$$p_k = \frac{kr_k}{n} \quad \text{for } k = 1:n \tag{8}$$

Second Idea is to use the probabilities $p_1, \ldots, p_k \ldots$ to predict the **next** outcome

- For example, what's the probability of seeing a new value? It must be equal to p_1 , because this observation will have count $n_j = 1$ once it is observed.
- Similarly, the probability of observing a type k outcome must be about p_{k+1} .
- ▶ Third There are r_k outcomes j in type k, hence the probability mass for each of these is $1/r_k$ of p_{k+1} which leads to (11).

Algorithm

if
$$n_j = k$$
 $\theta_j^{GT} = \frac{p_{k+1}}{r_k} = \frac{(k+1)r_{k+1}}{nr_k} \stackrel{def}{=} \frac{n_k^{GT}}{n}$ with $n_j^{GT} = \frac{(k+1)r_{k+1}}{r_k}$ (9)

In particular if $n_i = 0$

$$\theta_j^{GT} = \frac{p_1}{r_0} \tag{10}$$

Remark GT transfers the probability mass of type k + 1 to type k
 This implies that

$$n_j^{GT} r_k = (k+1)r_{k+1} \text{ if } n_j = k$$
 (11)

Problems with Good-Turing

• When k is large, r_k is small and noisy.

Example The word "Jimmy" appears n_{Jimmy} = 8196 times in a corpus. But there may be no word that appears 8197 times. Then, θ^{GT}_{Jimmy} = 0!

▶ Remedy: "smooth" the r_k values, i.e use (an estimate of) $E[r_k]$

- Many proposals exist
- A simple one is to use Good-Turing only for type 0, and to rescale the other θ^{ML} estimates down to ensure normalization.

$$\theta_{j}^{GT} = \begin{cases} \frac{p_{1}}{r_{0}} = \frac{r_{1}}{nr_{0}} & \text{if } n_{j} = 0\\ \theta_{j}^{ML} \left(1 - \frac{r_{1}}{n}\right) & \text{if } n_{j} > 0 \end{cases}$$
(12)

Numerical values to exemplify the results: n = 1000, m = 1000, r = 100

Count n _j	0	1	$n_j \gg 1$
θ_i^{ML}	0	$\frac{1}{n} = \frac{1}{1000}$	$\frac{n_j}{1000}$
$\theta_j^{Laplace}$	$\frac{1}{n+m} = \frac{1}{2000}$	$\frac{2}{n+m} = \frac{1}{1000}$	$\frac{n_j+1}{n+m} = \frac{n_j+1}{2000}$
$\theta_j^{Bayes}, n^0 = 1, n_j^0 = \frac{1}{m}$	$rac{1}{m(n+1)} pprox rac{1}{10^6}$	$rac{1+1/m}{n+1}pprox rac{1}{10^3}$	$rac{n_j+1/m}{n+1}pprox rac{n_j}{1000}$
$\theta_j^{NE}, \delta = 1$	$\frac{r}{mn} = \frac{1}{10^4}$	$\frac{r}{mn} = \frac{1}{10^4}$	$\frac{n_j - 1 + r/m}{n} \approx \frac{n_j}{1000}$
θ_j^{WB}	$\frac{1}{m-r}\frac{r}{n+r} = \frac{1}{9900}$	$\frac{1}{n+r} = \frac{1}{1100}$	$\frac{n_j}{n+r} = \frac{n_j}{1100}$
Romarks			

Remarks

- Laplace shrinks ML estimates of large probabilities by factor of 2. Too much! (because large θ^{ML}_i are close to their true values)
- Bayes (with uninformative prior) affects large θ_i^{ML} much less than small ones. Good
- Ney-Essen smooths more when r is larger; any n_j is affected by less than δ .
- Ney-Essen estimates of θ^{NE} for counts of 0 and 1 are equal to a fraction of $\frac{r}{m}$ (this grows with *n* as *r* grows with *n*).
- ▶ In Witten-Bell, the large θ_j^{ML} are shrunk depending on r, but independently of m. Proportional, bad
- ► ... but, if we overestimate *m* grossly, the overestimation will only affect the θ^{WB}_j for the 0 counts, but none of the θ^{WB}_i for the values observed. (true for NE as well).

Back-off or shrinkage - mixing with simpler models

(T B Written)

Ultimate test: which method is best?

