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The problem with estimating small probabilities

Definitions and setup /
Additive methods (Laplace, Dirichlet, Bayesian, ELE)
T —

Discounting (Ney-Essen)

Multiplicative smoothing: Estimating the next outcome (Witten-Bell, Good-Turing)
~——A o~

Back-off or shrinkage — mixing with simpler models
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Definitions and setup

We will look at estimating categorical distributions from samples, when the number of
outcomes m is large.

> Let S = {1,...m} be the sample space, and P = (01, ...0m,) a distribution over S.

» We draw n independent samples from P, obtaining the data set D

> Define the counts {n; = #;j appears in D, i =1,...n}. The counts are also called
sufficient statistics or histogram.

» Define the fingerprint (or histogram of histogram) of D as the counts of the counts, i.e
{ r« = #countsn; = k, for k =0,1,2...}
Example m = 26 alphabet letters

Data Counts n; Fingerprint ry
nj=0:a,b,g,j,1,m,n, rn=12=|{a,b,g,...,y,2}|
the red fox is quick Efi’f_’y’;f - . n i;2,: |{c?d,f,h,.,,,u,x}|
n = 16 letters j=1:c,d,f,h,k,0,q,r,5,%,u,x rn=2=|{e,i}|
nj=2:e,i B=...rm=
2 nj=0:a,b,c...,x,z n=26—-6—1—-1—1=17
] nj=1:f,i,n,r,t,w n=6=|{f,i,n,r,t,w}|
3 ho ho who s on first nj=2:s rn=1=|{s}|
H n =15 letters nj=3:h r3 =1 = |{h}|
g nj=4:o0 rp=1=|{o}]
2
% > It is easy to verify that nj € 0: n, hence ro., may be non-zero (but roy1,n12,... = 0), and
8 that
2 m=r+n+...p, n=0Xnrn+lxn+...kxXr+... (1)
<
E
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Smoothing on an example

P the counts {n; = #;j appears in D, i = 1,...n} (or sufficient statistics or histogram)
P fingerprint (or histogram of histogram) of D as the counts of the counts
{ r« = #countsn; = k, for k =0,1,2...},and Ry = {j, nj =k, }

Example m = 26 alphabet letters

Data Counts n; Fingerprint ry
nj=0:a,b,g,j,1,m,n, rn=12= |{a,b,g,...,y,2}|
the red fox is quick p’1’:;'."’cy’dzf h,k,o r,s,t,u,x " i ;2*:|‘%{Cft}i’if’h"”’u’x}l
n = 16 letters |D=1: »d,1,h,%,0,9,1,8,t,1, rp=2=|{e,i
nj=2:e,i rB=...rn=0

k=oll\"w
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The problem with small probabilities and large m

i

average frequency of this n

m=50=|s|

G
n;in =100 samples

when 6; is small n must be very large to be able to observe i w.h.p.
when m is large most 6; are small

Hence, in a sample of size n, many outcomes j may have n; = 0, that is will not appear at
all.

type k Ry = {j € S, nj = k} is the subset of outcomes in S that appear k times in D

Why are types important?

GIML = nj/n, all i € type k will have the same estimated value GIML = k/n.

» If j,j/ € Ry, no matter what correction method you use, there is no reason to distinguish between
6 and 0;,. Hence 0; = 0,/ whenever j, j’ € Ry

» Let px = Pr[Ri]. We have py = r8; for any j € Ry.

» Because



Additive methods

> ldea: assume we have seen one more example of each value in S
» Algorithm: add 1 to each count and renormalize.

ni H1
gltarlace _ 1 T\o i forj=1:m (2)
J n+Hm
» Can be used also with another value, nj) < 1, in place of 1.

Then, it is called Bayesian mean smoothing or Dirichlet smothing or ELE!
Can be derived from Bayesian estimation, with the Dirichlet prior. In particular, we can take

P =1n=21
=3 e yen'
Bayes nj+ nj() . w
0: = —= forj=1:m J 3)
j n+ no ntmv

The “fictitious sample size” n® =32/ n? reflects the strength of our belief about the

0;'s; if we choose all nj o« %, we say that we have an uninformative prior,
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LIn natural language processing.



Problems with aditive smoothing

» Reduces all estimates in the same proportion
» Does not distinguish between spread and concentrated distributions.

P the unseen outcomes have the same probability no matter how the counts are distributed

>
> “Naive” method — DON'T USE IT
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Ney-Essen discounting — tax and redistribute

» Let r = the number of distinct values observed
r=m-n

> Idea
Tax substract 1 observation from every n; > 0
> i from each n; that “can afford it"
> total amount = r

Red redistribute the total amount equally to all counts.

This simple method works surprisingly well in practice.
» Algorithm

M= #(V\.’:Qvn
"khy=n= 2%
kso P

ro= Z min(nj,1) total tax collected
Jj=1m
nME = max(n; —1,0) 4+ r/m redistribute
J - J )
NE
GNE nj

J

= —~— estimate from new counts
n

Algorithm can be generalized to any “tax amount” ¢ > 0.

» Then, the total tax collected is D = >=; min(n;, 8)

P The smoothed counts are nJ’-VE = max(nj — 6,0) + D/m

(4)
(5)
(6)
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Properties of NE smoothing

April, 2023

Flexibility

> treats outcomes with n; =1 and n; = 0 the same
Intuition: any outcome i with n; < J is a rare outcome and should be treated in the same
way, no matter how many observations it actually has.
» For m large and r small
> (probability mass is concentrated on a few values)
» r small = unobserved outcomes receive little probability
» For m large and r large

» = m (large) = unobserved outcomes get n'f ~ 1

» For tax 6 # 1, note D < §r, redistributed mass % <6

30~
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April, 2023
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Witten-Bell discounting — probability of a new vaiue

o VJ V“—“}Q S
i. S ) Cb =L V\iﬁ ©
P ? ot ot Nl
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> Idea:

» Look at the sequence (xi, .. .x,) as a binary process: either we observe a value of X that was
observed before, or we observe a new one.
Assume that of m possible values r were observed (and m — r unobserved)
Then the probability of observing a new value is py = £.
Hence, set the probability of all unseen values of X to pg The other probabiliy estimates are
renormalized accordingly.

n 1 _ n; )
oWB _ { T T i nj >0 7)

vvy

' 1 Po — 1 r L —
m—r 1+pg m—r n+r nj = 0

Witten-Bell makes sense only when some n; counts are zero. If all n; > 0 then W-B smoothing
has undefined results.
WB smoothing has no parameter to choose (GOOD!)

o
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Good-Turing — Predicting the type of the next outcome

» This method has many versions (you will see why). Powerful for large data sets.
» First Idea
» Remember r, = #{j, nj = k} the counts of the counts. Naturally, n = 722, kr.
» Outcome i is of type k if nj = k. GT uses the data to estimate the probability of type k
k
pk:i fork=1:n (8)
n
» Second ldea is to use the probabilities p1, ... pg ... to predict the next outcome
P For example, what's the probability of seeing a new value?
It must be equal to p;, because this observation will have count n; = 1 once it is observed.
» Similarly, the probability of observing a type k outcome must be about py;1.
» Third There are r, outcomes j in type k, hence the probability mass for each of these is
1/ry of pxy1 which leads to (11).
» Algorithm
. or _ Pre1 _ (k+1)reir der nfT . cr  (k+Dr
if n; = k Gj -~ = with nj — (9)
ri nry n 10
In particular if n; =0
05T = P (10)
(]
» Remark GT transfers the probability mass of type k + 1 to type k
» This implies that

I‘IJ-GTI‘k = (k + 1)I‘k+1 if n; = k (11)



%z A W PR S
b +hne red j{oﬁ‘\sg\uﬁk K

Qk:uw y N+
hg=2 = ?r\lR.ﬂ’%;’ = T MW&
T:m — o [R] /= 2= L5
s "L T GT
g answer
v r?g %{Wﬂﬂl
ox12 U x l+ axd=n=145
G-T-
ot nel: QFEFR(A%’ Pl
b -t =0



Problems with Good-Turing

April, 2023

» When k is large, ry is small and noisy.
» Example The word “Jimmy” appears \1)immy = 8198 times in a corpus. But there may be no word
that appears 8197 times. Then, Oj;my =
» Remedy: “smooth” the ry values, i.e use (an estimate of) E[ry]

» Many proposals exist
> A simple one is tois to use Good-Turing only for type 0, and to rescale the other M estimates
down to ensure normalization.

a_na if nj =0
9T — r nrg J 12
i { 9?/“(17%) ifnj >0 (12)
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Comparison of the methods

April, 2023

Numerical values to exemplify the results: n = 1000, m = 1000, r = 100

Count n; 0 1 n; > 1
ML T _ 1 Wi
6)j 0 n — 1000 1000
eLapIace 1 _ 1 2 1 nj+1 — nj+1
j n+m 2000 n+m 1000 n+m 2000
gBaves L0 _q 0 _ 1 11 +1/m o 1 n+l/m . n
j ) — 5% T m m(n+1) = 106 n+1 7 103 n+l = 1000
9NE s=1 o % o % nj71+r/m o n
j 0 —_> mn 10 mn 10 n ~ 1000
pwB 1 r _ 1 1o _ 1 oo N
J \_e m—r n+r — 9900 n+r — 1100 n+r — 1100
Remarks

» Laplace shrinks ML estimates of large probabilities by factor of 2. Too much! (because
large G’JML are close to their true values)

> Bayes (with uninformative prior) affects large ML much less than small ones. Good

> Ney-Essen smooths more when r is larger; any n; is affected by less than 4.

> Ney-Essen estimates of 8VE for counts of 0 and 1 are equal to a fraction of # (this grows
with n as r grows with n).

> In Witten-Bell, the large GJML are shrunk depending on r, but independently of m.
Proportional, bad

» . ..but, if we overestimate m grossly, the overestimation will only affect the HJWB for the 0

counts, but none of the QJWB for the values observed. (true for NE as well).
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