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m Classical regime p <N

= Modern/Deep Learning/High dimensional regime N > n
Think N fixed, p increases, gamma=p/N
Training error = 0 (interpolation)
Test error decreases with p (or gamma)
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= Double descent curves for the generalization error
Random Fourier Features (RFF)
RelU 2 layer networks (with random first layer weights)
Random Forests, 12-Adaboost
Linear regression

m With and without noise



Double descent, the case p > N |.
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m Model y = <phi(x),beta >
m Large N (cover a compact data domain)
m Features random

m Min-norm solution beta*



Main intuition [Belkin et al.]
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m The target function h* is (mostly) smooth
l.e. | |h*| | ggusis small

m p > N, no noise, hence hp interpolates data
= Train to minimize | [h,| | subject to O training error

m Then | |h, || will decrease with p!



Random Fourier Features (RFF) |I

Random Fourier features. We first consider a popular class of non-linear parametric models
called Random Fourier Features (RFF') [30], which can be viewed as a class of two-layer neural
networks with fixed weights in the first layer. The RFF model family Hy with N (complex-valued)
parameters consists of functions h: R — C of the form

N
hz) =3 axd(z;ve) where ¢(z;v) == eV 102,
k=1

and the vectors v1,. .., vy are sampled independently from the standard normal distribution in R¢.
(We consider H v as a class of real-valued functions with 2N real-valued parameters by taking real
and imaginary parts separately.) Note that H is a randomized function class, but as N — oo, the
function class becomes a closer and closer approximation to the Reproducmg Kemel Hllbert Spa.ce
(RKHS) correspondmg to the Gaussmn kernel denoted by 'Hoo o

= RFF > H,_

finity



Theorem |I

Theorem 1. Fiz any h™ € H.,. Let (z1,y1),...,(Zn,yn) be independent and identically distributed
random variables, where x; is drawn uniformly at random from a compact cubcEl Q ¢ RY, and
yi = h*(zi) for all i. There exists absolute constants A, B > 0 such that, for any interpolating
h € Ha (i.e., h(x;) = y; for all i), so that with high probability

sup |h(z) — h*(z)| < Ae” B/ 8™ (|| B2 5, + [|Ala..) -
€N
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Boosted decision trees

Zero-one loss (%)
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o 4 ' Min-norm LS, SNR=1
Min-norm LS, SNR=5
Min-norm LS, misspecified
Optimal ridge, misspecified

Linear regression.. S [ b
[Hastie, Montanari, Rosset, 7oty
Tibshirani 2019] |

Risk

151 ear, n nlinear features
avet € same way

m Model correct, misspecified

m Noise level S 1gma affects
asymptotic e
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= Double descent is not
regularization

Figure 1: Asymptotic risk curves for the linear feature model, as a function of the limiting aspect ratio +y. The risks for min-norm
least squares, when SNR = 1 and SNR = 5, are plotted in black and red, respectively. These two match for y < 1 but differ for
7 > 1. The null risks for SNR = 1 and SNR = 5 are marked by the dotted black and red lines, respectively. The risk for the case of
a misspecified model (with significant approximation bias, @ = 1.5 in (13)), when SNR = 5, is plotted in green. Optimally-tuned
(equivalently, CV-tuned) ridge regression, in the same misspecified setup, has risk plotted in blue. The points denote finite-sample
risks, with n = 200, p = [7yn], across various values of y, computed from features X having i.i.d. N'(0, 1) entries. Meanwhile, the
“x" pomts mark finite-sample risks for a nonlinear feature model, with n = 200, p = [yn], d = 100, and X = @(ZW"), where
Z hasiid. N(0,1) entries, W has i.i.d. N(0,1/d) entries, and ¢(t) = a(|t| — b) is a “purely nonlinear” activation function, for
constants a, b. The theory predicts that this nonlinear risk should converge to the linear risk with p features (regardless of d). The
empirical agreement between these two—and the agreement in finite-sample and asymptotic risks—is striking.
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More refined analysis includes noise, non-linearity, data dimension n, ridge regularization

lambda [Mei, Montanari 2019]
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When is global minimum in overparametrized regime?

Enough data N/n > 1
lambda = 0 ( or min-norm LS)
p>>N

SNR | | beta | |/noise > 1

Bias, Variance strictly decreasing with p/N to > 0 limit
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