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Paradigms for clustering

Parametric clustering algorithms (K given)
Cost based / hard clustering
K-means clustering and the quadratic distortion
Model based / soft clustering

Issues in parametric clustering
Selecting K

Reading: Ch. 18



What is clustering? Problem and Notation

» Informal definition Clustering = Finding groups in data

> Notation D = {xi1, x2, ... Xxp} a data set

n = number of data points

K = number of clusters (K << n)

A = {G,G,...,Ck} a partition of D into disjoint subsets

k(i) = the label of point i
L(A) = cost (loss) of A (to be minimized)
»> Second informal definition Clustering = given n data points, separate them into K
clusters

» Hard vs. soft clusterings
» Hard clustering A: an iter_nlbelongs to only 1 cluster
» Soft clustering v = {7k }ik
Yk = the degree of membership of point i to cluster k

Z’yk,- =1 forall/
Kk

(usually associated with a probabilistic model)
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from Carreira-Perpinan, 2006

step 0
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Paradigms

Depend on type of data, type of clustering, type of cost (probabilistic or not), and constraints
(about K, shape of clusters)
> Data = vectors {x;} in RY
Parametric Cost based [hard]
(K known) Model based [soft]

Non-parametric  Dirichlet process mixtures [soft]
(K determined Information bottleneck [soft]
by algorithm) Modes of distribution [hard]
Gaussian blurring mean shift [hard]
» Data = similarities between pairs of points [Sj]i j—1.n, Sj = Sji > 0 Similarity based
clustering

Graph partitioning spectral clustering [hard, K fixed, cost based]

typical cuts [hard non-parametric, cost based]
Affinity propagation  [hard/soft non-parametric]



Classification vs Clustering

Classification Clustering
Cost (or Loss) £ Expectd error many! (probabilistic or not)
Supervised Unsupervised
Generalization Performance on new Performance on current
data is what matters data is what matters
K Known Unknown
“Goal” Prediction Exploration Lots of data to explore!
Stage Mature Still young

of field
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Parametric clustering algorithms

» Cost based
» Single linkage (min spanning tree)
» Min diameter
P Fastest first traversal (HS initialization)

» K-medians
» K-means
»> Model based (cost is derived from likelihood)
» EM algorithm
» “Computer science” /" Probably correct” algorithms
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[Supplement: Single Linkage Clustering]

Algorithm Single-Linkage

Input Data D = {x;};=1.,, number clusters K
1. Construct the Minimum Spanning Tree (MST) of D
2. Delete the largest K — 1 edges

> Cost L(A) = —miny ;s distance(Cy, Cxr)
where distance(A, B) = argmin ||x — y||
x€A, yeB

» Running time O(n?) one of the very few costs £ that can be optimized in polynomial time
» Sensitive to outliers!
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[Supplement: Single Linkage Clustering]

Height

L

,I' i
ff-‘y.,'. h

Observations




[Supplement: Minimum diameter clustering]
» Cost L(A) = max, max ||x; — x|
ij€Ck

diameter
» Mimimize the diameter of the clusters
P Optimizing this cost is NP-hard
> Algorithms
P Fastest First Traversal — a factor 2 approximation for the min cost
For every D, FFT produces a A so that
L < L(A) < 2L

P rediscovered many times




[Supplement: Minimum diameter clustering]

Algorithm Fastest First Traversal
Input Data D = {x;};=1.,, number clusters K
defines centers py.x € D

(many other clustering algorithms use centers)

1. pick p1 at random from D
2. for k=2:K

pk < argmax distance(x;, {p1:k—1})
D

3. for i = 1: n (assign points to centers)
k(i) = k if px is the nearest center to x;




[Supplement: K-medians clustering]

> Cost L(A) = >, 327 € Cyllxi — pl| with pye € D
» (usually) assumes centers chosen from the data points (analogy to median)
Exercise Show that in 1D argmin >, |xi — i is the median of {x;}
"

P optimizing this cost is NP-hard

P has attracted a lot of interest in theoretical CS (general from called “Facility location’




K-means clustering

Algorithm K-Means

Input Data D = {x;};=1.,, number clusters K
ialize centers p1, o, ... ux € RY at random
erate until convergence

1. for i =1 : n (assign points to clusters = new clustering)
k(i) = argmin [Ixi — gl |

2. for k = 1: K (recalculate centers)

1
o= = x
=] i€Cy

1)



K-means clustering

Algorithm K-Means

Input Data D = {x;};=1.,, number clusters K
ialize centers p1, o, ... ux € RY at random
erate until convergence

1. for i =1 : n (assign points to clusters = new clustering)
k(i) = argmin [Ixi — gl |

2. for k = 1: K (recalculate centers)
1
Hk = m Z Xi (1)
Kl iec,

» Convergence

P if A doesn't change at iteration m it will never change after that
P convergence in finite number of steps



K-means clustering

Algorithm K-Means

Input Data D = {x;};=1.,, number clusters K
ialize centers p1, o, ... ux € RY at random
erate until convergence

1. for i =1 : n (assign points to clusters = new clustering)
k(i) = argmin [Ixi — gl |

2. for k = 1: K (recalculate centers)
1
o= = x
=] i€Cy

» Convergence

P if A doesn't change at iteration m it will never change after that
> convergence in finite number of steps to local optimum of cost £ (defined next)

1)



K-means clustering

Algorithm K-Means

Input Data D = {x;};=1.,, number clusters K
ialize centers p1, o, ... ux € RY at random
erate until convergence

1. for i =1 : n (assign points to clusters = new clustering)
k(i) = argmin [Ixi — gl |

2. for k = 1: K (recalculate centers)
1
o= = x
=] i€Cy

» Convergence

P if A doesn't change at iteration m it will never change after that
> convergence in finite number of steps to local optimum of cost £ (defined next)
P therefore, initialization will matter

1)



The K-means cost

K
L) = > Ik — il 2

k=1i€Cy

P> K-means solves a least-squares problem
» the cost L is called quadratic distortion

Proposition The K-means algorithm decreases £(A) at every step.

Sketch of proof

> step 1: reassigning the labels can only decrease £
> step 2: reassigning the centers py can only decrease £
because p as given by (1) is the solution to

2
= min 37 I —ul 3)
i€Cy



[Supplement: Equivalent and similar cost functions]
» The distortion can also be expressed using intracluster distances
L(A) Z Z lIxi =112 4
i,j€C
> Correlation clustering is defined as optimizing the related criterion
K
2
=> > lxi—xll
k=1ijECk

» This cost is equivalent to the (negative) sum of (squared) intercluster distances

K
= 72 Z Z [|x; — x;||* + constant (5)

k=1i€C, jgCy
Proof of (6) Replace px as expressed in (1) in the expression of £, then rearrange the terms

Proof of (5) 3=, Z,‘chk [Ixi — XJH2 = Z Z [Ix — XJH -2k Zigck ngck [Ixi — XJHZ

i=1 j=1

N ——
independent of A



[Supplement: The K-means cost in matrix form — the assignment matrix]

» [ as sum of squared intracluster distances

K
1
£8) = 321 3 Il (6)
k=1 "kl jec,

>

» Define the assignment matrix associated with A by Z(A)
Let A ={C ={1,2,3}, & = {4,5}}

Cl C2 G G
1 0 1/vV3 0
unnorm¢ Ay _ | 10 _ 1/vV3 0
Z(A) = | 1 o | point i 28 =143 o
0 1 0 1//2
0 1 0 1/V2

Then Z is an orthogonal matrix (columns are orthornormal) and
L(A) = traceZ"TDZ  with Dy = ||x; — x;||? (7)
Let Z = {Z € R™K K orthonormal }

Proof of (7) Start from (2) and note that trace Z'AZ = 3, >ijec, LndAi = X jec, ﬁAij




[Supplement: The K-means cost in matrix form — the co-ocurrence
matrix|

n=5 A=(1,1,1,2,2), X(A) =

O O WIrwl-wl=
O O WlFwlFw|—
O O Wlrwl-wl=
NI O O O
NI O O O

1. X(A) is symmetric, positive definite, > 0 elements
2. X(A) has row sums equal to 1
3. trace X(A) = K

IX)IE = (X, X) = K
X(8) = Z(n)Z7(A)

K
2£(8) = 3 &t O Ik —xlP = 3(D.X(8))

with Dj = ||x; — x|




[Supplement: Symmetries between costs]

> K-means cost £(A) = miny, >y Yiec, |Ixi — pul?
> K-medians cost L(A) = minu, . 3¢ D iec, |1xi — pll

> Correlation clustering cost L(A) = 37,37 icc, |IXi — xi|?
> min Diameter cost £L2(A) = max, max; jec, |Ixi — X2




Initialization of the centroids p1.x

» |dea 1: start with K points at random
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» |dea 1: start with K points at random
P Idea 2: start with K data points at random




Initialization of the centroids p1.x

» Idea 1: start with K points at random
P Idea 2: start with K data points at random
What's wrong with chosing K data points at random?

Prob[ K out of K]
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The probability of hitting all K clusters with K samples approaches 0 when K > 5
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> |dea 3: start with K data points using Fastest First Traversal (greedy simple approach to
spread out centers)
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» ldea 4: k-means++ (randomized, theoretically backed approach to spread out centers)




Initialization of the centroids p1.x

» Idea 1: start with K points at random
P Idea 2: start with K data points at random
What's wrong with chosing K data points at random?

Prob[ K out of K]

s
08
08
07
06
05 o
0.4
03
02 L
0.1 ‘o

o
B n
o 2 4 6 8 10

The probability of hitting all K clusters with K samples approaches 0 when K > 5
> |dea 3: start with K data points using Fastest First Traversal (greedy simple approach to
spread out centers)
» ldea 4: k-means++ (randomized, theoretically backed approach to spread out centers)
> Idea 5: “K-logK"” Initialization (start with enough centers to hit all clusters, then prune
down to K)
For EM Algorithm , for K-means




The “K-logK" initialization

The K-logK Initialization (see also )
1. pick pd ., at random from data set, where K’ = O(K log K)
(this assures that each cluster has at least 1 center w.h.p)
2. run 1 step of K-means
3. remove all centers ,LL(,)( that have few points, e.g |Cy| < e—,’%,
4. from the remaining centers select K centers by Fastest First Traversal
4.1 pick p1 at random from the remaining {ug:K,}

42 for k =2: K, pug < argronax minj_1.,_1 ||u2, — ]|, i.e next py is furthest away from the
F‘k/
already chosen centers

5. continue with the standard K-means algorithm




K-means clustering with K-logK Initialization

Example using a mixture of 7 Normal distributions with 100 outliers sampled uniformly

K-LocK K =7, T =100, n=1100, c =1

40 40 40
30 30 8 35
20 20 ]

5 30

M
10 10|

25|
0 0 | S R —
1 _ 0 2 4 6
=0 0 10 20 30 40 50 60 =0 0 10 2 30 40 50 60 iteration
40
30|
20|
10| 2
0

2 4 6

“-i0 0 10 20 30 iteration




Model based clustering: Mixture models
Mixture in 1D

» The mixture density

K
Fx) = > mefi(x)
k=1

> fi(x) = the components of the mixture
P each is a density
» f called mixture of Gaussians if f, = Normal,,, 5,
a0s » 7, = the mixing proportions,
oo Zkleﬁkzl, 7, > 0.
5 : m i > model parameters 6 = (71.x, p1:K, L1:K)

Mixture in 2D




Model based clustering: Mixture models

Mixture in 1D
» The mixture density
K
0 Fx) = > mefi(x)
0.14] k:1
o > fi(x) = the components of the mixture
o P each is a density
o » f called mixture of Gaussians if f, = Normal,,, 5,
a0s » 7, = the mixing proportions,
oo Zklewkzl, 7, > 0.
5 : m i > model parameters 6 = (71.x, p1:K, L1:K)
» The degree of membership of point i to cluster k
Tk e (x
'YkidéfP[X,'ECk] = %())forizl:n,kzlzK
X
Mixture in 2D (8)

9 » depends on x; and on the model parameters




Criterion for clustering: Max likelihood

\4

denote 0 = (m1.x, p1:k, X1:x) (the parameters of the mixture model)
Define likelihood P[D|0] = T]7, f(xi)
Typically, we use the log likelihood

10) = ] [f() = D > mefi(xi) (9)
i=1 i=1 k

vy

denote oML = arg(rgnaxl(e)

OML determines a soft clustering v by (8)
a soft clustering v determines a 6 (see later)
Therefore we can write

L) = —1(6(7))

vyvyvy v




Algorithms for model-based clustering

Maximize the (log-)likelihood w.r.t 0

» directly - (e.g by gradient ascent in 6)
» by the EM algorithm (very popular!)
» indirectly, w.h.p. by "computer science” algorithms

w.h.p = with high probability (over data sets)



The Expectation-Maximization (EM) Algorithm

Algorithm Expectation-Maximization (EM)
Input Data D = {x;};=1.,, number clusters K

ialize parameters m1.x € R, p1.x € R, L. € R at random?
erate until convergence

E step (Optimize clustering) fori=1:n, k=1: K

o kak(x)
Yki F(x)
M step (Optimize parameters) set [, = 3.7 ; i, k = 1: K (number of points in cluster k)
Mk
Tk = , k=1:K
n
M _ 'YkiX
k= —Xi
= T
5 = Py (6 — ) (6 — )"
3

> 1.k, U1K, X1:k are the maximizers of [c(6) in (13)
> 2Tk =mn

15, need to be symmetric, positive definite matrices



[Supplement: The EM Algorithm — Motivation]

» Define the indicator variables

(1 ifieG
Zk =10 ifig G

s _ i=l:n
denote z = {zi} =5’k

» Define the complete log-likelihood

n K
1(0,2) = D> zig Inmifi(x)

i=1 k=1

> Elzi] = vii
» Then

n K
D> Elzllinm +Infi(xi)]

i=1 k=1

n K n K
DD im0 D i Infi(xi)]

i=1 k=1 i=1 k=1

E[l(0,2)]

(10)

(11)

(12)

(13)



» If & known, ~y4; can be obtained by (8)
(Expectation)

» If 4 known, Ty, uk, Xk can be obtained by separately maximizing the terms of E[lc]
(Maximization)




Brief analysis of EM

vVvyVvVYYVYY

n

K
Q(8,7) = Vi In 70 fie (i)
Zkz:l h/—’

i=1

each step of EM increases Q(0,~)

Q converges to a local maximum

at every local maxi of Q, 6 < ~ are fixed point
Q(0*,~*) local max for Q = /(6*) local max for /(6)
under certain regularity conditions § — ML

the E and M steps can be seen as projections

Exact maximization in M step is not essential.
Sufficient to increase Q.
This is called Generalized EM



The M step in special cases

» Note that the expressions for px, Xy = expressions for p, > in the normal distribution,
with data points x; weighted by ?—i’
M step
general case Y=, ?—:"(x,- — )i — )T
Y, =% Y o X SRy i =) =) T
n
“same shape & size" clusters
S il i — el
T = oy o & SRR
“round” clusters
K 2
_ 2 2 Sog P vhillXi— gl
Y = o°ly o° ! d

“round, same size" clusters

Exercise Prove the formulas above
» Note also that K-means is EM with X, = 02ly, 02 — 0 Exercise Prove it




More special cases introduce the following description for a covariance matrice in terms of volume, shape, alignment with axes (=determinant, trace,
e-vectors). The letters below mean: I=unitary (shape, axes), E=equal (for all k), V=unequal
Ell: equal volume, round shape (spherical covariance)

VII: varying volume, round shape (spherical covariance)

EELl: equal volume, equal shape, axis parallel orientation (diagonal covariance)

VEI: varying volume, equal shape, axis parallel orientation (diagonal covariance)

EVI: equal volume, varying shape, axis parallel orientation (diagonal covariance)

VVI: varying volume, varying shape, equal orientation (diagonal covariance)

EEE: equal volume, equal shape, equal orientation (ellipsoidal covariance)

EEV: equal volume, equal shape, varying orientation (ellipsoidal covariance)

VEV: varying volume, equal shape, varying orientation (ellipsoidal covariance)

VVV: varying volume, varying shape, varying orientation (ellipsoidal covariance)

)

VYVYYVYVYVYVYYVYY

=
S
3




EM versus K-means

> Alternates between cluster assignments and parameter estimation
» Cluster assignments ~yy; are probabilistic
» Cluster parametrization more flexible

15

Converges to local optimum of log-likelihood
Initialization recommended by K-logK method

» Modern algorithms with guarantees (for e.g. mixtures of Gaussians)
» Random projections
P Projection on principal subspace
» Two step EM (=K-logK initialization + one more EM iteration)



o & wWwN R

. Compute “distances” d(:“kn“k/

[Supplement: A two-step EM algorithm |

Similar to K-logK initialization for K-means

Assumes K spherical gaussians, separatlon [|ufie — ppre > CVdoy

. Pick K’ = O(K In K) centers p{ at random from the data
. Set 0'2 = %mink#k/ HH‘?( — },62,”2, 7Tk = l/K/

Run one E step and one M step —=> {ﬂk,uk,zy}(}k:l:w

HNk Mk/”
)7 1 1

T~

. Prune all clusters with 7} < 1/4K’
. Run Fastest First Traversal with distances d(,ui,,ui/) to select K of the remaining centers.

Set mp = 1/K.

. Run one E step and one M step = {72, ;2,02 }y=1.k

For any d,& > 0 if d large, n large enough, separation C > d'/* the Two step EM
algorithm obtains centers i so that

Il = 1| < |lmean(C{) — pf || + cowV/d



Selecting K

» Run clustering algorithm for K = Kpin : Kmax
> obtain Ak .. Dkmay OF YKoins -+ - VRmax
» choose best Ak (or k) from among them

» Typically increasing K = cost L decreases

» (L cannot be used to select K)
» Need to "penalize” £ with function of number parameters




Selecting K for mixture models

The BIC (Bayesian Information) Criterion

> let Ok = parameters for yx

> let #60x=number independent parameters in Ok
» e.g for mixture of Gaussians with full X,'s in d dimensions

Ok =K —1+ Kd +Kd(d —1)/2
#0k ( )/
K H1:K 1Kk

» define 40
K

BIC(0k) = 1(0x) — =

Inn

» Select K that maximizes BIC(0k)
P selects true K for n — 0O and other technical conditions (e.g parameters in compact set)
> but theoretically not justified (and overpenalizing) for finite n



Number of Clusters vs. BIC Eil (A), Vil (B), EEI (C), VEI (D),

EEV, 8 Cluster Solution
EVI (E), WVI (F), EEE (G), EEV (H), VEV (I), VWV (J)
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Number of Clusters vs. BIC Eil (A), Vil (B), EEI (C), VEI (D),
EVI (E), WVI (F), EEE (G), EEV (H), VEV (1), VWV (J)

800 1000
L

500
L

200
L

—400

number of clusters

(from )

EEV, 8 Cluster Solution




[Supplement: Stability methods for choosing K]

> like bootstrap, or crossvalidation
» Idea (implemented by )

for each K
1. perturb data D — D’
2. cluster D' — A}
3. compare Ak, A;(. Are they similar?
If yes, we say Ay is stable to perturbations

Fundamental assumption If Ak is stable to perturbations then K is the correct number of
clusters

> these methods are supported by experiments (not extensive)
» not YET supported by theory ...see for a summary of the area




Clustering with outliers

» What are outliers?

> let p = proportion of outliers (e.g 5%-10%)

»> Remedies
» mixture model: introduce a K + 1-th cluster with large (fixed) k.1, bound Xy away from 0
» K-means and EM

» robust means and variances

e.g eliminate smallest and largest pny /2 samples in mean computation (trimmed mean)
»  K-medians
» replace Gaussian with a heavier-tailed distribution (e.g. Laplace)

» single-linkage: do not count clusters with < r points

Is K meaningful when outliers present?
P alternative: non-parametric clustering




	Paradigms for clustering
	Parametric clustering algorithms (K given)
	Cost based / hard clustering
	K-means clustering and the quadratic distortion
	Model based / soft clustering

	Issues in parametric clustering
	Selecting K


