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Paradigms for clustering

Parametric clustering algorithms (K given)
Cost based / hard clustering
K-means clustering and the quadratic distortion
Model based / soft clustering

Issues in parametric clustering
Selecting K

Reading: Ch. 18
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What is clustering? Problem and Notation

I Informal definition Clustering = Finding groups in data
I Notation D = {x1, x2, . . . xn} a data set

n = number of data points
K = number of clusters (K << n)
∆ = {C1,C2, . . . ,CK} a partition of D into disjoint subsets

k(i) = the label of point i
L(∆) = cost (loss) of ∆ (to be minimized)

I Second informal definition Clustering = given n data points, separate them into K
clusters

I Hard vs. soft clusterings
I Hard clustering ∆: an item belongs to only 1 cluster
I Soft clustering γ = {γki}i=1:n

k=1:K
γki = the degree of membership of point i to cluster k∑

k

γki = 1 for all i

(usually associated with a probabilistic model)
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from Carreira-Perpinan, 2006

step 0
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Paradigms

Depend on type of data, type of clustering, type of cost (probabilistic or not), and constraints
(about K , shape of clusters)

I Data = vectors {xi} in Rd

Parametric Cost based [hard]
(K known) Model based [soft]

Non-parametric Dirichlet process mixtures [soft]
(K determined Information bottleneck [soft]
by algorithm) Modes of distribution [hard]

Gaussian blurring mean shift [hard]
I Data = similarities between pairs of points [Sij ]i,j=1:n, Sij = Sji ≥ 0 Similarity based

clustering
Graph partitioning spectral clustering [hard, K fixed, cost based]

typical cuts [hard non-parametric, cost based]
Affinity propagation [hard/soft non-parametric]
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Classification vs Clustering
Classification Clustering

Cost (or Loss) L Expectd error many! (probabilistic or not)
Supervised Unsupervised

Generalization Performance on new Performance on current
data is what matters data is what matters

K Known Unknown
“Goal” Prediction Exploration Lots of data to explore!

Stage Mature Still young
of field
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Parametric clustering algorithms

I Cost based
I Single linkage (min spanning tree)
I Min diameter

I Fastest first traversal (HS initialization)

I K-medians
I K-means

I Model based (cost is derived from likelihood)
I EM algorithm
I “Computer science”/”Probably correct” algorithms
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[Supplement: Single Linkage Clustering]

Algorithm Single-Linkage
Input Data D = {xi}i=1:n, number clusters K

1. Construct the Minimum Spanning Tree (MST) of D
2. Delete the largest K − 1 edges

I Cost L(∆) = −mink,k′ distance(Ck ,Ck′ )

where distance(A,B) = argmin
x∈A, y∈B

||x − y ||

I Running time O(n2) one of the very few costs L that can be optimized in polynomial time
I Sensitive to outliers!
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[Supplement: Single Linkage Clustering]
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[Supplement: Minimum diameter clustering]

I Cost L(∆) = maxk max
i,j∈Ck

||xi − xj ||︸ ︷︷ ︸
diameter

I Mimimize the diameter of the clusters
I Optimizing this cost is NP-hard

I Algorithms
I Fastest First Traversal – a factor 2 approximation for the min cost

For every D, FFT produces a ∆ so that

Lopt ≤ L(∆) ≤ 2Lopt

I rediscovered many times
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[Supplement: Minimum diameter clustering]

Algorithm Fastest First Traversal
Input Data D = {xi}i=1:n, number clusters K
defines centers µ1:K ∈ D

(many other clustering algorithms use centers)
1. pick µ1 at random from D
2. for k = 2 : K

µk ← argmax
D

distance(xi , {µ1:k−1})

3. for i = 1 : n (assign points to centers)
k(i) = k if µk is the nearest center to xi
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[Supplement: K-medians clustering]

I Cost L(∆) =
∑

k

∑
i ∈ Ck ||xi − µk || with µk ∈ D

I (usually) assumes centers chosen from the data points (analogy to median)
Exercise Show that in 1D argmin

µ

∑
i |xi − µ| is the median of {xi}

I optimizing this cost is NP-hard

I has attracted a lot of interest in theoretical CS (general from called “Facility location”
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K-means clustering

Algorithm K-Means

Input Data D = {xi}i=1:n, number clusters K
Initialize centers µ1, µ2, . . . µK ∈ Rd at random

Iterate until convergence
1. for i = 1 : n (assign points to clusters ⇒ new clustering)

k(i) = argmin
k
||xi − µk ||

2. for k = 1 : K (recalculate centers)

µk =
1

|Ck |
∑
i∈Ck

xi (1)

I Convergence
I if ∆ doesn’t change at iteration m it will never change after that
I convergence in finite number of steps to local optimum of cost L (defined next)
I therefore, initialization will matter
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Algorithm K-Means
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The K-means cost

L(∆) =
K∑

k=1

∑
i∈Ck

||xi − µk ||2 (2)

I K-means solves a least-squares problem
I the cost L is called quadratic distortion

Proposition The K-means algorithm decreases L(∆) at every step.

Sketch of proof

I step 1: reassigning the labels can only decrease L
I step 2: reassigning the centers µk can only decrease L

because µk as given by (1) is the solution to

µk = min
µ∈Rd

∑
i∈Ck

||xi − µ||2 (3)
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[Supplement: Equivalent and similar cost functions]

I The distortion can also be expressed using intracluster distances

L(∆) =
K∑

k=1

1

nk

∑
i,j∈Ck

||xi − xj ||2 (4)

I Correlation clustering is defined as optimizing the related criterion

L(∆) =
K∑

k=1

∑
i,j∈Ck

||xi − xj ||2

I This cost is equivalent to the (negative) sum of (squared) intercluster distances

L(∆) = −
K∑

k=1

∑
i∈Ck

∑
j 6∈Ck

||xi − xj ||2 + constant (5)

Proof of (6) Replace µk as expressed in (1) in the expression of L, then rearrange the terms

Proof of (5)
∑

k

∑
i,j∈Ck

||xi − xj ||2 =
n∑

i=1

n∑
j=1

||xi − xj ||2

︸ ︷︷ ︸
independent of ∆

−
∑

k

∑
i∈Ck

∑
j 6∈Ck
||xi − xj ||2



S
T

A
T

3
9

1
G

o
o

d
N

o
te

:
L

ec
tu

re

17

[Supplement: The K-means cost in matrix form – the assignment matrix]

I L as sum of squared intracluster distances

L(∆) =
K∑

k=1

1

|Ck |
∑

i,j∈Ck

||xi − xj ||2 (6)

I
I Define the assignment matrix associated with ∆ by Z(∆)

Let ∆ = {C1 = {1, 2, 3}, C2 = {4, 5}}

Zunnorm(∆) =

C1 C2
1 0
1 0
1 0
0 1
0 1

 point i
Z(∆) =

C1 C2
1/
√

3 0

1/
√

3 0

1/
√

3 0

0 1/
√

2

0 1/
√

2


Then Z is an orthogonal matrix (columns are orthornormal) and

L(∆) = traceZTDZ with Dij = ||xi − xj ||2 (7)

Let Z = {Z ∈ Rn×K , K orthonormal }

Proof of (7) Start from (2) and note that trace ZTAZ =
∑

k

∑
i,j∈Ck

ZikZjkAij =
∑

k

∑
i,j∈Ck

1
|Ck |

Aij
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[Supplement: The K-means cost in matrix form – the co-ocurrence
matrix]

n = 5, ∆ = (1, 1, 1, 2, 2), X (∆) =


1
3

1
3

1
3 0 0

1
3

1
3

1
3 0 0

1
3

1
3

1
3 0 0

0 0 0 1
2

1
2

0 0 0 1
2

1
2


1. X (∆) is symmetric, positive definite, ≥ 0 elements
2. X (∆) has row sums equal to 1
3. traceX (∆) = K

‖X (∆)‖2
F = 〈X ,X 〉 = K

X (∆) = Z(∆)ZT (∆)

2L(∆) =
K∑

k=1

1
|Ck |

∑
i,j∈Ck

||xi − xj ||2 =
1

2
〈D,X (∆)〉

with Dij = ||xi − xj ||2
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[Supplement: Symmetries between costs]

I K-means cost L(∆) = minµ1:K

∑
k

∑
i∈Ck
||xi − µk ||2

I K-medians cost L(∆) = minµ1:K

∑
k

∑
i∈Ck
||xi − µk ||

I Correlation clustering cost L(∆) =
∑

k

∑
i,j∈Ck

||xi − xj ||2
I min Diameter cost L2(∆) = maxk maxi,j∈Ck

||xi − xj ||2
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Initialization of the centroids µ1:K

I Idea 1: start with K points at random

I Idea 2: start with K data points at random
What’s wrong with chosing K data points at random?

The probability of hitting all K clusters with K samples approaches 0 when K > 5
I Idea 3: start with K data points using Fastest First Traversal (greedy simple approach to

spread out centers)
I Idea 4: k-means++ (randomized, theoretically backed approach to spread out centers)
I Idea 5: “K-logK” Initialization (start with enough centers to hit all clusters, then prune

down to K)
For EM Algorithm , for K-means
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The “K-logK” initialization

The K-logK Initialization (see also )
1. pick µ0

1:K ′ at random from data set, where K ′ = O(K log K)
(this assures that each cluster has at least 1 center w.h.p)

2. run 1 step of K-means
3. remove all centers µ0

k that have few points, e.g |Ck | < n
eK ′

4. from the remaining centers select K centers by Fastest First Traversal
4.1 pick µ1 at random from the remaining {µ0

1:K′}
4.2 for k = 2 : K , µk ← argmax

µ0
k′

minj=1:k−1 ||µ0
k′ − µj ||, i.e next µk is furthest away from the

already chosen centers

5. continue with the standard K-means algorithm
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K-means clustering with K-logK Initialization

Example using a mixture of 7 Normal distributions with 100 outliers sampled uniformly

K-logK K = 7, T = 100, n = 1100, c = 1
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Naive K = 7 T = 100, n = 1100
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Model based clustering: Mixture models

Mixture in 1D

−5 0 5 10 15
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Mixture in 2D

I The mixture density

f (x) =
K∑

k=1

πk fk (x)

I fk (x) = the components of the mixture
I each is a density
I f called mixture of Gaussians if fk = Normalµk ,Σk

I πk = the mixing proportions,∑
k = 1Kπk = 1, πk ≥ 0.

I model parameters θ = (π1:K , µ1:K , Σ1:K )

I The degree of membership of point i to cluster k

γki
def
= P[xi ∈ Ck ] =

πk fk (x)

f (x)
for i = 1 : n, k = 1 : K

(8)
I depends on xi and on the model parameters
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Criterion for clustering: Max likelihood

I denote θ = (π1:K , µ1:K , Σ1:K ) (the parameters of the mixture model)
I Define likelihood P[D|θ] =

∏n
i=1 f (xi )

I Typically, we use the log likelihood

l(θ) = ln
n∏

i=1

f (xi ) =
n∑

i=1

ln
∑
k

πk fk (xi ) (9)

I denote θML = argmax
θ

l(θ)

I θML determines a soft clustering γ by (8)
I a soft clustering γ determines a θ (see later)
I Therefore we can write

L(γ) = −l(θ(γ))
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Algorithms for model-based clustering

Maximize the (log-)likelihood w.r.t θ

I directly - (e.g by gradient ascent in θ)
I by the EM algorithm (very popular!)
I indirectly, w.h.p. by ”computer science” algorithms

w.h.p = with high probability (over data sets)
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The Expectation-Maximization (EM) Algorithm

Algorithm Expectation-Maximization (EM)
Input Data D = {xi}i=1:n, number clusters K

Initialize parameters π1:K ∈ R, µ1:K ∈ Rd , Σ1:K ∈ Rd×d at random1

Iterate until convergence
E step (Optimize clustering) for i = 1 : n, k = 1 : K

γki =
πk fk (x)

f (x)

M step (Optimize parameters) set Γk =
∑n

i=1 γki , k = 1 : K (number of points in cluster k)

πk =
Γk

n
, k = 1 : K

µk =
n∑

i=1

γki

Γk

xi

Σk =

∑n
i=1 γki (xi − µk )(xi − µk )T

Γk

I π1:K , µ1:K ,Σ1:K are the maximizers of lc (θ) in (13)
I
∑

k Γk = n

1Σk need to be symmetric, positive definite matrices



S
T

A
T

3
9

1
G

o
o

d
N

o
te

:
L

ec
tu

re

27

[Supplement: The EM Algorithm – Motivation]

I Define the indicator variables

zik =

{
1 if i ∈ Ck

0 if i 6∈ Ck
(10)

denote z̄ = {zki}i=1:n
k=1:K

I Define the complete log-likelihood

lc (θ, z̄) =
n∑

i=1

K∑
k=1

zki lnπk fk (xi ) (11)

I E [zki ] = γki
I Then

E [lc (θ, z̄)] =
n∑

i=1

K∑
k=1

E [zki ][lnπk + ln fk (xi )] (12)

=
n∑

i=1

K∑
k=1

γki lnπk +
n∑

i=1

K∑
k=1

γki ln fk (xi )] (13)
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I If θ known, γki can be obtained by (8)
(Expectation)

I If γki known, πk , µk ,Σk can be obtained by separately maximizing the terms of E [lc ]
(Maximization)
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Brief analysis of EM

Q(θ, γ) =
n∑

i=1

K∑
k=1

γki lnπk fk (xi )︸ ︷︷ ︸
θ

I each step of EM increases Q(θ, γ)
I Q converges to a local maximum
I at every local maxi of Q, θ ↔ γ are fixed point
I Q(θ∗, γ∗) local max for Q ⇒ l(θ∗) local max for l(θ)
I under certain regularity conditions θ −→ θML

I the E and M steps can be seen as projections

I Exact maximization in M step is not essential.
Sufficient to increase Q.
This is called Generalized EM
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The M step in special cases

I Note that the expressions for µk ,Σk = expressions for µ,Σ in the normal distribution,
with data points xi weighted by γki

Γk

M step
general case Σk =

∑n
i=1

γki
Γk

(xi − µk )(xi − µk )T

Σk = Σ Σ ←
∑n

i=1

∑K
k=1 γki (xi−µk )(xi−µk )T

n
“same shape & size” clusters

Σk = σ2
k Id σ2

k ←
∑n

i=1 γki ||xi−µk ||2

dΓk
“round” clusters

Σk = σ2Id σ2 ←
∑n

i=1

∑K
k=1 γki ||xi−µk ||2

nd
“round, same size” clusters

Exercise Prove the formulas above
I Note also that K-means is EM with Σk = σ2Id , σ

2 → 0 Exercise Prove it
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More special cases introduce the following description for a covariance matrice in terms of volume, shape, alignment with axes (=determinant, trace,
e-vectors). The letters below mean: I=unitary (shape, axes), E=equal (for all k), V=unequal

I EII: equal volume, round shape (spherical covariance)
I VII: varying volume, round shape (spherical covariance)
I EEI: equal volume, equal shape, axis parallel orientation (diagonal covariance)
I VEI: varying volume, equal shape, axis parallel orientation (diagonal covariance)
I EVI: equal volume, varying shape, axis parallel orientation (diagonal covariance)
I VVI: varying volume, varying shape, equal orientation (diagonal covariance)
I EEE: equal volume, equal shape, equal orientation (ellipsoidal covariance)
I EEV: equal volume, equal shape, varying orientation (ellipsoidal covariance)
I VEV: varying volume, equal shape, varying orientation (ellipsoidal covariance)
I VVV: varying volume, varying shape, varying orientation (ellipsoidal covariance)

(from )
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EM versus K-means

I Alternates between cluster assignments and parameter estimation
I Cluster assignments γki are probabilistic
I Cluster parametrization more flexible

I Converges to local optimum of log-likelihood
Initialization recommended by K-logK method

I Modern algorithms with guarantees (for e.g. mixtures of Gaussians)
I Random projections
I Projection on principal subspace
I Two step EM (=K-logK initialization + one more EM iteration)
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[Supplement: A two-step EM algorithm ]

Similar to K-logK initialization for K-means

Assumes K spherical gaussians, separation ||µtruek − µtrue
k′ ≥ C

√
dσk

1. Pick K ′ = O(K lnK) centers µ0
k at random from the data

2. Set σ0
k = d

2
mink 6=k′ ||µ0

k − µ
0
k′ ||

2, π0
k = 1/K ′

3. Run one E step and one M step =⇒ {π1
k , µ

1
k , σ

1
k}k=1:K ′

4. Compute “distances” d(µ1
k , µ

1
k′ ) =

||µ1
k−µ

1
k′ ||

σ1
k
−σ1

k′

5. Prune all clusters with π1
k ≤ 1/4K ′

6. Run Fastest First Traversal with distances d(µ1
k , µ

1
k′ ) to select K of the remaining centers.

Set π1
k = 1/K .

7. Run one E step and one M step =⇒ {π2
k , µ

2
k , σ

2
k}k=1:K

Theorem For any δ, ε > 0 if d large, n large enough, separation C ≥ d1/4 the Two step EM
algorithm obtains centers µk so that

||µk − µtruek || ≤ ||mean(C true
k )− µtruek ||+ εσk

√
d
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Selecting K

I Run clustering algorithm for K = Kmin : Kmax
I obtain ∆Kmin

, . . . ∆Kmax or γKmin
, . . . γKmax

I choose best ∆K (or γK ) from among them
I Typically increasing K ⇒ cost L decreases

I (L cannot be used to select K)
I Need to ”penalize” L with function of number parameters
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Selecting K for mixture models

The BIC (Bayesian Information) Criterion

I let θK = parameters for γK
I let #θK=number independent parameters in θK

I e.g for mixture of Gaussians with full Σk ’s in d dimensions

#θK = K − 1︸ ︷︷ ︸
π1:K

+ Kd︸︷︷︸
µ1:K

+ Kd(d − 1)/2︸ ︷︷ ︸
Σ1:K

I define

BIC(θK ) = l(θK )−
#θK

2
ln n

I Select K that maximizes BIC(θK )
I selects true K for n→∞ and other technical conditions (e.g parameters in compact set)
I but theoretically not justified (and overpenalizing) for finite n
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Number of Clusters vs. BIC EII (A), VII (B), EEI (C), VEI (D),

EVI (E), VVI (F), EEE (G), EEV (H), VEV (I), VVV (J)
EEV, 8 Cluster Solution

(from )
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Number of Clusters vs. BIC EII (A), VII (B), EEI (C), VEI (D),

EVI (E), VVI (F), EEE (G), EEV (H), VEV (I), VVV (J)
EEV, 8 Cluster Solution

(from )
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[Supplement: Stability methods for choosing K ]

I like bootstrap, or crossvalidation
I Idea (implemented by )

for each K
1. perturb data D → D′
2. cluster D′ → ∆′K
3. compare ∆K ,∆′K . Are they similar?

If yes, we say ∆K is stable to perturbations

Fundamental assumption If ∆K is stable to perturbations then K is the correct number of
clusters

I these methods are supported by experiments (not extensive)
I not YET supported by theory . . . see for a summary of the area
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Clustering with outliers

I What are outliers?
I let p = proportion of outliers (e.g 5%-10%)
I Remedies

I mixture model: introduce a K + 1-th cluster with large (fixed) ΣK+1, bound Σk away from 0
I K-means and EM

I robust means and variances
e.g eliminate smallest and largest pnk/2 samples in mean computation (trimmed mean)

I K-medians
I replace Gaussian with a heavier-tailed distribution (e.g. Laplace)

I single-linkage: do not count clusters with < r points

Is K meaningful when outliers present?
I alternative: non-parametric clustering


	Paradigms for clustering
	Parametric clustering algorithms (K given)
	Cost based / hard clustering
	K-means clustering and the quadratic distortion
	Model based / soft clustering

	Issues in parametric clustering
	Selecting K


