Lecture Notes IX - Clustering

Marina Meilă mmp@stat.washington.edu

> Department of Statistics University of Washington

> > May, 2023

Paradigms for clustering

Parametric clustering algorithms (K given)

Cost based / hard clustering K-means clustering and the quadratic distortion Model based / soft clustering

Issues in parametric clustering Selecting K

Reading: Ch. 18

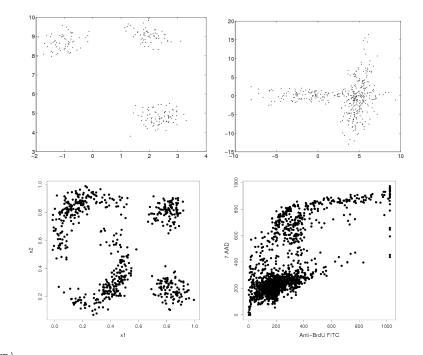
What is clustering? Problem and Notation

- Informal definition Clustering = Finding groups in data
- Second informal definition Clustering = given n data points, separate them into K clusters
- Hard vs. soft clusterings
 - Hard clustering Δ: an item belongs to only 1 cluster
 - **Soft** clustering $\gamma = {\gamma_{ki}}_{k=1:K}^{i=1:n}$

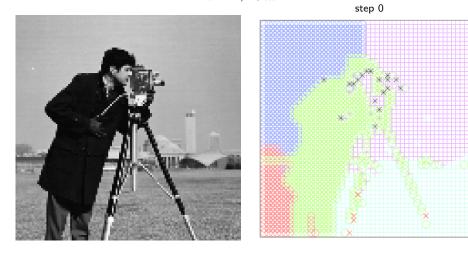
 γ_{ki} = the degree of membership of point *i* to cluster *k*

$$\sum_k \gamma_{ki} = 1 \quad \text{for all } i$$

(usually associated with a probabilistic model)



from Carreira-Perpinan, 2006



Paradigms

Depend on type of data, type of clustering, type of cost (probabilistic or not), and constraints (about K, shape of clusters)

Data = vectors	$\{x_i\}$ in \mathbb{R}^d
Parametric	Cost based [hard]
(K known)	Model based [soft]

Non-parametric	Dirichlet process mixtures [soft]
(K determined	Information bottleneck [soft]
by algorithm)	Modes of distribution [hard]
	Gaussian blurring mean shift [hard]

Data = similarities between pairs of points $[S_{ij}]_{i,j=1:n}$, $S_{ij} = S_{ji} \ge 0$ Similarity based clustering

Graph partitioning

spectral clustering [hard, K fixed, cost based] typical cuts [hard non-parametric, cost based] [hard/soft non-parametric]

Affinity propagation

Classification vs Clustering

	Classification	Clustering
Cost (or Loss) \mathcal{L}	Expectd error	many! (probabilistic or not)
	Supervised	Unsupervised
Generalization	Performance on new	Performance on current
	data is what matters	data is what matters
K	Known	Unknown
"Goal"	Prediction	Exploration Lots of data to explore!
Stage	Mature	Still young
of field		

Parametric clustering algorithms

- Cost based
 - Single linkage (min spanning tree)
 - Min diameter
 - Fastest first traversal (HS initialization)
 - K-medians
 - K-means
- Model based (cost is derived from likelihood)
 - EM algorithm
 - "Computer science" /" Probably correct" algorithms

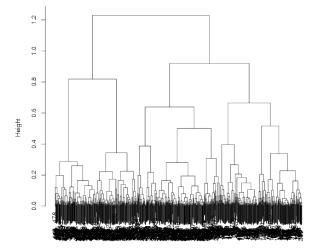
[Supplement: Single Linkage Clustering]

Algorithm Single-Linkage

Input Data $\mathcal{D} = \{x_i\}_{i=1:n}$, number clusters K

- 1. Construct the Minimum Spanning Tree (MST) of $\mathcal D$
- 2. Delete the largest K 1 edges
- ► **Cost** $\mathcal{L}(\Delta) = -\min_{k,k'} \operatorname{distance}(C_k, C_{k'})$ where $\operatorname{distance}(A, B) = \operatorname*{argmin}_{x \in A, y \in B} ||x - y||$
- Running time $O(n^2)$ one of the very few costs \mathcal{L} that can be optimized in polynomial time
- Sensitive to outliers!

[Supplement: Single Linkage Clustering]



[Supplement: Minimum diameter clustering]

• Cost
$$\mathcal{L}(\Delta) = \max_k \max_{\substack{i,j \in C_k}} ||x_i - x_j||$$

diameter

Mimimize the diameter of the clusters

Optimizing this cost is NP-hard

Algorithms

Fastest First Traversal – a factor 2 approximation for the min cost For every \mathcal{D} , FFT produces a Δ so that

$$\mathcal{L}^{opt} \leq \mathcal{L}(\Delta) \leq 2\mathcal{L}^{opt}$$

rediscovered many times

[Supplement: Minimum diameter clustering]

Algorithm Fastest First Traversal Input Data $\mathcal{D} = \{x_i\}_{i=1:n}$, number clusters Kdefines centers $\mu_{1:K} \in \mathcal{D}$ (many other clustering algorithms use centers) 1. pick μ_1 at random from \mathcal{D} 2. for k = 2: K $\mu_k \leftarrow \operatorname{argmax} \operatorname{distance}(x_i, \{\mu_{1:k-1}\})$ 3. for i = 1: n (assign points to centers) k(i) = k if μ_k is the nearest center to x_i

[Supplement: K-medians clustering]

• Cost $\mathcal{L}(\Delta) = \sum_k \sum_i i \in C_k ||x_i - \mu_k||$ with $\mu_k \in \mathcal{D}$

(usually) assumes centers chosen from the data points (analogy to median) Exercise Show that in 1D $\operatorname{argmin} \sum_{i} |x_i - \mu|$ is the median of $\{x_i\}$

optimizing this cost is NP-hard

has attracted a lot of interest in theoretical CS (general from called "Facility location"

Algorithm K-Means

Input Data $\mathcal{D} = \{x_i\}_{i=1:n}$, number clusters Ktialize centers $\mu_1, \mu_2, \dots, \mu_K \in \mathbb{R}^d$ at random terate until convergence

1. for i = 1 : n (assign points to clusters \Rightarrow new clustering)

$$k(i) = \operatorname{argmin}_{k} ||x_i - \mu_k||$$

2. for k = 1 : K (recalculate centers)

$$\mu_k = \frac{1}{|C_k|} \sum_{i \in C_k} x_i \tag{1}$$

Algorithm K-Means

Input Data $\mathcal{D} = \{x_i\}_{i=1:n}$, number clusters Ktialize centers $\mu_1, \mu_2, \dots, \mu_K \in \mathbb{R}^d$ at random terate until convergence

1. for i = 1 : n (assign points to clusters \Rightarrow new clustering)

$$k(i) = \operatorname{argmin}_{k} ||x_i - \mu_k||$$

2. for k = 1: K (recalculate centers)

$$\mu_k = \frac{1}{|C_k|} \sum_{i \in C_k} x_i \tag{1}$$

Convergence

If △ doesn't change at iteration m it will never change after that

convergence in finite number of steps

Algorithm K-Means

Input Data $\mathcal{D} = \{x_i\}_{i=1:n}$, number clusters Ktialize centers $\mu_1, \mu_2, \dots \mu_K \in \mathbb{R}^d$ at random terate until convergence

1. for i = 1 : n (assign points to clusters \Rightarrow new clustering)

$$k(i) = \operatorname{argmin}_{k} ||x_i - \mu_k||$$

2. for k = 1 : K (recalculate centers)

$$\mu_k = \frac{1}{|\mathcal{C}_k|} \sum_{i \in \mathcal{C}_k} x_i \tag{1}$$

Convergence

If △ doesn't change at iteration m it will never change after that

• convergence in finite number of steps to local optimum of cost \mathcal{L} (defined next)

Algorithm K-Means

Input Data $\mathcal{D} = \{x_i\}_{i=1:n}$, number clusters Ktialize centers $\mu_1, \mu_2, \dots, \mu_K \in \mathbb{R}^d$ at random terate until convergence

1. for i = 1 : n (assign points to clusters \Rightarrow new clustering)

$$k(i) = \operatorname{argmin}_{k} ||x_i - \mu_k||$$

2. for k = 1: K (recalculate centers)

$$\mu_k = \frac{1}{|\mathcal{C}_k|} \sum_{i \in \mathcal{C}_k} x_i \tag{1}$$

Convergence

- if Δ doesn't change at iteration *m* it will never change after that
- convergence in finite number of steps to local optimum of cost \mathcal{L} (defined next)
- therefore, initialization will matter

The K-means cost

$$\mathcal{L}(\Delta) = \sum_{k=1}^{K} \sum_{i \in C_k} ||x_i - \mu_k||^2$$
(2)

K-means solves a least-squares problem

• the cost \mathcal{L} is called **quadratic distortion**

Proposition The K-means algorithm decreases $\mathcal{L}(\Delta)$ at every step.

Sketch of proof

- step 1: reassigning the labels can only decrease L
- step 2: reassigning the centers μ_k can only decrease L because μ_k as given by (1) is the solution to

$$\mu_k = \min_{\mu \in \mathbb{R}^d} \sum_{i \in C_k} ||x_i - \mu||^2 \tag{3}$$

[Supplement: Equivalent and similar cost functions]

The distortion can also be expressed using intracluster distances

$$\mathcal{L}(\Delta) = \sum_{k=1}^{K} \frac{1}{n_k} \sum_{i,j \in C_k} ||x_i - x_j||^2$$
(4)

Correlation clustering is defined as optimizing the related criterion

$$\mathcal{L}(\Delta) = \sum_{k=1}^{K} \sum_{i,j \in C_k} ||x_i - x_j||^2$$

This cost is equivalent to the (negative) sum of (squared) intercluster distances

$$\mathcal{L}(\Delta) = -\sum_{k=1}^{K} \sum_{i \in C_k} \sum_{j \notin C_k} ||x_i - x_j||^2 + \text{constant}$$
(5)

Proof of (6) Replace μ_k as expressed in (1) in the expression of \mathcal{L} , then rearrange the terms **Proof of (5)** $\sum_k \sum_{i,j \in C_k} ||x_i - x_j||^2 = \sum_{i=1}^n \sum_{j=1}^n ||x_i - x_j||^2 - \sum_k \sum_{i \in C_k} \sum_{j \notin C_k} ||x_i - x_j||^2$ independent of Δ

[Supplement: The K-means cost in matrix form – the assignment matrix]

 \blacktriangleright $\mathcal L$ as sum of squared intracluster distances

$$\mathcal{L}(\Delta) = \sum_{k=1}^{K} \frac{1}{|C_k|} \sum_{i,j \in C_k} ||x_i - x_j||^2$$
(6)

• Define the assignment matrix associated with Δ by $Z(\Delta)$ Let $\Delta = \{C_1 = \{1, 2, 3\}, C_2 = \{4, 5\}\}$

$$Z^{unnorm}(\Delta) = \begin{bmatrix} C_1 & C_2 & & & C_1 & C_2 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} \text{ point } i \quad Z(\Delta) = \begin{bmatrix} C_1 & C_2 \\ 1/\sqrt{3} & 0 \\ 1/\sqrt{3} & 0 \\ 1/\sqrt{3} & 0 \\ 0 & 1/\sqrt{2} \\ 0 & 1/\sqrt{2} \end{bmatrix}$$

Then Z is an orthogonal matrix (columns are orthornormal) and

$$\mathcal{L}(\Delta) = \operatorname{trace} Z^T D Z \quad \text{with } D_{ij} = ||x_i - x_j||^2$$
(7)

Let $\mathcal{Z} = \{ Z \in \mathbb{R}^{n \times K}, K \text{ orthonormal} \}$

Proof of (7) Start from (2) and note that trace $Z^T A Z = \sum_k \sum_{i,j \in C_k} Z_{ik} Z_{jk} A_{ij} = \sum_k \sum_{i,j \in C_k} \frac{1}{|C_k|} A_{ij}$

[Supplement: The K-means cost in matrix form – the co-ocurrence matrix]

$$n = 5, \Delta = (1, 1, 1, 2, 2),$$

$$X(\Delta) = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

- 1. $X(\Delta)$ is symmetric, positive definite, ≥ 0 elements
- 2. $X(\Delta)$ has row sums equal to 1
- 3. trace $X(\Delta) = K$

$$\begin{aligned} \|X(\Delta)\|_{F}^{2} &= \langle X, X \rangle = K\\ X(\Delta) &= Z(\Delta)Z^{T}(\Delta) \end{aligned}$$

$$2\mathcal{L}(\Delta) = \sum_{k=1}^{K} \frac{1}{|\mathcal{C}_k|} \sum_{i,j \in \mathcal{C}_k} ||x_i - x_j||^2 = \frac{1}{2} \langle D, X(\Delta) \rangle$$

with $D_{ij} = ||x_i - x_j||^2$

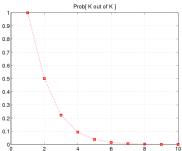
[Supplement: Symmetries between costs]

- K-means cost $\mathcal{L}(\Delta) = \min_{\mu_{1:K}} \sum_k \sum_{i \in C_k} ||x_i \mu_k||^2$
- K-medians cost $\mathcal{L}(\Delta) = \min_{\mu_{1:K}} \sum_{k} \sum_{i \in C_k} ||x_i \mu_k||$
- Correlation clustering cost $\mathcal{L}(\Delta) = \sum_k \sum_{i,j \in C_k} ||x_i x_j||^2$
- min Diameter cost $\mathcal{L}^2(\Delta) = \max_k \max_{i,j \in C_k} ||x_i x_j||^2$

▶ Idea 1: start with K points at random

- ▶ Idea 1: start with *K* points at random
- ▶ Idea 2: start with *K* data points at random

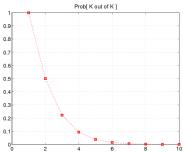
- ▶ Idea 1: start with K points at random
- Idea 2: start with K data points at random What's wrong with chosing K data points at random?



The probability of hitting all K clusters with K samples approaches 0 when K > 5

Idea 1: start with K points at random

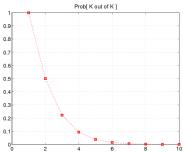
Idea 2: start with K data points at random What's wrong with chosing K data points at random?



The probability of hitting all K clusters with K samples approaches 0 when K > 5
▶ Idea 3: start with K data points using Fastest First Traversal (greedy simple approach to spread out centers)

Idea 1: start with K points at random

Idea 2: start with K data points at random What's wrong with chosing K data points at random?

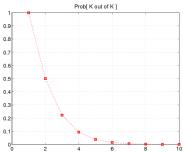


The probability of hitting all K clusters with K samples approaches 0 when K > 5

- Idea 3: start with K data points using Fastest First Traversal (greedy simple approach to spread out centers)
 - Idea 4: k-means++ (randomized, theoretically backed approach to spread out centers)

Idea 1: start with K points at random

Idea 2: start with K data points at random What's wrong with chosing K data points at random?



The probability of hitting all K clusters with K samples approaches 0 when K > 5

- Idea 3: start with K data points using Fastest First Traversal (greedy simple approach to spread out centers)
- Idea 4: k-means++ (randomized, theoretically backed approach to spread out centers)
- Idea 5: "K-logK" Initialization (start with enough centers to hit all clusters, then prune down to K)
 - For EM Algorithm , for K-means

The "K-logK" initialization

The K-logK Initialization (see also)

- pick μ⁰_{1:K'} at random from data set, where K' = O(K log K) (this assures that each cluster has at least 1 center w.h.p)
- 2. run 1 step of K-means
- 3. remove all centers μ_k^0 that have few points, e.g $|C_k| < \frac{n}{eK'}$
- 4. from the remaining centers select K centers by Fastest First Traversal
 - 4.1 pick μ_1 at random from the remaining $\{\mu_{1:K'}^0\}$

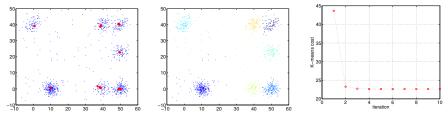
4.2 for
$$k = 2: K$$
, $\mu_k \leftarrow \underset{\substack{\mu_{k'} \\ \mu_{k'}}}{\operatorname{argmax}} \min_{j=1:k-1} ||\mu_{k'}^0 - \mu_j||$, i.e next μ_k is furthest away from the

already chosen centers

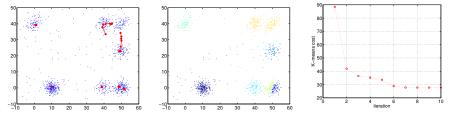
5. continue with the standard K-means algorithm

K-means clustering with K-logK Initialization

Example using a mixture of 7 Normal distributions with 100 outliers sampled uniformly K-LOGK K = 7, T = 100, n = 1100, c = 1



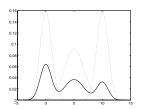
NAIVE K = 7 T = 100, n = 1100

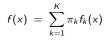


Model based clustering: Mixture models

Mixture in 1D

The mixture density

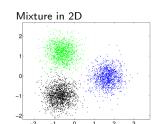




f_k(x) = the components of the mixture

 each is a density
 f called mixture of Gaussians if *f_k* = *Normal_{μk}, Σ_k π_k* = the mixing proportions, ∑_k = 1^K*π_k* = 1, *π_k* ≥ 0.

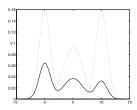
 model parameters θ = (*π*_{1:K}, *μ*_{1:K}, Σ_{1:K})



Model based clustering: Mixture models

Mixture in 1D

The mixture density

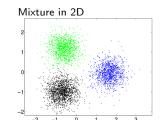


$$f(x) = \sum_{k=1}^{K} \pi_k f_k(x)$$

- *f_k(x)* = the components of the mixture
 each is a density
 f called mixture of Gaussians if *f_k* = Normal<sub>μ_k, Σ_k
 </sub>
- π_k = the mixing proportions, $\sum_k = 1^K \pi_k = 1, \quad \pi_k \ge 0.$ • model parameters $\theta = (\pi_{1:K}, \mu_{1:K}, \Sigma_{1:K})$
- The degree of membership of point i to cluster k

$$\gamma_{ki} \stackrel{\text{def}}{=} P[x_i \in C_k] = \frac{\pi_k f_k(x)}{f(x)} \text{ for } i = 1: n, k = 1: K$$
(8)

depends on x_i and on the model parameters



Criterion for clustering: Max likelihood

- denote $\theta = (\pi_{1:K}, \mu_{1:K}, \Sigma_{1:K})$ (the parameters of the mixture model)
- Define likelihood $P[\mathcal{D}|\theta] = \prod_{i=1}^{n} f(x_i)$
- Typically, we use the log likelihood

$$I(\theta) = \ln \prod_{i=1}^{n} f(x_i) = \sum_{i=1}^{n} \ln \sum_{k} \pi_k f_k(x_i)$$
(9)

- denote $\theta^{ML} = \operatorname{argmax}_{\theta} I(\theta)$
- θ^{ML} determines a soft clustering γ by (8)
- a soft clustering γ determines a θ (see later)
- Therefore we can write

$$\mathcal{L}(\gamma) = -I(\theta(\gamma))$$

Algorithms for model-based clustering

Maximize the (log-)likelihood w.r.t θ

- directly (e.g by gradient ascent in θ)
- by the EM algorithm (very popular!)
- indirectly, w.h.p. by "computer science" algorithms

w.h.p = with high probability (over data sets)

The Expectation-Maximization (EM) Algorithm

Algorithm Expectation-Maximization (EM)

Input Data $\mathcal{D} = \{x_i\}_{i=1:n}$, number clusters Ktialize parameters $\pi_{1:K} \in \mathbb{R}, \ \mu_{1:K} \in \mathbb{R}^d, \ \Sigma_{1:K} \in \mathbb{R}^{d \times d}$ at random¹ terate until convergence

E step (Optimize clustering) for i = 1 : n, k = 1 : K

$$\gamma_{ki} = \frac{\pi_k f_k(x)}{f(x)}$$

M step (Optimize parameters) set $\Gamma_k = \sum_{i=1}^n \gamma_{ki}$, k = 1 : K (number of points in cluster k)

$$\pi_{k} = \frac{\Gamma_{k}}{n}, \quad k = 1 : K$$

$$\mu_{k} = \sum_{i=1}^{n} \frac{\gamma_{ki}}{\Gamma_{k}} x_{i}$$

$$\Sigma_{k} = \frac{\sum_{i=1}^{n} \gamma_{ki} (x_{i} - \mu_{k}) (x_{i} - \mu_{k})^{T}}{\Gamma_{k}}$$

• $\pi_{1:K}, \mu_{1:K}, \Sigma_{1:K}$ are the maximizers of $l_c(\theta)$ in (13) • $\sum_k \Gamma_k = n$

 ${}^{1}\Sigma_{k}$ need to be symmetric, positive definite matrices

[Supplement: The EM Algorithm – Motivation]

Define the indicator variables

$$z_{ik} = \begin{cases} 1 & \text{if } i \in C_k \\ 0 & \text{if } i \notin C_k \end{cases}$$
(10)

denote $\bar{z} = \{z_{ki}\}_{k=1:K}^{i=1:n}$ • Define the complete log-likelihood

$$l_{c}(\theta, \bar{z}) = \sum_{i=1}^{n} \sum_{k=1}^{K} z_{ki} \ln \pi_{k} f_{k}(x_{i})$$
(11)

•
$$E[z_{ki}] = \gamma_{ki}$$

• Then

$$E[I_{c}(\theta,\bar{z})] = \sum_{i=1}^{n} \sum_{k=1}^{K} E[z_{ki}] [\ln \pi_{k} + \ln f_{k}(x_{i})]$$
(12)

$$= \sum_{i=1}^{n} \sum_{k=1}^{K} \gamma_{ki} \ln \pi_k + \sum_{i=1}^{n} \sum_{k=1}^{K} \gamma_{ki} \ln f_k(x_i)]$$
(13)

- If θ known, γ_{ki} can be obtained by (8)
 (Expectation)
- If γ_{ki} known, π_k, μ_k, Σ_k can be obtained by separately maximizing the terms of $E[I_c]$ (Maximization)

Brief analysis of EM

$$Q(\theta,\gamma) = \sum_{i=1}^{n} \sum_{k=1}^{K} \gamma_{ki} \ln \underbrace{\pi_k f_k(x_i)}_{\theta}$$

- each step of EM increases $Q(\theta, \gamma)$
- Q converges to a local maximum
- at every local maxi of ${\it Q},\, \theta\,\leftrightarrow\,\gamma$ are fixed point
- $Q(\theta^*, \gamma^*)$ local max for $Q \Rightarrow I(\theta^*)$ local max for $I(\theta)$
- under certain regularity conditions $\theta \longrightarrow \theta^{ML}$
- the E and M steps can be seen as projections
- Exact maximization in M step is not essential. Sufficient to increase Q. This is called Generalized EM

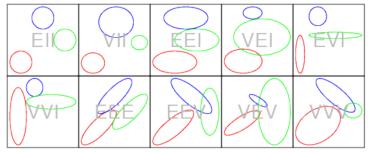
The M step in special cases

► Note that the expressions for μ_k , Σ_k = expressions for μ , Σ in the normal distribution, with data points x_i weighted by $\frac{\gamma_{ki}}{\Gamma_k}$

	M step
general case	$\frac{\boldsymbol{\Sigma}_{k} = \sum_{i=1}^{n} \frac{\gamma_{ki}}{\Gamma_{k}} (x_{i} - \mu_{k}) (x_{i} - \mu_{k})^{T}}{\boldsymbol{\Sigma} \leftarrow \frac{\sum_{i=1}^{n} \sum_{k=1}^{K} \gamma_{ki} (x_{i} - \mu_{k}) (x_{i} - \mu_{k})^{T}}{\boldsymbol{\Sigma}}$
$\Sigma_k = \Sigma$ "same shape & size" clusters	$\boldsymbol{\Sigma} \leftarrow \frac{\sum_{i=1}^{n} \sum_{k=1}^{K} \gamma_{ki} (\mathbf{x}_{i} - \boldsymbol{\mu}_{k}) (\mathbf{x}_{i} - \boldsymbol{\mu}_{k})^{T}}{n}$
$\Sigma_k = \sigma_k^2 I_d$ "round" clusters	$\sigma_k^2 \leftarrow \frac{\sum_{i=1}^n \gamma_{ki} x_i - \mu_k ^2}{d\Gamma_k}$
$\Sigma_k = \sigma^2 I_d$ "round, same size" clusters	$\sigma^2 \leftarrow \frac{\sum_{i=1}^n \sum_{k=1}^K \gamma_{ki} \mathbf{x}_i - \boldsymbol{\mu}_k ^2}{nd}$

Exercise Prove the formulas above

▶ Note also that K-means is EM with $\Sigma_k = \sigma^2 I_d, \ \sigma^2 \rightarrow 0$ Exercise Prove it



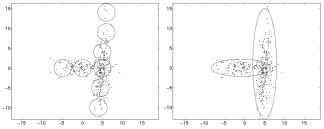
More special cases introduce the following description for a covariance matrice in terms of volume, shape, alignment with axes (=determinant, trace, e-vectors). The letters below mean: I=unitary (shape, axes), E=equal (for all k), V=unequal

- EII: equal volume, round shape (spherical covariance)
- VII: varying volume, round shape (spherical covariance)
- EEI: equal volume, equal shape, axis parallel orientation (diagonal covariance)
- VEI: varying volume, equal shape, axis parallel orientation (diagonal covariance)
- EVI: equal volume, varying shape, axis parallel orientation (diagonal covariance)
- VVI: varying volume, varying shape, equal orientation (diagonal covariance)
- EEE: equal volume, equal shape, equal orientation (ellipsoidal covariance)
- EEV: equal volume, equal shape, varying orientation (ellipsoidal covariance)
- VEV: varying volume, equal shape, varying orientation (ellipsoidal covariance)
- VVV: varying volume, varying shape, varying orientation (ellipsoidal covariance)

(from)

EM versus K-means

- Alternates between cluster assignments and parameter estimation
- Cluster assignments γ_{ki} are probabilistic
- Cluster parametrization more flexible



 Converges to local optimum of log-likelihood Initialization recommended by K-logK method

- Modern algorithms with guarantees (for e.g. mixtures of Gaussians)
 - Random projections
 - Projection on principal subspace
 - Two step EM (=K-logK initialization + one more EM iteration)

[Supplement: A two-step EM algorithm]

Similar to K-logK initialization for K-means

Assumes K spherical gaussians, separation $\|\mu_k^{true} - \mu_{k'}^{true} \ge C\sqrt{d}\sigma_k$

- 1. Pick $K' = \mathcal{O}(K \ln K)$ centers μ_k^0 at random from the data
- 2. Set $\sigma_k^0 = \frac{d}{2} \min_{k \neq k'} ||\mu_k^0 \mu_{k'}^0||^2$, $\pi_k^0 = 1/K'$
- 3. Run one E step and one M step $\implies \{\pi_k^1, \mu_k^1, \sigma_k^1\}_{k=1:K'}$
- 4. Compute "distances" $d(\mu_k^1, \mu_{k'}^1) = \frac{||\mu_k^1 \mu_{k'}^1||}{\sigma_k^1 \sigma_{k'}^1}$
- 5. Prune all clusters with $\pi_k^1 \leq 1/4K'$
- Run Fastest First Traversal with distances d(μ¹_k, μ¹_{k'}) to select K of the remaining centers. Set π¹_k = 1/K.
- 7. Run one E step and one M step $\implies \{\pi_k^2, \mu_k^2, \sigma_k^2\}_{k=1:K}$
- eorem For any $\delta, \varepsilon > 0$ if d large, n large enough, separation $C \ge d^{1/4}$ the Two step EM algorithm obtains centers μ_k so that

$$||\mu_k - \mu_k^{true}|| \le ||\text{mean}(C_k^{true}) - \mu_k^{true}|| + \varepsilon \sigma_k \sqrt{d}$$

Selecting K

- Run clustering algorithm for $K = K_{min} : K_{max}$
 - obtain $\Delta_{K_{min}}, \ldots \Delta_{K_{max}}$ or $\gamma_{K_{min}}, \ldots \gamma_{K_{max}}$
 - choose best Δ_K (or γ_K) from among them
- Typically increasing $K \Rightarrow \text{cost } \mathcal{L} \text{ decreases}$
 - $\blacktriangleright (\mathcal{L} \text{ cannot be used to select } K)$
 - Need to "penalize" L with function of number parameters

Selecting K for mixture models

The BIC (Bayesian Information) Criterion

- let θ_K = parameters for γ_K
- ▶ let $\#\theta_K$ =number independent parameters in θ_K
 - e.g for mixture of Gaussians with full Σ_k 's in d dimensions

$$\#\theta_{K} = \underbrace{K-1}_{\pi_{1:K}} + \underbrace{Kd}_{\mu_{1:K}} + \underbrace{Kd(d-1)/2}_{\Sigma_{1:K}}$$

define

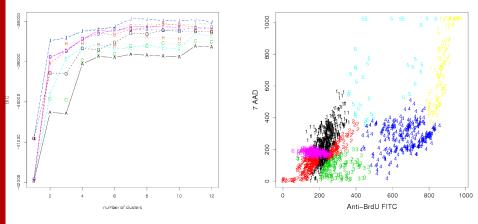
$$BIC(\theta_{K}) = I(\theta_{K}) - \frac{\#\theta_{K}}{2} \ln n$$

- Select K that maximizes $BIC(\theta_K)$
- selects true K for $n \to \infty$ and other technical conditions (e.g parameters in compact set)
- but theoretically not justified (and overpenalizing) for finite n

Number of Clusters vs. BIC EII (A), VII (B), EEI (C), VEI (D),

EEV, 8 Cluster Solution

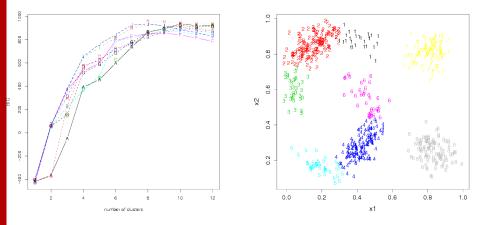
EVI (E), VVI (F), EEE (G), EEV (H), VEV (I), VVV (J)



(from)

Number of Clusters vs. BIC EII (A), VII (B), EEI (C), VEI (D), EVI (E), VVI (F), EEE (G), EEV (H), VEV (I), VVV (J)

EEV, 8 Cluster Solution



(from)

[Supplement: Stability methods for choosing K]

- like bootstrap, or crossvalidation
- Idea (implemented by)

for each K

- 1. perturb data $\mathcal{D} \rightarrow \mathcal{D}'$
- 2. cluster $\mathcal{D}' \to \Delta'_{\mathcal{K}}$
- 3. compare Δ_K , Δ'_K . Are they similar? If yes, we say Δ_K is stable to perturbations

Fundamental assumption If Δ_K is stable to perturbations then K is the correct number of clusters

- these methods are supported by experiments (not extensive)
- not YET supported by theory ... see for a summary of the area

Clustering with outliers

- What are outliers?
- let p = proportion of outliers (e.g 5%-10%)
- Remedies
 - mixture model: introduce a K + 1-th cluster with large (fixed) Σ_{K+1} , bound Σ_k away from 0
 - K-means and EM
 - robust means and variances
 e.g eliminate smallest and largest pnk/2 samples in mean computation (trimmed mean)
 - K-medians
 - replace Gaussian with a heavier-tailed distribution (e.g. Laplace)
 - single-linkage: do not count clusters with < r points</p>
 - Is K meaningful when outliers present?
 - alternative: non-parametric clustering