Lecture Notes I – (Discrete) Sample spaces and the Multinomial

Marina Meilă mmp@stat.washington.edu

> Department of Statistics University of Washington

January 2025

Sample space, outcome, event, probability,...

Discrete sample spaces

Repeated independent trials, Binomial, Multinomial

Reading: Ch. 2, 3

Basic vocabulary

- ► *S* sample space (outcome space)
- $x \in S$ outcome
- $E \subseteq S \text{ event}$ $2^{S} = \{E \mid E \subseteq S\} \equiv \mathcal{P}(S)$
- $ightharpoonup P: 2^S
 ightharpoonup [0,1]$ probability distribution
- ▶ $f: S \rightarrow \mathbb{R}$ random variable
- $ightharpoonup f: S
 ightharpoonup \mathbb{R}$ statistic

Discrete sample spaces

- ► *S* sample space (outcome space)
- $x \in S$ outcome
- $E \subseteq S \text{ event}$ $2^{S} = \{E \mid E \subseteq S\} \equiv \mathcal{P}(S)$
- $P: 2^S \rightarrow [0,1]$ probability distribution
- ▶ $f: S \rightarrow \mathbb{R}$ random variable
- $ightharpoonup f: S
 ightarrow \mathbb{R}$ statistic

A coin is tossed 4 times, and the probability of 1 is p > 0.5. The outcomes, their probability and their counts are (in order of decreasing probability):

outcome x	n_0	n_1	P(x)	event
1111	0	4	p^4	E _{0,4}
1110	1	3	$p^3(1-p)^1$	E _{1,3}
1101	1	3	$p^3(1-p)^1$	
1011	1	3	$p^{3}(1-p)^{1}$	
0111	1	3	$p^3(1-p)^1$	
1100	2	2	$p^2(1-p)^2$	E _{2,2}
1010	2	2	$p^2(1-p)^2$	
1001	2	2	$p^2(1-p)^2$	
0110	2	2	$p^2(1-p)^2$	
0101	2	2	$p^2(1-p)^2$	
0011	2	2	$p^2(1-p)^2$	
0100	3	1	$p^1(1-p)^3$	E _{3,1}
1000	3	1	$p^1(1-p)^3$	
0010	3	1	$p^1(1-p)^3$	
0001	3	1	$p^1(1-p)^3$	
0000	4	0	$(1-p)^4$	E _{4,0}

Repeated independent trials, Binomial, Multinomial