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The problem with estimating small probabilities e—-

Definitions and setup <—-
Additive methods (Laplace, Dirichlet, Bayesian, ELE) & W “d‘r
—

Discounting (Ney-Essen)
N &

Multiplicative smoothing: Estimating the next outcome (Witten-Bell, Good: Turing) e
——r e%ee

Back-off or shrinkage — mixing with simpler models

~ ot
[exieex netes | = Fm ‘mte cture
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Datg histogram, n=15000 samples from distribution over m=9933 chars

observed counts n

600 etz ror . , - . .
[0 Summary Of “odays leclure
- ‘ﬁ. WB;VEL'_:% 935‘?3\;}"“”‘
500 | ' 1
e oWy
. ML - dow® i
- 400 &;{”ez ®) Ramgt =7 Tk |
3000 “'His‘bynm'* counts= (M; e §&S) ]
- Pl
200 r Iy }l d R 24 ]
Re~ -
he — %Wed Ly ne= 3%
“3:9_0_.\_ RO = l\ o !3 :LO?JMQ?L
- HQV)MI\/‘Q"\ once s
‘2' } [v(fo
0 = L L I | 1
0 1000 2000 3000 4000 5000 6000 7000

chars in order of their frequency



8000

7000

6000

5000

4000

3000

2000

1000

fingerprint Mo

n=15000, m=9933 max n. = 572 Mos"

. . | —i . froguadl
chageder
*h- 1 1 1 1 1
100 200 300 400 500 600



\ exien no‘\-eS\

Definitions and setup

January, 2025

We will look at estimating categorical distributions from samples, when the number of
outcomes m is large.

> Let S = {1,...m} be the sample space, and P = (01, ...0m,) a distribution over S.

» We draw n independent samples from P, obtaining the data set D

> Define the counts {n; = #;j appears in D, i =1,...n}. The counts are also called
sufficient statistics or histogram.

» Define the fingerprint (or histogram of histogram) of D as the counts of the counts, i.e
{ r« = #countsn; = k, for k =0,1,2...}
Example m = 26 alphabet letters

Data Counts n; Fingerprint ry
nj=0:a,b,g,j,1,m,n, rn=12=|{a,b,g,...,y,2}|
the red fox is quick Efi’f_’y’;f - . n i;2,: |{c?d,f,h,.,,,u,x}|
n = 16 letters j=1:c,d,f,h,k,0,q,r,5,%,u,x rn=2=|{e,i}|
nj=2:e,i B=...rm=
2 nj=0:a,b,c...,x,z n=26—-6—1—-1—1=17
] nj=1:f,i,n,r,t,w n=6=|{f,i,n,r,t,w}|
3 ho ho who s on first nj=2:s rn=1=|{s}|
H n =15 letters nj=3:h r3 =1 = |{h}|
g nj=4:o0 rp=1=|{o}]
2
% > It is easy to verify that nj € 0: n, hence ro., may be non-zero (but roy1,n12,... = 0), and
8 that
2 m=r+n+...p, n=0Xnrn+lxn+...kxXr+... (1)
<
E
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The problem with small probabilities and large m

January, 2025

m=50=|s|

average frequency of this n

ety
il

G 13
n;in =100 samples

» when 6; is small n must be very large to be able to observe i w.h.p.
» when m is large most 6; are small

> Hence, in a sample of size n, many outcomes j may have n; = 0, that is will not appear at
all.

> type k Ry = {j € S, nj = k} is the subset of outcomes in S that appear k times in D
» Why are types important?
» Because GIML = nj/n, all i € type k will have the same estimated value GIML = k/n.
» If j,j/ € Ry, no matter what correction method you use, there is no reason to distinguish between
6 and 0;,. Hence 0; = 0,/ whenever j, j’ € Ry
» Let px = Pr[Ri]. We have py = r8; for any j € Ry.
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The problem with estimating small probabilities
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The problem with estimating small probabilities
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The problem with estimating small probabilities
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Smoothing on an example

P the counts {n; = #;j appears in D, i = 1,...n} (or sufficient statistics or histogram)
P fingerprint (or histogram of histogram) of D as the counts of the counts
{ r« = #countsn; = k, for k =0,1,2...},and Ry = {j, nj =k, }

Example m = 26 alphabet letters
-

Data co— Counts n; Fingerprint ry
nj=0:a,b,g,j,1,m,n, iy =12 = |{a,b,g,...,y,2}|
the red fox Gs quick P,i,w.,y,z n=12= |{cfd,f,h,,..,u,x}
n = 16 letters nj=1:c,d,f,h,k,0,q,r,s,t,u,x r=2=|{e,i}|
nj=2:e,i rn=...n=20

ry,= lh=m-lo =
M= Q. Jatl by =6 = # oufeomes



Smoothing on an example
ML, Lap, Ne‘,-’ﬁsse.n,

P the counts {n; = #j appears in D, i = 1,...n} (or sufficient statistics or histogram)
P fingerprint (or histogram of histogram) of D as the counts of the counts
{ r« = #countsn; = k, for k =0,1,2...},and Ry = {j, nj =k, }

Example m = 26 alphabet letters

Data Counts n; Fingerprint ry
nj=0:a,b,g,j,1,m,n, rn=12=|{a,b,g,...,y,2}|
: ; PsV,W,¥,2 n = 1R2={{e;d;fh; ... ,u,x}|
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Smoothing on an example

January, 2025

P the counts {n; = #j appears in D, i = 1,...n} (or sufficient statistics or histogram)
P fingerprint (or histogram of hlstogram) of D as the counts of the counts

{ r« = #countsn; = k, for k =0,1,2...},and Ry = {j, nj =k, } #omd

Example m = 26 alphabet letters mmg
Data Counts n; Fingerprint ry
nj=0:a,b,g,j,1,m,n, rn=12=|{a,b,g,...,y,2}|
the red fox is quick PV, W,y,2 n=12= |{Cfd’f’h" -oou,x}
n — 16 letters nj=1:c,d,f,h,k,0,q,r,s,t,u,x n=2=|{e,i}|
nj=2:e,i rn=...rn=0

= 7. e RUB
pAarge oM FT=mM = 4 "

b Saacil A &Lé{f"
n pnall =M= T ¢ 9:, ;,: //;\Ma

8
2
3
5
s
i
s
&
2
g
2
2
s
3
2
g
3
8
o
=
3
e
<
[
a




Witten-Bell discounting — probability of a new vall,be
120,211 EZ) c

January, 2025

ﬂwokyed-ﬁox.ls

> Idea:
» Look at the sequence (xi, .. .x,) as a binary process: either we observe a value of X that was
observed before, or we observe a new one.
» Assume that of m possible values r were observed (and m — r unobserved)
P Then the probability of observing a new value is py = I
P Hence, set the probability of all unseen values of X to pg The other probabiliy estimates are
renormalized accordingly.

nio1 nj .
QWB _ n l14py n+tr nj > 0 (7)
j - 1 Po — 1 r n =0

m—r 14+pg m—r n+r J

Witten-Bell makes sense only when some n; counts are zero. If all n; > 0 then W-B smoothing
has undefined results.
WB smoothing has no parameter to choose (GOOD!)
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Additive methods (Laplace. )

> ldea: assume we have seen one more example of each value in S
» Algorithm: add 1 to each count and renormalize.

ni+1
glarlace _ T - + forj=1:m (2)
J n+m
» Can be used also with another value, nj) < 1, in place of 1.

Then, it is called Bayesian mean smoothing or Dirichlet smothing or ELE!
Can be derived from Bayesian estimation, with the Dirichlet prior. In particular, we can take

P=1n=21
y =4 .
n; + n;
pBaves — J J forj=1:m 3)
J n+ ng

The “fictitious sample size” n® = Zj'll nJQ reflects the strength of our belief about the

0;'s; if we choose all nj o« %, we say that we have an uninformative prior,

LIn natural language processing.
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Problems with aditive smoothing

January, 2025

» Reduces all estimates in the same proportion
» Does not distinguish between spread and concentrated distributions.

P the unseen outcomes have the same probability no matter how the counts are distributed

>
> “Naive” method — DON'T USE IT

8
3
s
3
S
&
s
&
2
g
2
z
=
5
z
3
E}
3
]
=
&
=
<
=
7




January, 2025

8
3
3
5
s
i
s
&
2
g
2
2
s
3
2
g
3
8
o
=
3
il
<
[
a

Ney-Essen discounting — tax and redistribute

» Let r = the number of distinct values observed
r=m-n

> Idea
Tax substract 1 observation from every n; > 0
> i.e from each n; that “can afford it"
> total amount = r
Red redistribute the total amount equally to all counts.

This simple method works surprisingly well in practice.
» Algorithm

\ exdoe noﬁﬂ

ro= Z min(nj,1) total tax collected
Jj=1m
nME = max(n; —1,0) 4+ r/m redistribute
J - J )
NE
GNE nj

J

= —— estimate from new counts
n

Algorithm can be generalized to any “tax amount” ¢ > 0.

» Then, the total tax collected is D = >=; min(n;, 8)

P The smoothed counts are nJ’-VE = max(nj — 6,0) + D/m

(4)
(5)
(6)



Properties of NE smoothing \ exir no*l-es\
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Flexibility

> treats outcomes with n; =1 and n; = 0 the same
Intuition: any outcome i with n; < J is a rare outcome and should be treated in the same

way, no matter how many observations it actually has.
» For m large and r small

> (probability mass is concentrated on a few values)
» r small = unobserved outcomes receive little probability

» For m large and r large
» = m (large) = unobserved outcomes get n'f ~ 1
» For tax 6 # 1, note D < §r, redistributed mass % <6

30~

8
K
e
3
T
2
e
2
2
s
]
H
]
H
8
o
=
3
3
il
<
E
&




Witten-Bell discounting — probability of a new value | exiet notes \
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> Idea:
» Look at the sequence (xi, .. .x,) as a binary process: either we observe a value of X that was
observed before, or we observe a new one.
» Assume that of m possible values r were observed (and m — r unobserved)
P Then the probability of observing a new value is py = I
P Hence, set the probability of all unseen values of X to pg The other probabiliy estimates are
renormalized accordingly.

nio1 nj .
QWB _ n l14py n+tr nj > 0 (7)
j - 1 Po — 1 r n =0

m—r 14+pg m—r n+r J

Witten-Bell makes sense only when some n; counts are zero. If all n; > 0 then W-B smoothing
has undefined results.
WB smoothing has no parameter to choose (GOOD!)
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Good-Turing — Predicting the type of the next outcome\ exin noksx
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» This method has many versions (you will see why). Powerful for large data sets.
» First Idea

» Remember r, = #{j, nj = k} the counts of the counts. Naturally, n = 722, kr.
» Outcome i is of type k if nj = k. GT uses the data to estimate the probability of type k

ki
pk=— fork=1:n (8)

» Second ldea is to use the probabilities p1, ... pg ... to predict the next outcome
P For example, what's the probability of seeing a new value?
It must be equal to p;, because this observation will have count n; = 1 once it is observed.
» Similarly, the probability of observing a type k outcome must be about py;1.
» Third There are r, outcomes j in type k, hence the probability mass for each of these is
1/ry of pxy1 which leads to (11).

» Remark GT transfers the probability mass of type k + 1 to type k
» This implies that

. » Algorithm

f . or _ Pis1 _ (k+1)ne der ng” ] or _ (k+ D)

E ifnj=k 07 =— =-——""—""-= “— with n?! =—"= (9)
3 J ri nry n J re

_§ In particular if n; =0

o P1

F QJ.GT == (10)
s 0

3

I‘IJ-GTI‘k = (k + 1)I‘k+1 if n; = k (11)
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Problems with Good-Turing \ exire no%s\

» When k is large, ry is small and noisy.
» Example The word “Jimmy” appears njimmy = 8196 times in a corpus. But there may be no word
that appears 8197 times. Then, Oj;my =0!
» Remedy: “smooth” the ry values, i.e use (an estimate of) E[ry]

» Many proposals exist
> A simple one is tois to use Good-Turing only for type 0, and to rescale the other M estimates
down to ensure normalization.

a_na if nj =0
9T — r nrg J 12
i { 9?/“(17%) ifnj >0 (12)
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Comparison of the methods

January, 2025

Numerical values to exemplify the results: n = 1000, m = 1000, r = 100

Count n; 0 1 n; > 1
ML T _ 1 Wi
6)j 0 n — 1000 1000
eLapIace 1 1 2 _ 1 nit+l _ mtl
j n+m — 2000 n+m — 1000 ntm — 2000
gBaves L0 _q 0 _ 1 1,1 WYmo o1 ntl/mo o
j ) — 5% T m m(n+1) = 106 n+1 7 103 n+l = 1000
ONE 5§ —1 ro_ 1 ro_ 1 n=lte/m
JWB’ - L mn — 10% 1 mn - 1014 n "~ 1000
- - _L1_ A 1 o T
0] m—r n+r — 9900 n+r — 1100 n+r — 1100
Remarks

» Laplace shrinks ML estimates of large probabilities by factor of 2. Too much! (because
large G’JML are close to their true values)

> Bayes (with uninformative prior) affects large ML much less than small ones. Good

> Ney-Essen smooths more when r is larger; any n; is affected by less than 4.

> Ney-Essen estimates of 8VE for counts of 0 and 1 are equal to a fraction of # (this grows
with n as r grows with n).

> In Witten-Bell, the large GJML are shrunk depending on r, but independently of m.
Proportional, bad

» . ..but, if we overestimate m grossly, the overestimation will only affect the HJWB for the 0

counts, but none of the QJWB for the values observed. (true for NE as well).
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