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The problem with estimating small probabilities

Definitions and setup

Additive methods (Laplace, Dirichlet, Bayesian, ELE)

Discounting (Ney-Essen)

Multiplicative smoothing: Estimating the next outcome (Witten-Bell, Good-Turing)

Back-o↵ or shrinkage – mixing with simpler models
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The problem with estimating small probabilities



S
T
A
T

3
9
1
G
o
o
d
N
o
te
:
D
is
cr
et
e
sm

al
l
pr
o
b
ab

ili
ti
es

Ja
n
u
ar
y,

2
0
2
5

4

Definitions and setup

We will look at estimating categorical distributions from samples, when the number of
outcomes m is large.

I Let S = {1, . . .m} be the sample space, and P = (✓1, . . . ✓m) a distribution over S .
I We draw n independent samples from P, obtaining the data set D
I Define the counts {nj = #j appears in D, i = 1, . . . n}. The counts are also called

su�cient statistics or histogram.
I Define the fingerprint (or histogram of histogram) of D as the counts of the counts, i.e

{ rk = #counts nj = k, for k = 0, 1, 2 . . .}
Example m = 26 alphabet letters
Data Counts ni Fingerprint rk

the red fox is quick
n = 16 letters

nj =0:a,b,g,j,l,m,n,
p,v,w,y,z
nj =1:c,d,f,h,k,o,q,r,s,t,u,x
nj =2:e,i

r0 = 12 = |{a,b,g,...,y,z}|
r1 = 12 = |{c,d,f,h,...,u,x}|
r2 = 2 = |{e,i}|
r3 = . . . rn = 0

ho ho who s on first
n = 15 letters

nj = 0 : a,b,c...,x,z
nj = 1 : f,i,n,r,t,w
nj = 2 : s
nj = 3 : h
nj = 4 : o

r0 = 26 � 6 � 1 � 1 � 1 = 17
r1 = 6 = |{f,i,n,r,t,w}|
r2 = 1 = |{s}|
r3 = 1 = |{h}|
r4 = 1 = |{o}|

I It is easy to verify that nj 2 0 : n, hence r0:n may be non-zero (but rn+1,n+2,... = 0), and
that

m = r0 + r1 + . . . rn n = 0⇥ r0 + 1⇥ r1 + . . . k ⇥ rk + . . . (1)



S
T
A
T

3
9
1
G
o
o
d
N
o
te
:
D
is
cr
et
e
sm

al
l
pr
o
b
ab

ili
ti
es

Ja
n
u
ar
y,

2
0
2
5

5

Smoothing on an example

I the counts {nj = #j appears in D, i = 1, . . . n} (or su�cient statistics or histogram)
I fingerprint (or histogram of histogram) of D as the counts of the counts

{ rk = #counts nj = k, for k = 0, 1, 2 . . .}, and Rk = { j, nj = k, }
Example m = 26 alphabet letters
Data Counts ni Fingerprint rk

the red fox is quick
n = 16 letters

nj =0:a,b,g,j,l,m,n,
p,v,w,y,z
nj =1:c,d,f,h,k,o,q,r,s,t,u,x
nj =2:e,i

r0 = 12 = |{a,b,g,...,y,z}|
r1 = 12 = |{c,d,f,h,...,u,x}|
r2 = 2 = |{e,i}|
r3 = . . . rn = 0
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Smoothing on an example

I the counts {nj = #j appears in D, i = 1, . . . n} (or su�cient statistics or histogram)
I fingerprint (or histogram of histogram) of D as the counts of the counts

{ rk = #counts nj = k, for k = 0, 1, 2 . . .}, and Rk = { j, nj = k, }
Example m = 26 alphabet letters
Data Counts ni Fingerprint rk

the red fox is quick
n = 16 letters

nj =0:a,b,g,j,l,m,n,
p,v,w,y,z
nj =1:c,d,f,h,k,o,q,r,s,t,u,x
nj =2:e,i

r0 = 12 = |{a,b,g,...,y,z}|
r1 = 12 = |{c,d,f,h,...,u,x}|
r2 = 2 = |{e,i}|
r3 = . . . rn = 0
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Witten-Bell discounting – probability of a new value

I Idea:
I Look at the sequence (x1, . . . xn) as a binary process: either we observe a value of X that was

observed before, or we observe a new one.
I Assume that of m possible values r were observed (and m � r unobserved)
I Then the probability of observing a new value is p0 = r

n .I Hence, set the probability of all unseen values of X to p0. The other probabiliy estimates are
renormalized accordingly.

✓WB
j =

( nj
n

1
1+p0

=
nj
n+r nj > 0

1
m�r

p0
1+p0

= 1
m�r

r
n+r nj = 0

(7)

Witten-Bell makes sense only when some nj counts are zero. If all nj > 0 then W-B smoothing
has undefined results.
WB smoothing has no parameter to choose (GOOD!)
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Comparison of the methods

Numerical values to exemplify the results: n = 1000, m = 1000, r = 100
Count nj 0 1 nj � 1

✓ML
j 0 1

n = 1
1000

nj
1000

✓Laplacej
1

n+m = 1
2000

2
n+m = 1

1000
nj+1
n+m =

nj+1
2000

✓Bayesj , n0 = 1, n0j = 1
m

1
m(n+1) ⇡ 1

106
1+1/m
n+1 ⇡ 1

103
nj+1/m
n+1 ⇡ nj

1000

✓NEj , � = 1 r
mn = 1

104
r
mn = 1

104
nj�1+r/m

n ⇡ nj
1000

✓WB
j

1
m�r

r
n+r = 1

9900
1

n+r = 1
1100

nj
n+r =

nj
1100

Remarks

I Laplace shrinks ML estimates of large probabilities by factor of 2. Too much! (because
large ✓ML

j are close to their true values)
I Bayes (with uninformative prior) a↵ects large ✓ML

j much less than small ones. Good
I Ney-Essen smooths more when r is larger; any nj is a↵ected by less than �.
I Ney-Essen estimates of ✓NE for counts of 0 and 1 are equal to a fraction of r

m (this grows
with n as r grows with n).

I In Witten-Bell, the large ✓ML
j are shrunk depending on r , but independently of m.

Proportional, bad
I . . . but, if we overestimate m grossly, the overestimation will only a↵ect the ✓WB

j for the 0

counts, but none of the ✓WB
j for the values observed. (true for NE as well).
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Lecture Notes IV – Continuous distributions. Parametric density
estimation.
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CDF and PDF. Sampling

Examples of continuous distributions

ML estimation for continuous distributions

ML estimation by gradient ascent

Reading: Ch.5, 6
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CDF and PDF refresher

Cumulative distribution
function (CDF)

F (x) = P[X  x] (1)

1. F � 0 positivity.

2. lim
x!�1

F = 0

3. lim
x!1

F = 1

4. F is an increasing function

Probability density [function]
(PDF)

f =
dF

dx
(2)

P(a, b) = P[a, b] = F (b)�F (a) =

Z b

a
f (x)dx

(3)
normalization condition

Z 1

�1
f (x)dx = 1 (4)
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CDF and PDF refresher

Cumulative distribution
function (CDF)

F (x) = P[X  x] (1)

1. F � 0 positivity.

2. lim
x!�1

F = 0

3. lim
x!1

F = 1

4. F is an increasing function

Probability density [function]
(PDF)

f =
dF

dx
(2)

P(a, b) = P[a, b] = F (b)�F (a) =

Z b

a
f (x)dx

(3)
normalization condition

Z 1

�1
f (x)dx = 1 (4)
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Examples of continuous distributions

F1 = {u[a,b], a < b} uniform
(5)

f (x ; a, b) =

⇢
1

b�a , x 2 [a, b]
0, otherwise

(6)

F2 = {N(.;µ,�2)} normal
(7)

f (x ;µ,�2) =
1

�
p
2⇡

e
� (x�µ)2

2�2

(8)

F (x ; a, b) =
1

1 + e�ax�b
, a > 0 logistic

(9)

f (x ; a, b) =
ae�ax�b

(1 + e�ax�b)2

(10)
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ML estimation for continuous distributions


