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The problem with estimating small probabilities /

Definitions and setup /

Additive methods (Laplace, Dirichlet, Bayesian, ELE) /
om—

Discounting (Ney-Essen
g (Ney )

e

Multiplicative smoothing: Estimating the next outcome (Witten-Bell, Good-Turing)

%—off or shrinkage — mixing with simpler models
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Definitions and setup

January, 2025

We will look at estimating categorical distributions from samples, when the number of
outcomes m is large.

> Let S = {1,...m} be the sample space, and P = (01, ...0m,) a distribution over S.

» We draw n independent samples from P, obtaining the data set D

> Define the counts {n; = #;j appears in D, i =1,...n}. The counts are also called
sufficient statistics or histogram.

» Define the fingerprint (or histogram of histogram) of D as the counts of the counts, i.e
{ r« = #countsn; = k, for k =0,1,2...}
Example m = 26 alphabet letters

Data Counts n; Fingerprint ry
nj=0:a,b,g,j,1,m,n, rn=12=|{a,b,g,...,y,2}|
the red fox is quick Efi’f_’y’;f - . n i;2,: |{c?d,f,h,.,,,u,x}|
n = 16 letters j=1:c,d,f,h,k,0,q,r,5,%,u,x rn=2=|{e,i}|
nj=2:e,i B=...rm=
2 nj=0:a,b,c...,x,z n=26—-6—1—-1—1=17
] nj=1:f,i,n,r,t,w n=6=|{f,i,n,r,t,w}|
3 ho ho who s on first nj=2:s rn=1=|{s}|
H n =15 letters nj=3:h r3 =1 = |{h}|
g nj=4:o0 rp=1=|{o}]
2
% > It is easy to verify that nj € 0: n, hence ro., may be non-zero (but roy1,n12,... = 0), and
8 that
2 m=r+n+...p, n=0Xnrn+lxn+...kxXr+... (1)
<
E




Smoothing on an example
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P the counts {n; = #;j appears in D, i = 1,...n} (or sufficient statistics or histogram)
P fingerprint (or histogram of histogram) of D as the counts of the counts
{ r« = #countsn; = k, for k =0,1,2...},and Ry = {j, nj =k, }

Example m = 26 alphabet letters

Data Counts n; Fingerprint ry
nj=0:a,b,g,j,1,m,n, o =12,= |{a,b,g,...,y,2}|
: . P,V,W,¥,2 n =12 = |{c,d,f,h,...,u,x}|
h. f k
Zifsec}ett‘:sls e nj=1:,d,f,h,k,0,q,r,s,t,u,x n=2={e,i}|
1 nj=2e,i B=...r,=0
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Smoothing on an example

P the counts {n; = #;j appears in D, i = 1,...n} (or sufficient statistics or histogram)
P fingerprint (or histogram of histogram) of D as the counts of the counts
{ r« = #countsn; = k, for k =0,1,2...},and Ry = {j, nj =k, }

Example m = 26 alphabet letters

Data Counts n; Fingerprint ry
nj=0:a,b,g,j,1,m,n, rn=12=|{a,b,g,...,y,2}|
the red fox is quick p,V,W.y,z n =12 = [{c,d,f,h,...,u,x}|
n = 16 letters nj=1:,d,f,h,k,0,q,r,s,t,u,x rn=2=[{e,i}
B nj=2e,i Bn=...r=20
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Witten-Bell discounting — probability of a new value

January, 2025

> Idea:
» Look at the sequence (xi, .. .x,) as a binary process: either we observe a value of X that was
observed before, or we observe a new one.

» Assume that of m possible values r were observed (and m — r unobserved)
P Then the probability of observing a new value is py = I
P Hence, set the probability of all unseen values of X to pg The other probabiliy estimates are
renormalized accordingly.
n_1 nj .
QWB _ n l14py n+tr nj > 0 (7)
j - 1 Po — 1 r n =0
m—r 14+pg m—r n+r J

Witten-Bell makes sense only when some n; counts are zero. If all n; > 0 then W-B smoothing
has undefined results.
WB smoothing has no parameter to choose (GOOD!)
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Comparison of the methods <— '\O\] Q.

January, 2025

Numerical values to exemplify the results: n = 1000, m = 1000, r = 100

Count n; W= 0 i= 1 n; > 1
oML Yo P_ 1 Wi
j n — 1000 1000
oLapIace 11 2 1 ni+1 _njtl
j n+m — 2000 n+m — 1000 n+tm — 2000
gBaves L0 _q 0 _ 1 1, WYm 1 mtl/mo o
fi ) — 5% T m m(n+1) = 106 n+1 "~ 103 n+1/ "~ 1000
NE - _r_ @ o 1 nj=ltr/m o0
9j & 1 ot mn — 107 mn — 107 n ~ 1000
owB S | 1 _ 1 nj o ___nj
J m—r n+r 9900 n+r 1100 n+r 1100
Remarks

» Laplace shrinks ML estimates of large probabilities by factor of 2. Too much! (because
large OJML are close to their true values)

> Bayes (with uninformative prior) affects large ML much less than small ones. Good

> Ney-Essen smooths more when r is larger; any n; is affected by less than 4.

> Ney-Essen estimates of 8VE for counts of 0 and 1 are equal to a fraction of # (this grows
with n as r grows with n).

> In Witten-Bell, the large GJML are shrunk depending on r, but independently of m.
Proportional, bad

» . ..but, if we overestimate m grossly, the overestimation will only affect the HJWB for the 0

counts, but none of the QJWB for the values observed. (true for NE as well).
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Estlmates of the SMALL 0 values

—Trh [ NG,
A 5
_ * Laplace _:
Bayes :
Witten-Bell
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Estimates of the LARGE 4 values
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oMple spacas
Lecture Notes IV — Continuousl:l‘istributions. Parametric density

estimation.
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CDF and PDF. Sampling W

Examples of continuous distributions e-—
ML estimation for continuous distributions e—'
ML estimation by gradient ascent

Reading: Ch.5, 6



CDF and PDF refresher S= (~w,0)

Cumulative distribution T

function (CDF) T $C1§)
FO) = PX <X P lacd X I
1. F > 0 positivity. ?( ! 3 _j/

2. i F=0

3. 1im F=1

X — 00

4. F is an increasing function

Probability density [function] _\;_‘_ L
(PDF)
dF
== 2
e (2

b
P(a,b) = Pla,b] = F(b)—F(a) = / F(x)dx

3) -}
normalization condition K

/wf(x)dx — 1 @ \

w{s|=L > .&%m d=1 =D
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CDF and PDF refresher

Cumulative distribution
function (CDF)

F(x) = PIX<x (1)

1. F > 0 positivity.
2. lim F=0

X— — 00
3. 1im F=1
X—» 00
4. F is an increasing function

Probability density [function]
(PDF)
dF

fza (2)

P(a,b) = Pla,b] = F(b)—F(a)
3)

normalization condition

[if(x)dx -1 @

a

b
f(x)dx



Examples of continuous distributions
Modal fores (N
— %

— 00,0 )
F1 = {ujpp, a < b} uniform — va =/?amme,w,5 < C )

(5) asl b

- = 1a’ X € [ 7b]
f(x;a,b) = { 6’, otherawise /N_;s\_a\&“_
(6)
Fa = {N(J,Uwa'z)} nOrm(a7|) -_A’_L-A‘»
1 w2 T P"

F(x; py 0°) = e 202 .
oV2m ® ‘,O%AS“'(C»
F(x;a, b) = ﬁlﬁamﬂ a>0 logistic -
—ax—b © o -
f(x;a, b) = uiﬂ —_ q“o
(10) a>0

L(xix)=Xe 5 Ao



ML estimation for continuous distributions  SIR\STICS
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