STAT 391

01/30/25

Lecture 8

Small probs

Continuous S

Happy Lunar New Year! Q1 The 2/6 LIV Controlstributions Hw2 due Sol 2 The 2/4 Hw3 TB posted

Lecture Notes III: Discrete probability in practice - Small Probabilities

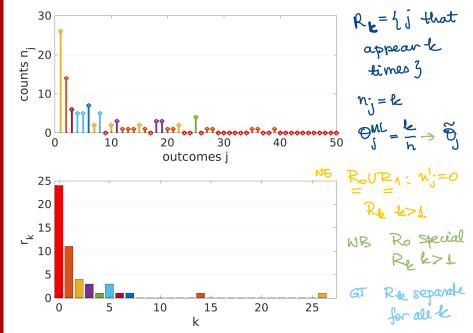
Marina Meilă mmp@stat.washington.edu

> Department of Statistics University of Washington

January, 2025

Definitions and setup Additive methods (Laplace, Dirichlet, Bayesian, ELE) Discounting (Ney-Essen) Multiplicative smoothing: Estimating the next outcome (Witten-Bell, Good-Turing) By -off or shrinkage - mixing with simpler models

The problem with estimating small probabilities



Definitions and setup

We will look at estimating categorical distributions from samples, when the number of outcomes m is large.

- Let $S = \{1, ..., m\}$ be the sample space, and $P = (\theta_1, ..., \theta_m)$ a distribution over S.
- ▶ We draw *n* independent samples from *P*, obtaining the data set *D*
- ▶ Define the counts {n_i = #j appears in D, i = 1,...n}. The counts are also called sufficient statistics or histogram.

▶ Define the fingerprint (or histogram of histogram) of \mathcal{D} as the counts of the counts, i.e { $r_k = \#$ counts $n_j = k$, for k = 0, 1, 2...} Example m = 26 alphabet letters

Data	Counts n _i	Fingerprint r _k
the red fox is quick $n = 16$ letters	n _j =0:a,b,g,j,1,m,n, p,v,w,y,z n _j =1:c,d,f,h,k,o,q,r,s,t,u,x n _j =2:e,i	$ \begin{array}{l} r_0 = 12 = \{\texttt{a},\texttt{b},\texttt{g},\ldots,\texttt{y},\texttt{z}\} \\ r_1 = 12 = \{\texttt{c},\texttt{d},\texttt{f},\texttt{h},\ldots,\texttt{u},\texttt{x}\} \\ r_2 = 2 = \{\texttt{e},\texttt{i}\} \\ r_3 = \ldots r_n = 0 \end{array} $
ho ho who s on first $n=15$ letters	$n_j = 0 : a, b, c, \dots, x, z$ $n_j = 1 : f, i, n, r, t, w$ $n_j = 2 : s$ $n_j = 3 : h$ $n_j = 4 : o$	$\begin{array}{l} r_0 = 26 - 6 - 1 - 1 - 1 = 17 \\ r_1 = 6 = \{\texttt{f},\texttt{i},\texttt{n},\texttt{r},\texttt{t},\texttt{w}\} \\ r_2 = 1 = \{\texttt{s}\} \\ r_3 = 1 = \{\texttt{h}\} \\ r_4 = 1 = \{\texttt{o}\} \end{array}$

▶ It is easy to verify that $n_j \in 0$: *n*, hence $r_{0:n}$ may be non-zero (but $r_{n+1,n+2,...} = 0$), and that

$$m = r_0 + r_1 + \ldots r_n \quad n = 0 \times r_0 + 1 \times r_1 + \ldots k \times r_k + \ldots$$
(1)

Smoothing on an example

- the counts $\{n_j = \# j \text{ appears in } D, i = 1, ..., n\}$ (or sufficient statistics or histogram)
- ▶ fingerprint (or histogram of histogram) of \mathcal{D} as the counts of the counts $\{r_k = \# \text{counts } n_j = k, \text{ for } k = 0, 1, 2...\}$, and $R_k = \{j, n_j = k, \}$

```
Example m = 26 alphabet letters
                             Counts n:
                                                                Fingerprint rk
   Data
                             n_i = 0:a, b, g, j, l, m, n,
                                                              r_0 = 12 = |\{a, b, g, \dots, y, z\}|
   the red fox is quick
                             p,v,w,v,z
                                                                r_1 = 12 = |\{c,d,f,h,\ldots,u,x\}|
                             n_i = 1:c,d,f,h,k,o,q,r,s,t,u,x \rightarrow r_2 = 2 = |\{e,i\}|
   n = 16 letters
                             n_i = 2:e,i
                                                                r_3 = \ldots r_n = 0
                                                               2=m-13=14
  Wilten. Bell
                             y'=1 If x' "new"
                                                                m= 12+14=26
                      Po= Pr[yi=1]= # new
                                                                  . no sense H
                                                                          ዮሩም
 je Ro >> Rr[X"+=i] = Po!
                                                                     some sense
                                                                          rem.
 uncherror
N_j > 0: \Theta_j^{ML} = \frac{N_j}{N} \rightarrow \sum \Theta_j^{ML} = 1
                                            ro
                                                        n large >> m >> 12
                                                        want Pr [X"H is new ] = ]
h_j = 0: \theta_j = \frac{P^\circ}{6} \rightarrow \overline{\Sigma} \theta_j = \frac{P^\circ}{6}
                                                                  Z normalization
```

Smoothing on an example

- **b** the counts $\{n_i = \#_i\}$ appears in $\mathcal{D}, i = 1, \dots, n\}$ (or sufficient statistics or histogram)
- **•** fingerprint (or histogram of histogram) of \mathcal{D} as the counts of the counts $\{r_k = \# \text{counts } n_i = k, \text{ for } k = 0, 1, 2...\}, \text{ and } R_k = \{j, n_i = k, \}$

Example m = 26 alphabet letters

Data

the red fox is quick n = 16 letters

Fingerprint r_k $r_0 = 12 = |\{a, b, g, \dots, y, z\}|$ $r_1 = 12 = |\{c,d,f,h,\ldots,u,x\}|$ $r_3 = \ldots r_n = 0$

$$\begin{split} N_{j} > 0: & \bigoplus_{j}^{ML} = \underbrace{N_{j}}_{N_{j}} \rightarrow \underbrace{\Sigma} \bigoplus_{j}^{ML} = 1 \longrightarrow \underbrace{\bigoplus_{j}^{WB}}_{N_{j}} = \underbrace{\bigoplus_{j}^{WB}}_{N_{j}} \leftarrow \underbrace{\bigoplus_{j}^{WL}}_{N_{j}} \xrightarrow{Po}_{N_{j}} \underbrace{\bigoplus_{j}^{WB}}_{N_{j}} \leftarrow \underbrace{\bigoplus_{j}^{WB}}_{N_{j}} \xrightarrow{Po}_{N_{j}} \xrightarrow{Po}_{N_{j$$

Witten-Bell discounting - probability of a new value

Idea:

- Look at the sequence (x₁,...x_n) as a binary process: either we observe a value of X that was observed before, or we observe a new one.
- Assume that of m possible values r were observed (and m r unobserved)
- Then the probability of observing a new value is $p_0 = \frac{r}{n}$.
- Hence, set the probability of all unseen values of X to p_0 . The other probability estimates are renormalized accordingly.

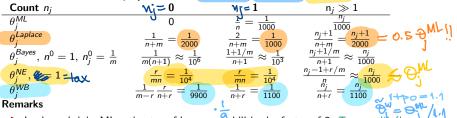
$$\theta_{j}^{WB} = \begin{cases} \frac{n_{j}}{n} \frac{1}{1+\rho_{0}} = \frac{n_{j}}{n+r} & n_{j} > 0\\ \frac{1}{m-r} \frac{\rho_{0}}{1+\rho_{0}} = \frac{1}{m-r} \frac{r}{n+r} & n_{j} = 0 \end{cases}$$
(7)

Witten-Bell makes sense only when some n_j counts are zero. If all $n_j > 0$ then W-B smoothing has undefined results.

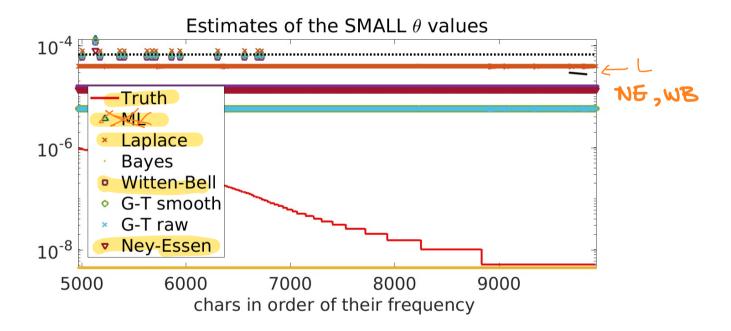
WB smoothing has no parameter to choose (GOOD!)

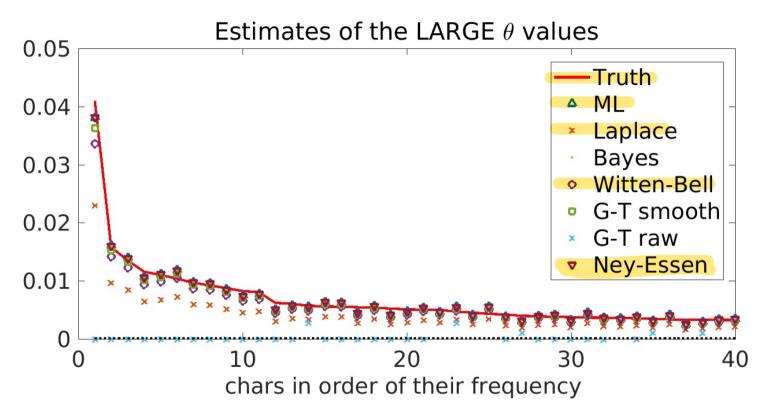
Comparison of the methods <- toy ox.

Numerical values to exemplify the results: n = 1000, m = 1000, r = 100



- Laplace shrinks ML estimates of large probabilities by factor of 2. Too much! (because large θ^{ML}_i are close to their true values)
- ▶ Bayes (with uninformative prior) affects large θ_i^{ML} much less than small ones. Good
- Ney-Essen smooths more when r is larger; any n_j is affected by less than δ .
- Ney-Essen estimates of θ^{NE} for counts of 0 and 1 are equal to a fraction of $\frac{r}{m}$ (this grows with *n* as *r* grows with *n*).
- ▶ In Witten-Bell, the large θ_j^{ML} are shrunk depending on r, but independently of m. Proportional, bad
- ► ... but, if we overestimate *m* grossly, the overestimation will only affect the θ^{WB}_j for the 0 counts, but none of the θ^{WB}_i for the values observed. (true for NE as well).





Lecture Notes IV – Continuous distributions. Parametric density estimation.

Marina Meilă mmp@stat.washington.edu

Department of Statistics University of Washington

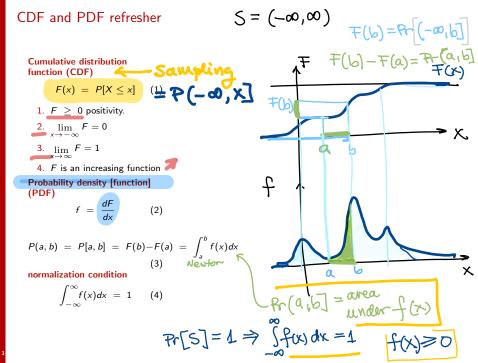
January 2025

Examples of continuous distributions

ML estimation for continuous distributions 🧲

ML estimation by gradient ascent

Reading: Ch.5, 6



CDF and PDF refresher

Cumulative distribution function (CDF)

$$F(x) = P[X \le x] \quad (1)$$

- 1. $F \geq 0$ positivity.
- $2. \lim_{x \to -\infty} F = 0$
- $3. \lim_{x \to \infty} F = 1$
- 4. F is an increasing function

Probability density [function] (PDF)

$$f = \frac{dF}{dx}$$
(2)

$$P(a, b) = P[a, b] = F(b) - F(a) = \int_{a}^{b} f(x) dx$$

(3)

normalization condition

$$\int_{-\infty}^{\infty} f(x) dx = 1 \qquad (4)$$

