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The task of Prediction is concerned with the relationship between two
random variables, the predictor X ∈ SX , and the response or target
Y ∈ SY . The task is to predict the value of Y that “best” corresponds to a
given X. Therefore, statistically speaking, we are interested in (estimating)
the conditional distribution PY |X .

When the outcome space of Y , SY is a finite discrete set, prediction is called
classification; when SY ⊂ (−∞,∞), it is called regression.

1 Linear regression with a single predictor

Let SX = (−∞,∞). We assume a linear model, i.e.

y = β0 + β1x+ ε, (1)

where β0,1 ∈ R are called model parameters or regression coefficients,
and ε is called noise. The noise ε makes the dependence of Y on X random,
without it it will be deterministic. We assume that

ε ∼ Normal(0, σ2), (2)

and moreover, that for each value pair (x, y) observed, the noise is indepen-
dent of other observations.

We want to estimate the unknown parameters β0, β1, σ
2 by ML, from a data

set D = {(x1, y1), . . . (xn, yn)} sampled i.i.d. from an unknown distribution
PY |X . Hence, we are not interested in the distribution of the x1:n variables,
but only in the probabilistic depence of Y on X. Note that our model for
this distribution, based on (??) and (2) is

PY |X = Normal(β0 + β1X︸ ︷︷ ︸
µ(X)

, σ2). (3)
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The likelihood function is defined as

L(β0,1, σ
2) = P [y1:n|x1:n, β0,1, σ2] =

n∏
i=1

1

σ
√

2π
e−

(yi−µ(xi))2

σ2 =
1

(σ
√

2π)n
e−

1
2σ2

∑n
i=1(y

i−µ(xi))2 ,

(4)
and the log-likelihood is

l(β0,1, σ
2) = lnP [y1:n|x1:n, β0,1, σ2] = −n lnσ−n ln(

√
2π)− 1

2σ2

n∑
i=1

(yi−β0−β1xi)2.

(5)
This reminds of the ML estimation of a normal distribution, so we proceed
to first estimate the parameters β0, β1 of the mean.

∂l

∂β0
=

n∑
i=1

(yi − β0 − β1xi) (6)

∂l

∂β1
=

n∑
i=1

xi(yi − β0 − β1xi) (7)

By setting the above partial derivatives to 0, we get the linear system

n∑
i=1

yi = nβ0 − β1
n∑
i=1

xi (8)

n∑
i=1

xiyi = nβ0

n∑
i=1

xi − β1
n∑
i=1

(xi)2, (9)

with solution

βML
1 =

n
∑n

i=1 x
iyi − (

∑n
i=1 x

i)(
∑n

i=1 y
i)

n
∑n

i=1(x
i)2 − (

∑n
i=1 x

i)2
(10)

βML
0 =

1

n

n∑
i=1

yi − βML
1

1

n

n∑
i=1

xi = ȳ − βML
1 x̄. (11)

2 Linear regression with multiple predictors

Let X now be a vector variable, X = (X1, . . . Xm) ∈ Rm. We assume Y is
a linear combination of all the m predictors, i.e.

y = β0 + β1x1 + β2x2 . . . βmxm + ε. (12)
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This expression can be written more compactly in vector form, if we aug-
ment the vector X with an additional component X0 ≡ 1, i.e. X ←
(1, X1, . . . Xm) ∈ Rm+1. With this artifice, β0 can be treated similarly
with the other regression coefficients, which are all collected in the vector
β = [β0 β1 . . . βm]T ∈ Rm+1. Now (12) becomes

y = βTx︸︷︷︸
µ(x)

+ε. (13)

Since the distribution of ε is given by (??), as before, the likelihood and log-
likelihood are the same as in (4), respectively (5) with the only difference in
the expression of µ(X).

l(β, σ2) = lnP [y1:n|x1:n, β, σ2] = −n lnσ−n ln(
√

2π)− 1

2σ2

n∑
i=1

(yi−βTxi)2.

(14)
If we ignore the first terms, which do not depend on β, we see that the
parameters β that maximize the (log-)likelihood are the ones that minimize
the sum of squared residuals yi−µ(xi), hence this optimization is called a
least squares problem.

We again take partial derivatives and equate them with 0. Remember that
the partial derivative w.r.t. a vector variable β is a vector called the gradient,
and that this can be written as

∂l

∂βj
=

n∑
i=1

(yi − βTxi)xij , for allj. (15)

We can make this expression more compact if we construct the matrix X ∈
Rn×m with the x1:n as rows, and the column vector y = [y1 . . . yn]T .

∂l

∂β
= XTy −XTXβ. (16)

Setting the gradient to 0, we obtain the linear system XTXβ = XTy. If
n ≥ m, and the matrix XTX is non-singular, the solution is

βML = (XTX)−1XT︸ ︷︷ ︸
X†

y. (17)

The matrix X† is called the pseudoinverse of X.

Once βML is obtained, we can also estimate the residuals

εi = yi − (βML)Txi. (18)
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3 Statistical properties of the βML estimator

The expectation of βML is computed w.r.t. the noise distribution, assuming
that the data is generated by the model (13) (or (3)) with a true parameter
vector β and a true noise variance σ2.

E[βML] = E[X†y] = E[X†(Xβ + ε)] = X†X︸ ︷︷ ︸
Im

β + X† E[ε]︸︷︷︸
0

= β. (19)

The first equality is obtained by plugging in βML = X†y, and the second
by replacing y with its values from the true model. We see from (19) that
the ML estimate βML is unbiased.

We can also calculate the covariance of βML. Note that βML − β = X†ε.
Hence,

Cov(βML) = E[(βML − β)(βML − β)T ] = E[(X†ε)(X†ε)T ] (20)

= E[X†εεT (X†)T ] = X†E[εεT ](X†)T = X†σ2In(X†)T(21)

= σ2X†(X†)Tσ2(XTX)−1XTX(XTX)−1 (22)

= σ2(XTX)−1. (23)

Above, we use the fact that XTX is a symmetric matrix, and so is its inverse.
The covariance of βML is proportional to the noise covariance.

4 Estimating σ2

A naive way to estimate σ2 is to average the squared residuals (σ2)naive =
1
n

∑n
i=1(y

i − (βML)Txi)2. We can also use the ML method, by taking the
derivative of l(β, σ2) w.r.t. σ2 (this is similar to ML estimation of σ2 in a
normal distribution).

∂l

∂σ2
= −n 1

σ4
− 1

2σ2

n∑
i=1

(yi − (βML)Txi)2 = 0. (24)

If we solve this equation, we obtain

(σ2)ML =
1

n

n∑
i=1

(yi − (βML)Txi)2 (25)
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Figure 1: Left: Linear regression for n = 20 data points. The dotted line
and circles are on the estimated regression line, while the yellow stars are
on the true regression line, i.e. are the true E[Y |X = xi]. Right: residuals
yi − βML

0 − βML
1 xi.

which is identical to the “naive” estimator! However, just like in the case
of the normal distribution, this estimator of σ2 is also biased. By following
the same procedure as in Chapter 12, we obtain

E[(σ2)ML] =
n−m
n

σ2. (26)

Therefore, unless n� m, the unbiased estimator

σ̂2 =
1

n−m

n∑
i=1

(yi − (βML)Txi)2 =
n

n−m
(σ2)ML (27)

is recommended. (Note that here,m is the number of total parameters esti-
mated, , i.e., the dimension of β with β0 included.)

5 Prediction with the estimated model

Given a new x value, the ML model for PY |X(y|x) is Normal(xTβ, (σ2)ML),

where we recall that xTβ = β0 + β1x1 + . . . βmxm. This is the predictive
distribution for y given x.

If we want to predict a single number, given that the distribution is Gaussian,
the “best” single number to predict is the mean µ(x) = xTβ. [Exercise: in
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which ways is µ(x) “best”?] [Exercise: is µ(x) also “best” if we use the
unbiased model N(xβ, σ̂2)?]

6 Logistic Regression

When the outputs y are binary variable, i.e. y ∈ {0, 1}, fitting them with
a linear model is not appropriate. Exercise:Why? Logistic regression
proposes that, for each x, the model for P (Y |X) be a Bernoulli distribution,

with p(x)
def
= Pr[Y = 1|X = x] given implicitly by the relation below.

Let β be the vector of parameters as described above (with or without a β0
included). The let f(x) = βTx model the log odds of class 1

f(X) =
P (Y = 1|X)

P (Y = 0|X)
= βTX. (28)

Then under this linear model, p(x) is

p(x)

1− p(x)
= ef(x) (29)

Pr[Y = 1|X = x] = p(x) =
ef

1 + ef
=

eβ
T x

1 + eβT x
=

1

1 + e−βT x
(30)

Pr[Y = 0|X = x] = 1− p(x) =
e−β

T x

1 + e−βT x
=

1

1 + eβT x
(31)

An alternative “symmetric” expression for p, 1− p is

p =
ef/2

ef/2 + e−f/2
, 1− p =

e−f/2

ef/2 + e−f/2
. (32)

In the expression (??) one recognizes the logistic CDF. Expressions (30) and
(31) can be written simultaneously as

Pr[Y |X = x] =
eY β

T x

1 + eβT x
(33)

One major application of logistic regression is in classification.
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7 Estimating the parameters by Max Likelihood

The log-likelihood l(β) is

l(β) = lnPr[y1:n|x1:n, β] (34)

=

n∑
i=1

ln
ey
iβT xi

1 + eβT xi
(35)

=

n∑
i=1

[
yiβTxi − ln(1 + eβ

T xi)
]

(36)

There is no analytic formula for the maximum of this expression. Therefore,
the Maximum Likelihood parameters βML will be found numerically, by
gradient ascent.

We first calculate the gradient of the log-likelihood.

∂l

∂βj
=

n∑
i=1

[
yixij −

eβ
T xi

1 + eβT xi
xij

]
(37)

=
n∑
i=1

[
yi − p(xi)

]
xij (38)

This expression can be written compactly for all j = 0 : p as

∂l

∂β
=

n∑
i=1

[
yi − p(xi)

]︸ ︷︷ ︸
ci∈R

xi. (39)

Recall that in gradient ascent, at every step,

β ← β + η
∂l

∂β
, (40)

with η > 0 the step size. The expression of the gradient in (39) shows that
the change in β, at each step, is a sum of vectors, each of them being a
scaled version of a data point xi. Hence, if the initial value of β is zero, the
parameter vector β is at any time a a linear combination of the inputs xi.

Next, we note that

ci = yi − p(xi) = (−1)1−y
i (

1− Pr[yi|xi, β]
)

; (41)
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Figure 2: Logistic regression estimation by gradient ascent for n = 30 data
points, 4, 000 iterations. Top left: β0, β1 trajectories; bottom left: log-
likelihood; bottom right: derivatives ∂l

∂β0
, ∂l
∂β1

; to right data (x1:30, y1:30) and
probability of Y = 1, p(X), according to estimated model.

in other words, |ci| is the difference between the ideal prediction probability
1 and the model’s probability of the observed yi. Hence, for the data points
i for which the model predicts the outputs well, |ci| is close to 0. This leave
the data points when the model is not accurate, to dominate in the gradient
expression. We can also see that ci > 0 when yi = 1, and ci < 0 when
yi = 0. In other words, each gradient step moves β in the general direction
of the yi = 1 points (also called positive examples) and away from the
yi = 0 points (the negative examples).
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Figure 3: Logistic regression estimation by gradient ascent for n = 609
handwritted 0’s and 2’s in d = 256 dimensions, 20 iterations. Top left:
trajectories for β0:256; top right: log-likelihood; bottom: data (1 : 609, y1:609)
and probability of Y = 1, p(X), according to estimated model.
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Figure 4: Two examples of handwritten digits from the data set; the pa-
rameters β1:256 corresponding to each of the 256 pixels in a digit image.
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