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Do Well!

Prob.1 ML with 2 models of 5

Prob.2 Bias-Variance tradeoff for KDE of 6
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Prob.4 ML with censored data of 6

Prob.5 Linear regression by ML of 8
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TOTAL: of 33



Problem 1 – ML estimation with two models(5 points)
No need to show your work for this problem.
For the applicable problems you can provide either a numeric or symbolic answer.(1 point)

1.1 The Nisqually.com company sells books A,B,C on line. Each customer buys 0 or 1 copy of each
title. We assume that customers’ decision to buy each book is independent of the decision to buy
other books, i.e.

PABC(xA, xB , xC) = PA(xA)PB(xB)PC(xC) (1)

What is the sample space S of the outcomes for one customer?

1.2 Last week the company had n = 9 customers visit their online store. This is what the customers(1.5 points)
ordered:

A B C
0 0 1
1 0 0
0 0 1
1 0 0
0 0 1
0 1 0
1 0 0
0 1 0
0 0 1

Estimate θA = PA(1), θB = PB(1), θC = PC(1) the probabilities that a customer orders books A,B,C
respectively by the Maximum Likelihood (ML) method.



1.3 Now we assume another (equally simplistic) customer model. Namely, that each customer buys(1.5 points)
only one book, either A,B, or C. This models is represented by the probability distribution p̃ =
(θ̃A, θ̃B , θ̃C) over S̃ = {A,B,C} with θ̃A + θ̃B + θ̃C = 1, θ̃A,B,C ≥ 0.

The data observed from n = 9 customers is C,A,C,A,C,B,A,B,C (note that this is the same data
as in 1.2). Estimate the parameters θ̃A,B,C by the ML method.

1.4 Give an example of an outcome that is in S but not in S̃.(1 point)



Problem 2 – Bias and Variance in Kernel Density estimation(6 points)
No proofs required for this problem

2.1 Assume that we have two data sets D,D′; we use the first for estimating a kernel density estimator(1 point)
fh,K,D, and the second a validation set. The graph below shows lCV (h;D′) the log-likelihood of D′
under fh,K,D (i.e. the CV log-likelihood), for different values of h. Based on this graph, what is hopt

the optimal kernel width value?



2.2 The graph below shows the kernel density estimators fhopt,K,D and fh1,K,D, with same data and(5 points)
kernel K for bandwidth values hopt and h1 6= hopt.

Answer based on the above graph.

h1 > hopt TRUE FALSE

Variance(h1) > Variance(hopt) TRUE FALSE

Bias(h1) > Bias(hopt) TRUE FALSE

lCV(h;D′) > lCV(hopt;D′) TRUE FALSE

l(h;D′) > l(hopt;D′) TRUE FALSE



Problem 3 – Likelihood Ratio and Bayesian classification(7 points)
The graph below shows three different densities on (−∞,∞), the first “Undergrad”= fU , is a normal
density, the second, “Chair”= fC is a logistic density, the third “Trash”= fT is obtained by kernel
density estimation. There are also 2 observations x1 = −1, x2 = 5. Each of x1, x2 was sampled from
one of fU,C,T but not necessarily the same one.

3.1 We would like to know which of fU,C,T has the highest likelihood to have generated x1, based on(1 point)
the graph. Give a 1-line explanation of your answer.

3.2 We would like to know which of fU,C,T has the highest likelihood to have generated x2, based on(1 point)
the graph. Give a 1-line explanation of your answer.



3.3 Now we have some prior information. We know that the prior probabilities of fU , fC , fT generat-(2.5 points)
ing x1 are respectively P 0[fU ] = πU = 1/2, P 0[fC ] = πC = 1/3, and P 0[fT ] = πT = 1/6. Using this
information, write the formulas for the posterior probabilities P [fU |x1], P [fC |x1], P [fT |x1] of fU,C,T
having generated x1.

3.4 Do the above probabilities always sum to 1? TRUE FALSE(1 point)



3.5 Using the graph and the information in 3.3, which of fU,C,T is a-posteriori more probable to have(1.5 points)
generated x1? Give a 1-2 line explanation of your answer.



Problem 4 – ML estimation with censored data(6 points)
Show your work

You are given samples {x1, . . . xn} from a geometric distribution with unknown parameter γ:

P (x) = (1− γ)γx for x ∈ {0, 1, 2, . . .}

But, by mistake, you store the data in the wrong format, which only preserves whether the data point
was 0 or not.

yi =

{
0 if xi = 0
1 if xi ≥ 1

for i = 1 : n. (2)

We say that the yi observations are censored observations of the data xi. With only the censored
data {y1, . . . yn} you will estimate γ.

4.1 Write the probability that yi = 1 as a function of γ.(1.5 points)

4.2 Derive the expression of the log-likelihood l(γ) = lnP (y1:n|γ) as a function of γ.(1.5 points)



4.3 Maximize l(γ) w.r.t. γ and obtain the expression for γML.(1.5 points)

4.4 Does this problem have sufficient statistics? How many and what are they?(1.5 points)



Problem 5 – Linear regression by Maximum Likelihood(8 points)
Show your work

The data set D = {(xi, yi), i = 1 : n} has x1:n ∈ [0, 1] and yi sampled as follows

yi = βxi + εi for i = 1 : n (3)

with
εi ∼ i.i.d., Laplace(γ), for i = 1 : n with fLaplace(z) =

γ

2
e−γ|z|, z ∈ R

We would like to estimate the parameters of the model in equation (3) by the Maximum Likelihood
method.

5.1 What are the parameters of the model in equation (3)?(1 point)

5.2 Write the expression of the likelihood L(y1:n |β, γ, x1:n); simplify it as much as possible.(1.5 points)

Notice that the Laplace density
is the exponential density, sym-
metrized around 0.



5.3 Write the expression of the log-likelihood l(y1:n |β, γ, x1:n); simplify it as much as possible.(1.5 points)

[5.4 Extra credit] The ML method requires you to maximize over β, γ the expression of the log-
likelihood. Show that βML = argmin

β

∑n
i=1 |yi − βxi|. Is this a Least-Squares problem?



5.5 Assume that you have estimated βML. Denote ε̂i = yi − βMLxi (they are known, since βML is(2.5 points)
known). Derive the expression for γML the ML estimator of γ; simplify it as much as possible.



5.6 Your data set has n = 100 samples (ln 10 = 2.30). You have estimated βML, γML and the log-(1.5 points)
likelihood l(D|βML, γML) = −101.0. You have also estimated another model from the same data, in
which

yi = β0 + β1x
i + ε̃i with ε̃i ∼ i.i.d., Normal(0, σ2) for i = 1 : n. (4)

The log-likelihood of the model in equation (4), for the ML parameters, is l̃(D|βML
0 , βML

1 , (σ2)ML) =
−100.1. Select the best of these models, using AIC.

AIC(model) = l(D|modelML)−#parameters(model)



[5.7 Extra credit] Show that l(y1:n |βML, γML, x1:n) is independent of βML.



[extra space for anything]

Have a nice summer!


