.....

STAT 391 Midterm Exam Thursday May 8 2014, 11:30-12:20

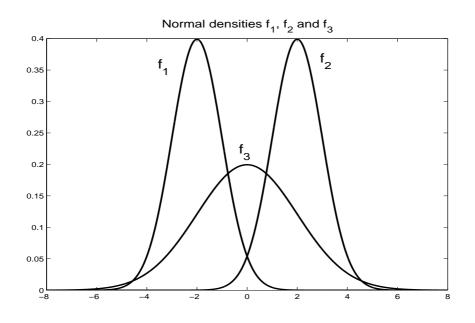
Student name:

- 3 pages of notes allowed
- no other sources of information are allowed
- electronic devices are not allowed
- Do Well!

1 4 points 2 2 points	(Normal distributions) (Discrete probabilities)
2 2 points 3 4 points	(Properties of Expectation and Variance)
4 8.5 points	(ML estimation with missing information)
0.5 points	(WIL estimation with missing mormation)
al 24 points	
it 3 points	

Problem 1 – Normal distribution

The graph below shows three normal densities f_1 , f_2 , f_3 having parameters (μ_1, σ_1) , (μ_2, σ_2) , (μ_3, σ_3) , and denote by P_1, P_2 and P_3 the probability distributions associated with f_1, f_2 and f_3 , respectively.

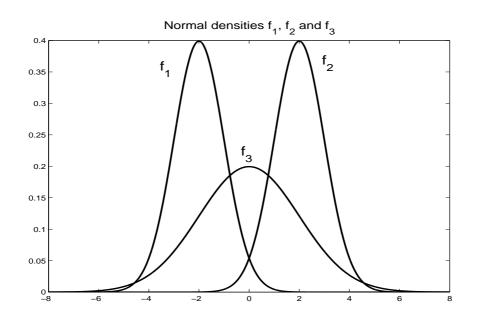


a. Which density has the largest mean μ ?

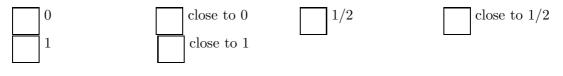
- **b.** Which density has the largest standard deviation σ ?
- **c.** Mark on the graph shown above the positions of μ_1, μ_2, μ_3 .

5 points

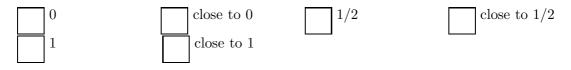
d. Let A denote the event $x \ge \mu_3$. Draw A on the x axis of the figure below (this is the same figure as on the previous page).



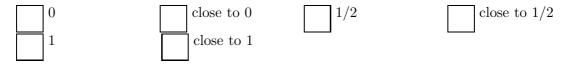
e. $P_3(A)$ the probability of event A under the distribution represented by f_3 is (choose one):



f. $P_1(A)$ the probability of event A under the distribution represented by f_1 is (choose one):



g. $P_2(A)$ the probability of event A under the distribution represented by f_2 is (choose one):



h. Is the statement " $P_1(A) = 1 - P_2(A)$ " true or false?

Problem 2 – Discrete distributionsShow your work

Let $S = \{-1, 0, 1\}$ be the outcome space of an experiment, and P defined by $(\theta_{-}, \theta_{0}, \theta_{+})$ a distribution over S.

a. Give answers to the following questions as functions of $(\theta_{-}, \theta_{0}, \theta_{+})$.

P(X < 1) =

 (X_1, X_2, X_3) are three independent samples from P. What is the probability that they are all different?

 (X_1, X_2, X_3) are three independent samples from P. What is the probability that $X_1 = X_2 = X_3 = 0$?

 (X_1, X_2, X_3) are three independent samples from P. What is the probability that $X_1 = X_2 = X_3$?

b. Assume $\theta_0 = \frac{1}{2}$, $\theta_- = \frac{1}{4}$, $\theta_+ = \frac{1}{4}$. Calculate E[X].

Calculate $E[X^2]$.

c. The following dataset of n = 10 points was sampled i.i.d. from P. $\mathcal{D} = \{-1, -1, -1, 1, 1, 0, 0, 0, 0, 0, \}$. What are the Maximum Likelihood estimates of $(\theta_{-}, \theta_{0}, \theta_{+})$ from this data set? No need to show work. Numerical result sufficient. [d. – Extra credit] Assume now that instead of P, there is another distribution \tilde{P} on S from which \mathcal{D} was sampled. \tilde{P} has parameters $(\tilde{\theta}_{-}, \tilde{\theta}_{0}, \tilde{\theta}_{+})$ with the property that $\tilde{\theta}_{-} = \tilde{\theta}_{+} = \tilde{\theta}_{1}$. (In other words, the parameter of the model \tilde{P} are *tied*, or *have constraints*.) Write the likelihood of $(\tilde{\theta}_{0}, \tilde{\theta}_{1})$ given the dataset \mathcal{D} .

[e. – Extra credit] Find now the expressions and numerical values of $(\tilde{\theta}_{-}, \tilde{\theta}_{0}, \tilde{\theta}_{+})$ by maximizing the likelihood obtained in **d**.

[f. - Extra credit] No need to show work. Mark the correct answer.

- $\Box \quad l(\tilde{\theta}_{-}, \tilde{\theta}_{0}, \tilde{\theta}_{+}) < l(\theta_{-}, \theta_{0}, \theta_{+}) \text{ for all datasets}$
- $\Box \quad l(\tilde{\theta}_{-}, \tilde{\theta}_{0}, \tilde{\theta}_{+}) = l(\theta_{-}, \theta_{0}, \theta_{+}) \text{ for all datasets}$
- $\Box \quad l(\tilde{\theta}_{-}, \, \tilde{\theta}_{0}, \, \tilde{\theta}_{+}) > l(\theta_{-}, \, \theta_{0}, \, \theta_{+}) \text{ for all datasets}$
- \Box None of the above.

Problem 3 – Properties of Mean and VarianceShow your work for all but a

X is a random variable with E[X] = -1, Var(X) = 1.

a. Y is another variable with E[Y] = E[X], Var(Y) = Var(X). Mark the correct answer to the questions below Y = X \Box True \Box False $S_Y = S_X$ \Box True \Box False **b.** Let Z = X + 1. What is Y is Normal(-1, 1) \Box True \Box False E[Z]? What is Var(Z)?

c. Let $U = (X + 1)^2$. What is E[U]?

d. $W = X^2$. What is E[W]?

$\label{eq:problem 4-ML estimation with missing information \it Show \it your \it work$

You record n samples from a geometric distribution with parameter γ . However, due to a mistake, all that ends up being recorded is whether each sample was zero or non-zero. Geometric distribution $S = \{0, 1, 2, \ldots, n, \ldots\}$, density $f_{\gamma}(n) = (1 - \gamma)\gamma^n, \gamma \in (0, 1)$

a. What is the outcome space S of this experiment? (Find an appropriate symbol for "non-zero".) What is the probability of each outcome in S?

b. Write the log-likelihood of the data as a function of γ , using the probabilities you obtained in **a**. What are the sufficient statistics?

c. Now find the expression of maximum of the log-likelihood in **b.** and thus derive a formula for Maximum Likelihood estimate of γ .