
STAT/QSCI 403: Introduction to Resampling Methods Spring 2025

Lecture 0: Review on Probability and Statistics
Instructor: Marina Meilă. Course notes courtesy of Yen-Chi Chen

0.1 Random Variables

Here we will ignore the formal mathematical definition of a random variable and directly talk about it
property. For a random variable X, the cumulative distribution function (CDF) of X is

PX(x) = F (x) = P (X ≤ x).

Actually, the distribution of X is completely determined by the CDF F (x), regardless of X being a discrete
random variable or a continuous random variable (or a mix of them).

If X is discrete, its probability mass function (PMF) is

p(x) = P (X = x).

If X is continuous, its probability density function (PDF) is

p(x) = F ′(x) =
d

dx
F (x).

Moreover, the CDF can be written as

F (x) = P (X ≤ x) =

∫ x

−∞
p(x′)dx′.

Generally, we write X ∼ F or X ∼ p indicating that the random variable X has a CDF F or a PMF/PDF
p.

For two random variables X,Y , their joint CDF is

PXY (x, y) = F (x, y) = P (X ≤ x, Y ≤ y).

The corresponding joint PDF is

p(x, y) =
∂2F (x, y)

∂x∂y
.

The conditional PDF of Y given X = x is

p(y|x) =
p(x, y)

p(x)
,

where p(x) =
∫∞
−∞ p(x, y)dy is sometimes called the marginal density function. Note that you can definition

the joint PMF and conditional PMF using a similar way.
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0.2 Expected Value

For a function g(x), the quantity g(X) will also be a random variable and its expected value is

E(g(X)) =

∫
g(x)dF (x) =

{∫∞
−∞ g(x)p(x)dx, if X is continuous∑
x g(x)p(x), if X is discrete

.

When f(x) = x, this reduces to the usual definition of expected value.

Here are some useful properties and quantities related to the expected value:

� E(
∑k
j=1 cjgj(X)) =

∑k
j=1 cj · E(gj(Xi)).

� We often write µ = E(X) as the mean (expectation) of X.

� Var(X) = E((X − µ)2) is the variance of X.

� If X1, · · · , Xn are independent, then

E (X1 ·X2 · · ·Xn) = E(X1) · E(X2) · · ·E(Xn).

� If X1, · · · , Xn are independent, then

Var

(
n∑
i=1

aiXi

)
=

n∑
i=1

a2i · Var(Xi).

� For two random variables X and Y with their mean being µX and µY and variance being σ2
X and σ2

Y .
The covariance

Cov(X,Y ) = E((X − µx)(Y − µy)) = E(XY )− µxµy
and the (Pearson’s) correlation

ρ(X,Y ) =
Cov(X,Y )

σxσy
.

The conditional expectation of Y given X is the random variable E(Y |X) = g(X) such that when X = x,
its value is

E(Y |X = x) =

∫
yp(y|x)dy,

where p(y|x) = p(x, y)/p(x).

0.3 Common Distributions

0.3.1 Discrete Random Variables

Bernoulli. If X is a Bernoulli random variable with parameter p, then X = 0 or, 1 such that

P (X = 1) = p, P (X = 0) = 1− p.

In this case, we write X ∼ Ber(p).
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Binomial. If X is a binomial random variable with parameter (n, p), then X = 0, 1, · · · , n such that

P (X = k) =

(
n

k

)
pk(1− p)n−k.

In this case, we write X ∼ Bin(n, p). Note that if X1, · · · , Xn ∼ Ber(p), then the sum Sn = X1+X2+· · ·+Xn

is a binomial random variable with parameter (n, p).

Poisson. If X is a Poisson random variable with parameter λ, then X = 0, 1, 2, 3, · · · and

P (X = k) =
λke−λ

k!
.

In this case, we write X ∼ Poi(λ).

0.3.2 Continuous Random Variables

Uniform. If X is a uniform random variable over the interval [a, b], then

p(x) =
1

b− a
I(a ≤ x ≤ b),

where I(statement) is the indicator function such that if the statement is true, then it outputs 1 otherwise
0. Namely, p(x) takes value 1

b−a when x ∈ [a, b] and p(x) = 0 in other regions. In this case, we write
X ∼ Uni[a, b].

Normal. If X is a normal random variable with parameter (µ, σ2), then

p(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 .

In this case, we write X ∼ N(µ, σ2).

Exponential. If X is an exponential random variable with parameter λ, then X takes values in [0,∞) and

p(x) = λe−λx.

In this case, we write X ∼ Exp(λ). Note that we can also write

p(x) = λe−λxI(x ≥ 0).

0.4 Useful Theorems

We write X1, · · · , Xn ∼ F when X1, · · · , Xn are IID (independently, identically distributed) from a CDF F .
In this case, X1, · · · , Xn is called a random sample.

For a sequence of random variables Z1, · · · , Zn, · · · , we say Zn converges in probability to a fixed number
µ if for any ε > 0,

lim
n→∞

P (|Zn − µ| > ε) = 0

and we will write

Zn
P→ µ.
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In other words, Zn converges in probability implies that the distribution is concentrating at the targeting
point.

Let F1, · · · , Fn, · · · be the corresponding CDFs of Z1, · · · , Zn, · · · . For a random variable Z with CDF F ,
we say Zn converges in distribution to Z if for every x,

lim
n→∞

Fn(x) = F (x).

In this case, we write

Zn
D→ Z.

Namely, the CDF’s of the sequence of random variables converge to a the CDF of a fixed random variable.

Theorem 0.1 (Weak) Law of Large Number. Let X1, · · · , Xn ∼ F and µ = E(X1). If E|X1| < ∞,
then the sample average

X̄n =
1

n

n∑
i=1

Xi

converges in probability to µ. i.e.,

X̄n
P→ µ.

Theorem 0.2 Central Limit Theorem. Let X1, · · · , Xn ∼ F and µ = E(X1) and σ2 = Var(X1) < ∞.
Let X̄n be the sample average. Then

√
n

(
X̄n − µ
σ

)
D→ N(0, 1).

Note that N(0, 1) is also called standard normal random variable.

0.5 Estimators and Estimation Theory

Let X1, · · · , Xn ∼ F be a random sample. Here we can interpret F as the population distribution we are
sampling from (that’s why we are generating data from this distribution). Any numerical quantity (or even
non-numerical quantity) of F that we are interested in is called the parameter of interest. For instance,
the parameter of interest can be the mean of F , the median of F , standard deviation of F , first quartile of
F , ... etc. The parameter of interest can even be P (X ≥ t) = 1 − F (t) = S(t). The function S(t) is called
the survival function, which is a central topic in biostatistics and medical research.

When we know (or assume) that F is a certain distribution with some parameters, then the parameter of
interest can be the parameter describing that distribution. For instance, if we assume F is an exponential
distribution with an unknown parameter λ. Then this unknown parameter λ might be the parameter of
interest.

Most of the statistical analysis is concerned with the following question:

“given the parameter of interest, how can I use the random sample to infer it?”

Let θ = θ(F ) be the parameter of interest and let θ̂n be a statistic (a function of the random sample

X1, · · · , Xn) that we use to estimate θ. In this case, θ̂n is called an estimator. For an estimator, there are
two important quantities measuring its quality. The first quantity is the bias:

Bias(θ̂n) = E(θ̂n)− θ,
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which captures the systematic deviation of the estimator from its target. The other quantity is the variance
Var(θ̂n), which measures the size of stochastic fluctuation.

Example. Let X1, · · · , Xn ∼ F and µ = E(X1) and σ2 = Var(X). Assume the parameter of interest is the
population mean µ. Then a natural estimator is the sample average µ̂n = X̄n. Using this estimator, then

bias(µ̂n) = µ− µ = 0, Var(µ̂n) =
σ2

n
.

Therefore, when n→∞, both bias and variance converge to 0. Thus, we say µ̂n is a consistent estimator

of µ. Formally, an estimator θ̂n is called a consistent estimator of θ if θ̂n
P→ θ.

The following lemma is a common approach to prove consistency:

Lemma 0.3 Let θ̂n be an estimator of θ. If bias(θ̂n) → 0 and Var(θ̂n) → 0, then θ̂n
P→ θ. i.e., θ̂n is a

consistent estimator of θ.

In many statistical analysis, a common measure of the quality of the estimator is the mean square error
(MSE), which is defined as

MSE(θ̂n) = MSE(θ̂n, θ) = E
(

(θ̂n − θ)2
)
.

By simple algebra, the MSE of θ̂n equals

MSE(θ̂n, θ) = E
(

(θ̂n − θ)2
)

= E
(

(θ̂n − E(θ̂n) + E(θ̂n)− θ)2
)

= E
(

(θ̂n − E(θ̂n))2
)

︸ ︷︷ ︸
=Var(θ̂n)

+2E
(
θ̂n − E(θ̂n)

)
︸ ︷︷ ︸

=0

·(E(θ̂n)− θ) +

E(θ̂n)− θ︸ ︷︷ ︸
=bias(θ̂n)


2

= Var(θ̂n) + bias2(θ̂n).

Namely, the MSE of an estimator is the variance plus the square of bias. This decomposition is also known
as the bias-variance tradeoff (or bias-variance decomposition). By the Markov inequality,

MSE(θ̂n, θ)→ 0 =⇒ θ̂n
P→ θ.

i.e., if an estimator has MSE converging to 0, then it is a consistent estimator. The convergence of MSE is
related to the L2 convergence in probability theory.

Note that we write θ = θ(F ) for the parameter of interest because θ is a quantity derived from the population
distribution F . Thus, we may say that the parameter of interest θ is a ‘functional’ (function of function; the
input is a function, and the output is a real number).

♦ : There are two common methods of finding an estimator: the first one is called the MLE (maximum
likelihood estimator), the other one is called the MOM (method of moments)1. You can google these two
terms and you will find lots of references about them.

Question to think: if the parameter of interest is F (x) = P (X ≤ x), what will be the estimator of it?

1https://en.wikipedia.org/wiki/Method_of_moments_(statistics) and MIT open course

https://en.wikipedia.org/wiki/Method_of_moments_(statistics)
https://ocw.mit.edu/courses/mathematics/18-443-statistics-for-applications-spring-2015/lecture-notes/MIT18_443S15_LEC3.pdf
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