
STAT/Q SCI 403: Introduction to Resampling Methods Spring 2025

Lecture 3: MLE and Regression
Instructor: Course notes courtesy of Yen-Chi Chen

3.1 Parameters and Distributions

Some distributions are indexed by their underlying parameters. Thus, as long as we know the parameter,
we know the entire distribution. For instance, for Normal distributions N(µ, σ2), if we know µ and σ2, the
entire distribution is determined. For another example, for Exponential distributions Exp(λ), as long as we
know the value of λ, we know the entire distribution. Because these distributions are determined by their
parameters, they are sometimes called parametric distributions.

Because parameters in the parametric distributions determine the entire distribution, finding these parame-
ters is very important in practice. There are many approaches of finding parameters; here we will introduce
the most famous and perhaps most important one–the maximum likelihood estimator (MLE).

3.2 MLE: Maximum Likelihood Estimator

Assume that our random sample X1, · · · , Xn ∼ F , where F = Fθ is a distribution depending on a parameter
θ. For instance, if F is a Normal distribution, then θ = (µ, σ2), the mean and the variance; if F is an
Exponential distribution, then θ = λ, the rate; if F is a Bernoulli distribution, then θ = p, the probability
of generating 1.

The idea of MLE is to use the PDF or PMF to find the most likely parameter. For simplicity, here we use
the PDF as an illustration. Because the CDF F = Fθ, the PDF (or PMF) p = pθ will also be determined
by the parameter θ. By the independence property, the joint PDF of the random sample X1, · · · , Xn

pX1,··· ,Xn(x1, · · · , xn) =

n∏
i=1

pθ(xi).

Because pθ(x) also changes when θ changes, we rewrite it as p(x; θ) = pθ(x). Thus, the joint PDF can be
rewritten as

pX1,··· ,Xn(x1, · · · , xn) =

n∏
i=1

p(xi; θ).

Having observed x1 = X1, · · · , xn = Xn, how can we tell which parameter is most likely? Here is a simple
proposal that the MLE uses. Based on the joint PDF and x1 = X1, · · · , xn = Xn, we can rewrite the joint
PDF as a function of parameter θ:

L(θ|X1, · · · , Xn) =

n∏
i=1

p(Xi; θ).

The function L is called the likelihood function. And the MLE finds the maximizer of the likelihood function.
Namely,

θ̂MLE = θ̂n = argmax
θ

L(θ|X1, · · · , Xn).
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In many cases, maximizing the likelihood function might not be easy so people consider maximizing the
log-likelihood function:

θ̂MLE = θ̂n = argmax
θ

`(θ|X1, · · · , Xn) = argmax
θ

n∑
i=1

log p(Xi; θ) = argmax
θ

n∑
i=1

`(θ|Xi),

where `(θ|Xi) = log p(Xi; θ) but now we fix each Xi and view it as a function of θ. It is easy to see that
maximizing the likelihood function is the same as maximizing the log-likelihood function.

When the log-likelihood function is differentiable with respect to θ, we can use our knowledge from calculus
to find θ̂n. Let s(θ|Xi) = ∂

∂θ `(θ|Xi) be the derivative of `(θ|Xi) with respect to θ (here for simplicity we
assume θ is one-dimensional). The function s(θ|Xi) is called the score function. Then the MLE is from
solving the following likelihood equation:

s(θ̂n|X1, · · · , Xn) =

n∑
i=1

s(θ̂n|Xi) = 0. (3.1)

Note that we generally need to verify that the solution θ̂n is the maximum by checking the second derivative
but here we ignore it for simplicity.

♦ : Equation (??) is related to the generalized estimating equations1, a common approach to obtain estima-
tors.

♦ : The idea of obtaining an estimator by maximizing certain criteria (or minimizing some criteria) is called
an M-estimator2. In linear regression, we have learned that the estimators of the slope/intercept is from
minimizing the sum of squares of errors (least square estimator). Thus, the least square method is another
M-estimator.

Example. (Normal distribution) Here is an example of finding the MLE of the Normal distribution. We
assume X1, · · · , Xn ∼ N(µ, 1). The goal is to find an estimator of the mean parameter µ. Because the

density of such a Normal is pµ(x) = 1√
2π
e−

(x−µ)2
2 , the log-likelihood function `(µ|Xi) is

`(µ|Xi) = log pµ(Xi) = − (Xi − µ)2

2
− 1

2
log(2π),

which further implies that the score function is

s(µ|Xi) =
∂

∂µ
`(µ|Xi) = µ−Xi.

Thus, the MLE µ̂n satisfies

0 =

n∑
i=1

s(µ̂n|Xi) =

n∑
i=1

(µ̂n −Xi) = nµ̂n −
n∑
i=1

Xi =⇒ µ̂n =
1

n

n∑
i=1

Xi.

Thus, the MLE of the mean parameter is just the sample mean.

Example. (Exponential distribution) Assume X1, · · · , Xn ∼ Exp(λ). Now we find an estimator of λ using
the MLE. By definition of the exponential distribution, the density is pλ(x) = λe−λx. Thus, the log-likelihood
function and the score function are

`(λ|Xi) = log pλ(Xi) = log λ− λXi, s(λ|Xi) =
1

λ
−Xi.

1A bit advanced materials can be found in https://en.wikipedia.org/wiki/Generalized_estimating_equation
2https://en.wikipedia.org/wiki/M-estimator

https://en.wikipedia.org/wiki/Generalized_estimating_equation
https://en.wikipedia.org/wiki/M-estimator
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As a result, the MLE comes from solving

0 =

n∑
i=1

s(λ̂n|Xi) =

n∑
i=1

(
1

λ̂n
−Xi

)
=

n

λ̂n
−

n∑
i=1

Xi =⇒ λ̂n =
n∑n
i=1Xi

.

Namely, the MLE is the inverse of the sample average.

Example. (Uniform distribution) Here is a case where we cannot use the score function to obtain the MLE
but still we can directly find the MLE. Assume X1, · · · , Xn ∼ Uni[0, θ]. Namely, the random sample is
from an uniform distribution over the interval [0, θ], where the upper limit parameter θ is the parameter of
interest. Then the density function is pθ(x) = 1

θ1(0 ≤ x ≤ θ). Here we cannot use the log-likelihood function
(think about why) so we use the original likelihood function:

L(θ|X1, · · · , Xn) =

n∏
i=1

pθ(Xi) =

n∏
i=1

1

θ
1(0 ≤ Xi ≤ θ) =

1

θn
1(0 ≤ X(1) ≤ X(n) ≤ θ),

where X(1) = min{X1, · · · , Xn} and X(n) = maxX1, · · · , Xn are the minimum and maximum value of the

sample (here we use the notations from order statistic). Observing from L(θ|X1, · · · , Xn) = 1
θn 1(0 ≤ X(1) ≤

X(n) ≤ θ), we see that a smaller θ, a higher value of the likelihood function. However, there is a restriction–
the value of θ cannot be below X(n) otherwise the indicator function outputs 0. Thus, the maximum value

of L(θ|X1, · · · , Xn) occurs when θ = X(n), so the MLE is θ̂n = X(n), the maximum value of the sample.

Example. (Bernoulli distribution) Finally, we provide an example of finding the MLE of a discrete random
variable. Suppose X1, · · · , Xn ∼ Ber(p). Then the PMF is X = 1 with a probability of p and X = 0 with a
probability of 1− p. We can rewrite the PMF in the following succinct form:

P (x) = pX(1− p)1−X .

You can verify that P (1) = P (X = 1) = p and P (0) = P (X = 0) = 1− p. The likelihood function will be

L(p|X1, · · · , Xn) =

n∏
i=1

P (Xi) =

n∏
i=1

pXi(1− p)1−Xi

We can then compute the log-likelihood function and the score function:

`(p|X1, · · · , Xn) =

n∑
i=1

(Xi log p+ (1−Xi) log(1− p)) , s(p|X1, · · · , Xn) =

n∑
i=1

(
Xi

p
− 1−Xi

1− p

)
.

Therefore, the MLE can be obtained by solving

0 = s(p̂n|X1, · · · , Xn) =

n∑
i=1

(
Xi

p̂n
− 1−Xi

1− p̂n

)
.

Multiplying both sides by p̂n(1− p̂n),

0 =

n∑
i=1

Xi · (1− p̂n)− (1−Xi) · p̂n =

n∑
i=1

(Xi − p̂n) =⇒ p̂n =
1

n

n∑
i=1

Xi.

Again, the MLE is the sample mean.

♦ : In many problems (such as the mixture models3), we do not have a closed form of the MLE. The only way
to compute the MLE is via computational methods such as the EM algorithm (Expectation-Maximization)4,

3https://en.wikipedia.org/wiki/Mixture_model
4https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm

https://en.wikipedia.org/wiki/Mixture_model
https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm
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which is like a gradient ascent approach. However, the EM algorithm will stuck at the local maximum, so
we have to rerun the algorithm many times to get the real MLE (the MLE is the parameters of ‘global’
maximum). In machine learning/data science, how to numerically find the MLE (or approximate the MLE)
is an important topic. A common solution is to propose other computationally feasible estimators that are
similar to the MLE and switch our target to these new estimators.

3.3 Theory of MLE

The MLE has many appealing properties. Here we will focus on one of its most desirable properties:
asymptotic normality and asymptotic variance.

What is asymptotic normality? It means that the estimator θ̂n and its target parameter θ has the following
elegant relation:

√
n
(
θ̂n − θ

)
D→ N(0, I−1(θ)), (3.2)

where σ2(θ) is called the asymptotic variance; it is a quantity depending only on θ (and the form of the
density function). Simply put, the asymptotic normality refers to the case where we have the convergence
in distribution to a Normal limit centered at the target parameter. Moreover, this asymptotic variance has
an elegant form:

I(θ) = E

((
∂

∂θ
log p(X; θ)

)2
)

= E
(
s2(θ|X)

)
. (3.3)

The asymptotic variance I(θ) is also called the Fisher information. This quantity plays a key role in both
statistical theory and information theory.

Here is a simplified derivation of equation (??) and (??). Let X1, · · · , Xn ∼ pθ0 , where θ0 is the parameter
generating the random sample. For simplicity, we assume θ0 ∈ R and θ0 satisfies

θ0 = argmax
θ

E(`(θ|X)).

Let θ̂n be the MLE. Recall that the MLE solves the equation

n∑
i=1

s(θ̂n|Xi) = 0.

Because θ0 is the maximizer of E(`(θ|X)), it also satisfies E(s(θ|X)) = 0. Now consider the following
expansion:

1

n

n∑
i=1

s(θ0|Xi)− E(s(θ0|X))︸ ︷︷ ︸
=0

=
1

n

n∑
i=1

s(θ0|Xi)−
n∑
i=1

s(θ̂n|Xi)︸ ︷︷ ︸
=0

= fn(θ0)− fn(θ̂n)

= (θ0 − θ̂n)f ′n(θ∗), θ∗ ∈ [θ0, θ̂n] by mean value theorem

≈ (θ0 − θ̂n)f ′n(θ0)

= (θ0 − θ̂n)
1

n

n∑
i=1

s′(θ0|Xi)

≈ (θ0 − θ̂n)E(s′(θ0|Xi)).

(3.4)
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By Central Limit Theorem, the right hand side of equation (??)

√
n

(
1

n

n∑
i=1

s(θ0|Xi)− E(s(θ0|X))

)
D→ N(0, σ2(θ)), (3.5)

where σ2(θ) = Var(s(θ0|Xi)).

Therefore, rearranging the quantities in equation (??) and (??),

√
n
(
θ̂n − θ0

)
=
√
n · −1

E(s′(θ0|Xi))
·

(
1

n

n∑
i=1

s(θ0|Xi)− E(s(θ0|X))

)

=
−1

E(s′(θ0|Xi))
·
√
n

(
1

n

n∑
i=1

s(θ0|Xi)− E(s(θ0|X))

)
D→ N

(
0,

σ2(θ)

(E(s′(θ0|Xi))
2

)
.

(3.6)

Now we have already shown the asymptotic normality. The next step is to show the asymptotic variance
σ2(θ)

(E(s′(θ0|Xi))2
= I(θ0).

First, we expand σ2(θ):

σ2(θ) = Var(s(θ0|Xi)) = E(s2(θ0|Xi))︸ ︷︷ ︸
=I(θ)

−

E(s(θ0|Xi))︸ ︷︷ ︸
=0

2

. (3.7)

Second, we expand E(s′(θ0|Xi)). But first we focus on s′(θ0|Xi):

s′(θ0|Xi) =
∂2

∂θ20
log p(Xi; θ0) =

∂

∂θ0

∂
∂θ0

p(Xi; θ0)

p(Xi; θ0)

=

∂2

∂θ20
p(Xi; θ0)

p(Xi; θ0)
−

(
∂
∂θ0

p(Xi; θ0)

p(Xi; θ0)

)2

=

∂2

∂θ20
p(Xi; θ0)

p(Xi; θ0)
−
(

∂

∂θ0
log p(Xi; θ0)

)2

=

∂2

∂θ20
p(Xi; θ0)

p(Xi; θ0)
− s2(θ0|Xi).

For the first quantity,

E

 ∂2

∂θ20
p(Xi; θ0)

p(Xi; θ0)

 =

∫ ∂2

∂θ20
p(x; θ0)

p(x; θ0)
p(x; θ0)dx =

∫
∂2

∂θ20
p(x; θ0)dx =

∂2

∂θ20

∫
p(x; θ0)dx︸ ︷︷ ︸

=1

= 0.

Note that because we exchange the positions of the derivative and the integration, we assume that the
parameter is independent of the support of the density function.

Thus,

E(s′(θ0|Xi)) = E

 ∂2

∂θ20
p(Xi; θ0)

p(Xi; θ0)

− E
(
s2(θ0|Xi)

)
= −E

(
s2(θ0|Xi)

)
= −I(θ0). (3.8)
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Plugging equations (??) and (??) into equation (??), we conclude

√
n
(
θ̂n − θ0

)
D→ N

(
0,
I(θ0)

I2(θ0)

)
D
= N

(
0, I−1(θ0)

)
, (3.9)

which is the desired result.

As a byproduct, we also showed that

I(θ0) = E
(
s2(θ0|X)

)
= −E (s′(θ0|X)) .

Equation (??) provides several useful properties of MLE:

� The MLE θ̂n is an unbiased estimator of θ0.

� The mean square error (MSE) of θ̂n is

MSE
(
θ̂n, θ0

)
= bias2(θ̂)︸ ︷︷ ︸

=0

+Var(θ̂n) ≈ 1

n · I(θ0)
.

� The estimator error of θ̂n is asymptotically Normal.

� If we know I(θ0) or have an estimate Î(θ0) of it , we can construct a 1− α confidence interval usingθ̂n − z1−α/2√
nÎ(θ0)

, θ̂n −
z1−α/2√
nÎ(θ0)

 .
� If we want to test H0 : θ0 = θ∗ versus Ha : θ0 6= θ∗ under significance level α, we can first compute
I(θ∗) and then reject the null hypothesis if√

nI(θ∗) · |θ̂n − θ∗| ≥ z1−α/2.

Example. (Normal distribution) In the example where X1, · · · , Xn ∼ N(µ, 1), we have seen that s(µ|Xi) =
µ −Xi. Thus, I(µ) = E(s2(µ|Xi)) = E((µ −Xi)

2) = 1 because the variance is 1. Moreover, E(s′(µ|Xi)) =
E(1) = 1 = I(µ) agrees with the fact that E(s2(µ|Xi)) = E(s′(µ|Xi)). Another way to check this is directly
compute the variance of the MLE µ̂n = 1

n

∑n
i=1Xi, which equals to 1

n = 1
nI(µ) . Again, we obtain I(µ) = 1.

Example. (Exponential distribution) For the example where X1, · · · , Xn ∼ Exp(λ), the Fisher information

is more involved. Because the MLE λ̂n = n∑n
i=1Xi

, we cannot directly compute its variance. However, using

the Fisher information, we can still obtain its asymptotic variance. Recall that s(λ|Xi) = 1
λ −Xi. Thus,

E(s2(λ|Xi)) = E
(

1

λ2
− 2Xi

λ
+X2

i

)
.

For an exponential distribution Exp(λ), its mean is λ−1 and variance is λ−2, which implies the second moment
E(X2

i ) = Var(Xi) + E2(Xi) = 2
λ2 . Putting it altogether,

I(λ) = E(s2(λ|Xi)) =
1

λ2
− 2

λ2
+

2

λ2
=

1

λ2
.

If we use E(s′(λ|Xi)), we obtain

E(s′(λ|Xi)) =
1

λ2
= I(λ),
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which agrees with the previous result.

♦ : Note that we may obtain an approximation of the variance of the MLE λ̂ by the delta method5.

♠ : Not all MLEs have the above elegant properties. There are MLEs who do not satisfy the assumption
of the theory. For instance, in the example of X1, · · · , Xn ∼ Uni over [0, θ], the MLE θ̂n = X(n) does not
satisfy the assumption. An assumption is that the support of the density does not depend on the parameter
but here the support is [0, θ], which depends on the parameter.

3.4 Simple Linear Regression

Under certain conditions, the least square estimator (LSE) in linear regression can be framed as an MLE of
the regression slope and intercept. Let’s recall the least square estimator of the linear regression first. We
observe IID bivariate random variables (X1, Y1), · · · , (Xn, Yn) such that

Yi = β0 + β1Xi + εi,

where the εi is a mean 0 noise independent of Xi. We also assume that the marginal distribution of the
covariate X1, · · · , Xn ∼ pX .

The LSE finds β̂0,LSE , β̂1,LSE by

(β̂0,LSE , β̂1,LSE) = argmin
β0,β1

n∑
i=1

(Yi − β0 − β1Xi)
2
. (3.10)

In other words, we are choose β̂0,LSE , β̂1,LSE such that the sum of squares of errors is minimized.

Now, here is the key assumption the links the MLE and the LSE: We assume that

ε1, · · · , εn ∼ N(0, σ2). (3.11)

Namely, the noises are IID from a mean 0 Normal distribution.

Under equation (??), what is the MLE of β0 and β1? Here is a derivation of that. Let pε(e) be the distribution
of the εi . The joint density of (Xi, Yi) is

pXY (x, y) = p(y|x) · pX(x) = pε(y − β0 − β1x) · pX(x) =
1√

2πσ2
e−

1
2σ2

(y−β0−β1x)
2

· pX(x).

Thus, the log-likelihood function of β0, β1 is

`(β0, β1|X1, Y1, · · · , Xn, Yn) =

n∑
i=1

log pXY (Xi, Yi)

=

n∑
i=1

−1

2
log(2πσ2)︸ ︷︷ ︸
⊥β0,β1

− 1

2σ2
(Yi − β0 − β1Xi)

2
+ log pX(Xi)︸ ︷︷ ︸

⊥β0,β1

 .

Therefore, only the center term is related to the parameter of interest β0, β1. This means that the MLE is
also the maximizer of

`∗(β0, β1|X1, Y1, · · · , Xn, Yn) = −
n∑
i=1

1

2σ2
(Yi − β0 − β1Xi)

2
.

5https://en.wikipedia.org/wiki/Delta_method and http://www.stat.cmu.edu/~larry/=stat705/Lecture4.pdf

https://en.wikipedia.org/wiki/Delta_method
http://www.stat.cmu.edu/~larry/=stat705/Lecture4.pdf
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Because multiplying `∗(β0, β1|X1, Y1, · · · , Xn, Yn) by any positive number will not affect the maximizer, we
multiply it by 2σ2, which leads to the following criterion:

`†(β0, β1|X1, Y1, · · · , Xn, Yn) = −
n∑
i=1

(Yi − β0 − β1Xi)
2
.

Accordingly, the MLE finds β̂0,MLE , β̂1,MLE by maximizing −
∑n
i=1 (Yi − β0 − β1Xi)

2
, which is equivalent to

minimizing
∑n
i=1 (Yi − β0 − β1Xi)

2
, the same criterion as equation (??). So the LSE and the MLE coincides

in this case and the theory of MLE applied to LSE (asymptotic normality, Fisher information, ...etc).

♠ : Think about the closed form of β̂0,LSE , β̂1,LSE given IID bivariate random variables (X1, Y1), · · · , (Xn, Yn).
And also think about if they converges to the true parameter β0, β1 and if we can derive the asymptotic
normality of them (you may need to use the Slutsky’s theorem6).

3.5 Logistic Regression

Now we consider a special case in the regression problem: binary response case. We observe IID bivariate
random variables

(X1, Y1), · · · , (Xn, Yn)

such that Yi takes value 0 and 1. Here Yi’s are called the response variable and Xi’s are called the covariate.
Because Yi takes value between 0 and 1, we can view it as a Bernoulli random variable with parameter q
but this parameter q depends on the value of the corresponding covariate Xi. Namely, if we observe Xi = x,
then the probability P (Yi = 1|Xi = x) = q(x) for some function q(x). Here are some examples why this
model is reasonable.

Example. In graduate school admission, we are wondering how a student’s GPA affects the chance that
this applicant received the admission. In this case, each observations is a student and the response variable
Y represents whether the student received admission (Y = 1) or not (Y = 0). GPA is the covariate X.
Thus, we can model the probability

P (admitted|GPA = x) = P (Y = 1|X = x) = q(x).

Example. In medical research, people are often wondering if the heretability of the type-2 diabetes is related
to some mutation from of a gene. Researchers record if the subject has the type-2 diabetes (response) and
measure the mutation signature of genes (covariate X). Thus, the response variable Y = 1 if this subject
has the type-2 diabetes. A statistical model to associate the covariate X and the response Y is through

P (subject has type-2 diabetes|mutation signature = x) = P (Y = 1|X = x) = q(x).

Thus, the function q(x) now plays a key role in determining how the response Y and the covariate X are
associated. The logistic regression provides a simple and elegant way to characterize the function q(x) in a
‘linear’ way. Because q(x) represents a probability, it ranges within [0, 1] so naively using a linear regression
will not work. However, consider the following quantity:

O(x) =
q(x)

1− q(x)
=
P (Y = 1|X = x)

P (Y = 0|X = x)
∈ [0,∞).

The quantity O(x) is called the odds that measures the contrast between the event Y = 1 versus Y = 0.
When the odds is greater than 1, we have a higher change of getting Y = 1 than Y = 0. The odds

6https://en.wikipedia.org/wiki/Slutsky’s_theorem

https://en.wikipedia.org/wiki/Slutsky's_theorem
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has an interesting asymmetric form– if P (Y = 1|X = x) = 2P (Y = 0|X = x), then O(x) = 2 but if
P (Y = 0|X = x) = 2P (Y = 1|X = x), then O(x) = 1

2 . To symmetrize the odds, a straight-forward
approach is to take (natural) logarithm of it:

logO(x) = log
q(x)

1− q(x)
.

This quantity is called log odds. The log odds has several beautiful properties, for instance when the two
probabilities are the same (P (Y = 1|X = x) = P (Y = 0|X = x)), logO(x) = 0, and

P (Y = 1|X = x) = 2P (Y = 0|X = x)⇒ logO(x) = log 2

P (Y = 0|X = x) = 2P (Y = 1|X = x)⇒ logO(x) = − log 2.

The logistic regression is to impose a linear model to the log odds. Namely, the logistic regression models

logO(x) = log
q(x)

1− q(x)
= β0 + β1x

leading to

P (Y = 1|X = x) = q(x) =
eβ0+β1x

1 + eβ0+β1x
.

Thus, the quantity q(x) = q(x;β0, β1) depends on the two parameter β0, β1. Here β0 behaves like the
intercept and β1 behaves like the slope (they are the intercept and slope in terms of the log odds).

When we observe data, how can we estimate these two parameters? In general, people will use the MLE to
estimate them and here is the likelihood function of logistic regression. Recall that we observe IID bivariate
random sample:

(X1, Y1), · · · , (Xn, Yn).

Let pX(x) denotes the probability density of X; note that we will not use it in estimating β0, β1. For a given
pair Xi, Yi, recalled that the random variable Yi given Xi is just a Bernoulli random variable with parameter
q(x = Xi). Thus, the PMF of Yi given Xi is

L(β0, β1|Xi, Yi) = P (Y = Yi|Xi) = q(Xi)
Yi(1− q(Xi))

1−Yi

=

(
eβ0+β1Xi

1 + eβ0+β1Xi

)Yi (
1

1 + eβ0+β1Xi

)1−Yi

=
eβ0Yi+β1XiYi

1 + eβ0+β1Xi
.

Note that here we construct the likelihood function using only the conditional PMF because similarly to the
linear regression, the distribution of the covariate X does not depends on the parameter β0, β1. Thus, the
log-likelihood function is

`(β0, β1|X1, Y1, · · · , Xn, Yn) =

n∑
i=1

logL(β0, β1|Xi, Yi)

=

n∑
i=1

log

(
eβ0Yi+β1XiYi

1 + eβ0+β1Xi

)

=

n∑
i=1

β0Yi + β1XiYi − log
(
1 + eβ0+β1Xi

)
.

We can then take derivative to find the maximizer.



3-10 Lecture 3: MLE and Regression

However, the derivative of the log-likelihood function `(β0, β1|X1, Y1, · · · , Xn, Yn) does not have a closed-
form solution so we cannot write down a simple expression of the estimator. Despite this disadvantage, such
a log-likelihood function can be optimized by gradient ascent approach such as the Newton-Raphson7.

7some references can be found: https://www.cs.princeton.edu/~bee/courses/lec/lec_jan24.pdf

https://www.cs.princeton.edu/~bee/courses/lec/lec_jan24.pdf
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