
STAT/Q SCI 403: Introduction to Resampling Methods Spring 2025

Lecture 5: Bootstrap
Instructor: Course notes courtesy of Yen-Chi Chen

Question 1: error of sample median? We start with a simple example: what is the error of sample
median? Like sample mean is an estimate of the mean of population, the sample median is an estimate of
the median of population. Because it is an estimator, we can define the bias, variance, and mean square
error (MSE) of sample median. But what are these quantities?

Question 2: confidence interval of sample median? Moreover, how can we construct a confidence
interval for the population median? We know that given a random sample X1, · · · , Xn ∼ F , a 1−α confidence
interval of population mean is

X̄n ± z1−α/2 ·
σ̂n√
n
,

where X̄n and σ̂n are the sample mean and sample standard deviation. Can we do the same thing (construct
a confidence interval) for the median?

In this lecture, we will address these problems for median and many other statistics using the well-known
approach: the bootstrap.

5.1 Empirical Bootstrap

Here is how we can estimate the error of sample median and construct the corresponding confidence interval.
Assume we are given the data points X1, · · · , Xn. Let Mn = median{X1, · · · , Xn}. First, we sample with

replacement from these n points, leading to a set of new observations denoted as X
∗(1)
1 , · · · , X∗(1)

n . Again,
we repeat the sample procedure again, generating a new sample from the original dataset X1, · · · , Xn by

sampling with replacement, leading to another new sets of observations X
∗(2)
1 , · · · , X∗(2)

n . Now we keep
repeating the same process of generating new sets of observations, after B rounds, we will obtain

X
∗(1)
1 , · · · , X∗(1)

n

X
∗(2)
1 , · · · , X∗(2)

n

...
...

...

X
∗(B)
1 , · · · , X∗(B)

n .

So totally, we will have B sets of data points. Each set of the data points, say X
∗(1)
1 , · · · , X∗(1)

n , is called a
bootstrap sample. This sampling approach–sample with replacement from the original dataset–is called the
empirical bootstrap, invented by Bradley Efron (sometimes this approach is also called Efron’s bootstrap or
nonparametric bootstrap)1.

Now for each set of data, we then compute their sample median. This leads to B sample medians, called

1For more details, check the wikipedia: https://en.wikipedia.org/wiki/Bootstrapping_(statistics)
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bootstrap medians:

M∗(1)
n = median{X∗(1)

1 , · · · , X∗(1)
n }

M∗(2)
n = median{X∗(2)

1 , · · · , X∗(2)
n }

...

M∗(B)
n = median{X∗(B)

1 , · · · , X∗(B)
n }.

Now here are some real cool things.

� Bootstrap estimate of the variance. We will use the sample variance of M
∗(1)
n , · · · ,M∗(B)

n as an
estimate of the variance of sample median Mn. Namely, we will use

V̂arB(Mn) =
1

B − 1

B∑
`=1

(
M∗(`)
n − M̄∗

B

)2

, M̄∗
B =

1

B

B∑
`=1

M∗(`)
n ,

as an estimate of Var(Mn).

� Bootstrap estimate of the MSE. Moreover, we can estimate the MSE by

̂MSE(Mn) =
1

B

B∑
`=1

(
M∗(`)
n −Mn

)2

.

� Bootstrap confidence interval. In addition, we can construct a 1 − α confidence interval of the
population median via

Mn ± z1−α/2 ·
√
V̂arB(Mn).

Well... this sounds a bit weird–we generate new data points by sampling from the existing data points.
However, under some conditions, this approach does work! And here is a brief explanation on why this
approach works.

Let X1, · · · , Xn ∼ F . Recall from Lecture 1, a statistic S(X1, · · · , Xn) is a function of random variables so
its distribution will depend on the CDF F and the sample size n. Thus, the distribution of median Mn,
denoted as FMn

, will also be determined by the CDF F and sample size n. Namely, we may write the CDF
of median as

FMn(x) = Ψ(x;F, n), (5.1)

where Ψ is some complicated function that depends on CDF of each observation F and the sample size n.

When we sample with replace from X1, · · · , Xn, what is the distribution we are sampling from? Let F̂n(x) =
1
n

∑n
i=1 I(Xi ≤ x) be the EDF of these data points. The EDF is a step functions that jumps at each data

point. We know that for a discrete random variable, each jump point in its CDF corresponds to the possible
value of this random variable and the size of the jump is the probability of selecting that value.

Therefore, if we generate a random variable Z from F̂n, then Z has the following probability distribution:

P (Z = Xi) =
1

n
, for each i = 1, 2, · · · , n.

If we generated IID Z1, · · · , Zn ∼ F̂n, then the distribution of each Z` is

P (Z` = Xi) =
1

n
, for each i = 1, 2, · · · , n, and for all ` = 1, · · · , n.
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What is this sample Z1, · · · , Zn? This sample is a sample generated by sampling with replacement from
X1, · · · , Xn.

Recall that each set of the bootstrap sample, say X
∗(1)
1 , · · · , X∗(1)

n , is obtained via sampling with replacement

from X1, · · · , Xn. Thus, each set of the bootstrap sample is an IID sample from F̂n. Namely,

X
∗(1)
1 , · · · , X∗(1)

n ∼ F̂n
X

∗(2)
1 , · · · , X∗(2)

n ∼ F̂n
...

X
∗(B)
1 , · · · , X∗(B)

n ∼ F̂n.

Because a bootstrap median, say M
∗(1)
n , is the sample median of X

∗(1)
1 , · · · , X∗(1)

n . Its CDF, by equation
(5.1), is

F
M

∗(1)
n

(x) = Ψ(x; F̂n, n).

And because each of the bootstrap sample are all from the distribution F̂n, we will have

Ψ(x; F̂n, n) = F
M

∗(1)
n

(x) = F
M

∗(2)
n

(x) = · · · = F
M

∗(B)
n

(x).

We know that F̂n is very similar to F when the sample size is large. Thus, as long as Ψ is smooth (smoothly

changing) with respect to F , Ψ(x; F̂n, n) will also be very similar to Ψ(x;F, n), i.e.,

F̂n ≈ F =⇒ F
M

∗(`)
n

(x) = Ψ(x; F̂n, n) ≈ Ψ(x;F, n) = FMn
(x).

This means:

The CDF of a bootstrap median, F
M

∗(`)
n

(x), is approximating the CDF of the true median, FMn
(x).

This has many implications. For an example, when two CDFs are similar, their variances will be similar as
well, i.e.,

Var
(
M∗(`)
n |X1, · · · , Xn

)
≈ Var(Mn).2

Now the bootstrap variance estimate V̂arB(Mn) is just a sample variance of M∗(`). When B is large, the
sample variance is about the same as the population variance, implying

V̂arB(Mn) =
1

B − 1

B∑
`=1

(
M∗(`)
n − M̄∗

B

)2

≈ Var
(
M∗(`)
n |X1, · · · , Xn

)
.

Therefore,

V̂arB(Mn) ≈ Var
(
M∗(`)
n |X1, · · · , Xn

)
≈ Var(Mn),

which explains why the bootstrap variance is a good estimate of the true variance of the median.

Generalization to other statistics. The bootstrap can be applied to many other statistics such as sample
quantiles, interquartile range, skewness (related to E(X3)), kurtosis (related to E(X4)), ...etc. The theory
basically follows from the same idea.

2The reason why in the left-hand-side, the variance is conditioned on X1, · · · , Xn is because when we compute the bootstrap
estimate, the original observations X1, · · · , Xn are fixed.
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Failure of the bootstrap. However, the bootstrap may fail for some statistics. One example is the
minimum value of a distribution. Here is an illustration why the bootstrap fails. Let X1, · · · , Xn ∼ Uni[0, 1]
and Mn = min{X1, · · · , Xn} be the minimum value of the sample. Then it is known that

n ·Mn
D→ Exp(1).

♠ : Think about why it converges to exponential distribution.

Thus, Mn has a continuous distribution. Assume we generate a bootstrap sample X∗
1 , · · · , X∗

n from the
original observations. Now let M∗

n = min{X∗
1 , · · · , X∗

n} be the minimum value of a bootstrap sample.
Because each X∗

` has an equal probability ( 1
n ) of selecting each of X1, · · · , Xn, this implies

P (X∗
` = Mn) =

1

n
.

Namely, for each observation in the bootstrap sample, we have a probability of 1/n selecting the minimum
value of the original sample. Thus, the probability that we do not select Mn in the bootstrap sample is

P (none of X∗
1 , · · · , X∗

n select Mn) =

(
1− 1

n

)n
≈ e−1.

This implies that with a probability 1− e−1, one of the observation in the bootstrap sample will select the
minimum value of the original sample Mn. Namely,

P (M∗
n = Mn) = 1− e−1.

Thus, M∗
n has a huge probability mass at the value Mn, meaning that the distribution of M∗

n will not be
close to an exponential distribution.

5.2 Parametric Bootstrap

When we assume the data is from a parametric model (e.g., from Normal distribution, exponential distribu-
tion, ...etc), we can use the parametric bootstrap to access the uncertainty (variance, mean square errors,
confidence intervals) of the estimated parameter. Here is an illustration using the variance of a normal
distribution.

Example: normal distribution. Let X1, · · · , Xn ∼ N(0, σ2), where σ2 is an unknown number. A natural
way to estimate σ2 is via the sample variance S2

n = 1
n−1

∑n
i=1(Xi − X̄n)2. Because the sample variance is

an estimator, it is a random quantity. How do we estimate the variance of the sample variance? How do we
estimate the MSE of the sample variance? How do we construct a 1− α confidence interval for σ23?

Here is what we are going to do. Because we know that the sample variance is a good estimator of σ2, we can
use it to replace σ2, leading to a new distribution N(0, S2

n). We know to sample from this new distribution,
so we just generate bootstrap samples from this distribution. Assume we generate B sets of samples:

X
∗(1)
1 , · · · , X∗(1)

n ∼ N(0, S2
n)

X
∗(2)
1 , · · · , X∗(2)

n ∼ N(0, S2
n)

...

X
∗(B)
1 , · · · , X∗(B)

n ∼ N(0, S2
n).

3Some of you might have learned an approach via inverting the χ2 distribution. That is a viable approach as well.
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To estimate the variability of S2
n, we use the sample variance of each bootstrap sample. Let S

2∗(1)
n , · · · , S2∗(B)

n

be the sample variance of each bootstrap sample (S
2∗(`)
n is the sample variance of X

∗(`)
1 , · · · , X∗(`)

n ).

We then use

V̂arB(S2
n) =

1

B − 1

B∑
`=1

(
S2∗(`)
n − S̄2∗

B

)
, S̄2∗

B =
1

B

B∑
`=1

S2∗(`)
n ,

as an estimator of the variance of the original sample variance, i.e., Var(S2
n). Similarly, the MSE can be

estimated by

M̂SEB(S2
n) =

1

B

B∑
`=1

(
S2∗(`)
n − S2

n

)2

.

And a confidence interval of σ2 can be constructed using

S2
n ± z1−α/2 ·

√
V̂arB(S2

n).

This approach, sampling from the distribution formed by plugging the estimated parameters, is called para-
metric bootstrap.

Example: exponential distribution. The similar approach applies to many other models. For example,
if we assume the data X1, · · · , Xn ∼ Exp(λ), where λ is an unknown quantity. And we estimate λ by an

estimator such as the MLE λ̂n = 1
X̄n

. To assess the quality of λ̂n, say the its MSE, we first generate B
bootstrap samples:

X
∗(1)
1 , · · · , X∗(1)

n ∼ Exp(λ̂n)

X
∗(2)
1 , · · · , X∗(2)

n ∼ Exp(λ̂n)

...

X
∗(B)
1 , · · · , X∗(B)

n ∼ Exp(λ̂n).

Then using each sample, we obtain a bootstrap estimate of λ:

λ̂∗(1)
n , · · · , λ̂∗(B)

n , where λ̂∗(`)
n =

1

X̄
∗(`)
n

=
1

X
∗(`)
1 +···+X∗(`)

n

n

.

Then the MSE of λ̂n can be estimated by

M̂SEB(λ̂n) =
1

B

B∑
`=1

(
λ̂∗(`)
n − λ̂n

)2

.

5.3 ♦ :Remark on the Bootstrap

There are some variants of bootstrap such as the Jackknife4 (leave one observation out each time) and
subsampling (only subsample m out of n sample).

Moreover, when the data are dependent such as the time series dataset or spatial dataset, the bootstrap can
also be applied; in these case, one will use the block bootstrap5 or spatial bootstrap.

4https://en.wikipedia.org/wiki/Jackknife_resampling
5https://en.wikipedia.org/wiki/Bootstrapping_(statistics)#Block_bootstrap
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