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Lecture 6: Bootstrap for Regression
Instructor: Course notes courtesy of Yen-Chi Chen

In the last lecture, we have seen examples of applying the bootstrap to study the uncertainty of an estimator.
Now we will consider the bootstrap in the regression problem.

For simplicity, we consider the case where we only have one response variable and one covariate and we will
first focus on linear regression. Let (X1, Y1), · · · , (Xn, Yn) be the observed data. Yi’s are the response values
and Xi’s are the corresponding covariate.

The linear regression fits the model
E(Yi|Xi = x) = β0 + β1 · x

and we use the observed data to find the estimators β̂0 and β̂1. Or sometimes people write

Yi = β0 + β1 ·Xi + εi,

where each εi is a mean 0 noise.

The fitted coefficients have a close formed solution:

β̂1 =

∑n
i=1(Xi − X̄n)(Yi − Ȳn)∑n

i=1(Xi − X̄n)2
, β̂0 = Ȳn − β̂1X̄n.

After obtaining the regression coefficients, the residuals are

ei = Yi − Ŷi = Yi − β̂0 − β̂1Xi.

The quantity Ŷi = β̂0 + β̂1Xi is the predicted value of the response given the covariate being Xi based on
the fitted linear regression model (sometimes we just call it linear model). In a sense, the residuals represent
the random errors that cannot be explained by our linear model.

In what follows, we will introduce several approaches to study the uncertainty (e.g., variance, MSE, or CI)

of the fitted parameter β̂0 and β̂1. Namely, we want to estimate quantities like

Var(β̂0), MSE(β̂1).

6.1 Empirical Bootstrap

We may apply the idea of empirical bootstrap to the regression problem. In this case, the empirical bootstrap
is also called paired bootstrap. Given the original sample (X1, Y1), · · · , (Xn, Yn), we generate a new sets of
IID observations

(X∗
1 , Y

∗
1 ), · · · , (X∗

n, Y
∗
n )

such that for each `,

P (X∗
` = Xi, Y

∗
` = Yi) =

1

n
, ∀ i = 1, · · · , n.

Namely, we treat (Xi, Yi) as one object and we sample with replacement n times from these n objects to
form a new bootstrap sample. Thus, each time we generate a set of n new observations from the original
dataset.
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Assume we repeat the entire process B times, we would obtain

(X
∗(1)
1 , Y

∗(1)
1 ), · · · , (X∗(1)

n , Y ∗(1)
n )

(X
∗(2)
1 , Y

∗(2)
1 ), · · · , (X∗(2)

n , Y ∗(2)
n )

...

(X
∗(B)
1 , Y

∗(B)
1 ), · · · , (X∗(B)

n , Y ∗(B)
n ).

For each bootstrap sample, say (X
∗(`)
1 , Y

∗(`)
1 ), · · · , (X∗(`)

n , Y
∗(`)
n ), we fit the linear regression, leading to a

bootstrap estimate of the fitted coefficients β̂
∗(`)
0 , β̂

∗(`)
1 . Thus, the B bootstrap samples leads to

(β̂
∗(1)
0 , β̂

∗(1)
1 ), · · · , (β̂∗(B)

0 , β̂
∗(B)
1 ),

B sets of fitted coefficients. We then estimate the variance and the MSE by

V̂arB(β̂0) =
1

B

B∑
`=1

(
β̂
∗(`)
0 − β̄∗

0

)2
, β̄∗

0 =
1

B

B∑
`=1

β̂
∗(`)
0 ,

M̂SEB(β̂0) =
1

B

B∑
`=1

(
β̂
∗(`)
0 − β̂0

)2
,

V̂arB(β̂1) =
1

B

B∑
`=1

(
β̂
∗(`)
1 − β̄∗

1

)2
, β̄∗

1 =
1

B

B∑
`=1

β̂
∗(`)
1 ,

M̂SEB(β̂1) =
1

B

B∑
`=1

(
β̂
∗(`)
1 − β̂1

)2
.

How about the confidence intervals? We can simply construct them using the variance estimate:

C.I.(β0) = β̂0 ± z1−α/2 ·
√
V̂arB(β̂0),

C.I.(β1) = β̂1 ± z1−α/2 ·
√
V̂arB(β̂1).

This follows from the fact that the fitted coefficients β̂0 and β̂1 are roughly normally distributed around the
true values β0 and β1, i.e., there exist σ2

0 and σ2
1 such that

√
n(β̂0 − β0)

D→ N(0, σ2
0),

√
n(β̂1 − β1)

D→ N(0, σ2
1).

6.2 Residual Bootstrap

Although the empirical bootstrap works well in theory, in practice it might lead to a bad result especially in
the presence of influential observations (some Xi very far away from the others). When we do an empirical
bootstrap, if we do not select those points, the regression coefficients can be very different.

To resolve this problem, we may use the residual bootstrap. Recall that the residuals are

ei = Yi − Ŷi = Yi − β̂0 − β̂1Xi.

If we compare the residuals to εi’s in the regression model:

Yi = β0 + β1Xi + εi =⇒ εi = Yi − β0 − β1Xi.
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Essentially, each ei mimics the role of εi when the fitted coefficients β̂0, β̂1 are close to β0, β1. The residual
bootstrap make good use of this property.

The residual bootstrap first generates IID

ε̂∗1, · · · , ε̂∗n
such that for each ε̂∗` ,

P (ε̂∗` = ei) =
1

n
, ∀n = 1, · · · , n.

And then generates a new bootstrap sample

(X∗
1 , Y

∗
1 ), · · · , (X∗

n, Y
∗
n )

via

X∗
i = Xi, Y ∗

i = β̂0 + β̂1Xi + ε̂∗i . (6.1)

Namely, we fixed the covariate Xi but generate a new value of Yi using the fitted regression function and
the ‘noise’ from sampling the residuals with replacement.

All the estimate of the variance, MSE, and construction of the CI are the same as the empirical bootstrap.
But now we are using the bootstrap samples generated by (6.1).

6.3 Wild Bootstrap

In addition to the above two approaches, there is another bootstrap for regression–the wild bootstrap.

The wild bootstrap is to the residual bootstrap in the sense that we fix the covariates X∗
i = Xi for each i

and resample the value of Yi using the residual ei.

The wild bootstrap first generate IID random variables V1, · · · , Vn ∼ N(0, 1) and then generate the bootstrap
sample

(X∗
1 , Y

∗
1 ), · · · , (X∗

n, Y
∗
n )

by

Y ∗
i = β̂0 + β̂1Xi + Vi · ei, X∗

i = Xi.

Note that the distribution of Vi can be non-Gaussian1.

Why do we want to use the wild bootstrap over the residual bootstrap? The main reason is that when
the variance of error Var(εi|Xi) depends on the value of covariates Xi (this is called heteroskedasticity), the
residual bootstrap will be unstable because the residual bootstrap will swap all the residuals regardless of
the value of covariate. On the other hand, for i-th observation, the wild bootstrap uses the residual of itself
only.

6.4 Bootstrap of Logistic Regression

In the case of Logistic Regression, the residual bootstrap and wild bootstrap both fail because the fitted
value is a probability and the response value Yi = {0, 1}. Thus, the bootstrap sample from these approaches
yields Y ∗

i ’s that might not be 0 or 1. A good news is–the empirical bootstrap still works.

1https://en.wikipedia.org/wiki/Bootstrapping_(statistics)#Wild_bootstrap

https://en.wikipedia.org/wiki/Bootstrapping_(statistics)#Wild_bootstrap
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Here we will introduce another bootstrap approach of the Logistic Regression that uses a similar idea as the
parametric bootstrap. Recall that in the Logistic Regression, we model

P (Y = 1|X = x) =
eβ0+β1·x

1 + eβ0+β1·x
.

Let β̂0 and β̂1 be the estimated value of parameters β0 and β1. Then for i-th observation, the estimated
probability of Yi being 1 is

P̂ (Yi = 1|Xi) =
eβ̂0+β̂1·Xi

1 + eβ̂0+β̂1·Xi
.

Thus, we can generate bootstrap values of Yi using this probability. Namely, our bootstrap sample

(X∗
1 , Y

∗
1 ), · · · , (X∗

n, Y
∗
n )

is given by

Y ∗
i = Ber

(
eβ̂0+β̂1·Xi

1 + eβ̂0+β̂1·Xi

)
=

1, with a probability of eβ̂0+β̂1·Xi

1+eβ̂0+β̂1·Xi
,

0, with a probability of 1

1+eβ̂0+β̂1·Xi
,

X∗
i = Xi.

It can be easily seen that the resulting bootstrap sample has the same value of the covariate and the response
Y ∗
i is either 0 or 1.
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