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Instructor: Marina Meilă. Course notes courtesy of Yen-Chi Chen

2.1 Monte Carlo Integration

Assume we want to evaluate the following integration:∫ 1

0

e−x
3

dx.

What can we do? The function e−x
3

does not seem to have a closed form solution so we have to use some
computer experiment to evaluate this number. The traditional approach to evaluate this integration is to use
so-called the Riemann Integration, where we choose points x1, · · · , xK evenly spread out over the interval
[0, 1] and then we evaluate f(x1), · · · , f(xK) and finally use

1

K

K∑
i=1

f(xi)

to evaluate the integration. When the function is smooth and K →∞, this numerical integration converges
to the actual integration.

Now we will introduce an alternative approach to evaluate such an integration. First, we rewrite the inte-
gration as ∫ 1

0

e−x
3

· 1dx = E
(
e−U

3
)
,

where U is a uniform random variable over the interval [0, 1]. Thus, the integration is actually an expected

value of a random variable e−U
3

, which implies that evaluating the integration is the same as estimating
the expected value. So we can generate IID random variables U1, · · · , UK ∼ Uni[0, 1] and then compute

W1 = e−U
3
1 , · · · ,WK = e−U

3
K and finally use

W̄K =
1

K

K∑
i=1

Wi =
1

K

K∑
i=1

e−U
3
i

as a numerical evaluation of
∫ 1

0
e−x

3

dx. By the Law of Large Number,

W̄K
P→ E(Wi) = E

(
e−U

3
i

)
=

∫ 1

0

e−x
3

dx,

so this alternative numerical method is statistically consistent.

In the above example, the integration can be written as

I =

∫
f(x)p(x)dx, (2.1)
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where f is some function and p is a probability density function. Let X be a random variable with density
p. Then equation (2.1) equals ∫

f(x)p(x)dx = E(f(X)) = I.

Namely, the result of this integration is the same as the expected value of the random variable f(X). The
alternative numerical method to evaluate the above integration is to generate IID X1, · · · , XN ∼ p, N data
points, and then use the sample average

ÎN =
1

N

N∑
i=1

f(Xi).

This method, the method of evaluating the integration via simulating random points, is called the integration
by Monte Carlo Simulation.

An appealing feature of the Monte Carlo Simulation is that the statistical theory is rooted in the theory of
sample average. We are using the sample average as an estimator of the expected value. We have already
seen that the bias and variance of an estimator are key quantities of evaluating the quality of an estimator.
What will be the bias and variance of our Monte Carlo Simulation estimator?

The bias is simple–we are using the sample average as an estimator of it expected value, so the bias(ÎN ) = 0.
The variance will then be

Var(ÎN ) =
1

N
Var(f(X1))

=
1

N

E(f2(X1))− E2(f(X1))︸ ︷︷ ︸
I2


=

1

N

(∫
f2(x)p(x)dx− I2

)
.

(2.2)

Thus, the variance contains two components:
∫
f2(x)p(x)dx and I2.

Given a problem of evaluating an integration, the quantity I is fixed. What we can choose is the number of
random points N and the sampling distribution p! An important fact is that when we change the sampling
distribution p, the function f will also change.

For instance, in the example of evaluating
∫ 1

0
e−x

3

dx, we have seen an example of using uniform random vari-
ables to evaluate it. We can also generate IID B1, · · · , BK ∼ Beta(2, 2), K points from the beta distribution
Beta(2,2). Note that the PDF of Beta(2,2) is

pBeta(2,2)(x) = 6x(1− x).

We can then rewrite ∫ 1

0

e−x
3

dx =

∫ 1

0

e−x
3

6x(1− x)︸ ︷︷ ︸
f(x)

· 6x(1− x)︸ ︷︷ ︸
p(x)

dx = E

(
e−B

3
1

6B1(1−B1)

)
.

What is the effect of using different sampling distribution p? The expectation is always fixed to be I so the
second part of the variance remains the same. However, the first part of the variance

∫
f2(x)p(x)dx depends

how you choose p and the corresponding f .

Thus, different choices of p leads to a different variance of the estimator. We will talk about how to choose
an optimal p in Chapter 4 when we talk about theory of importance sampling.
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2.2 Estimating a Probability via Simulation

Here is an example of evaluating the power of a Z-test. Let X1, · · · , X16 be a size 16 random sample. Let
the null hypothesis and the alternative hypothesis be

H0 : Xi ∼ N(0, 1), Ha : Xi ∼ N(µ, 1),

where µ 6= 0. Under the significance level α, the two-tailed Z-test is to reject H0 if
√

16|X̄16| ≥ z1−α/2,
where zt = F−1(t), where F is the CDF of the standard normal distribution. Assume that the true value
of µ is µ = 1. In this case, the null hypothesis is wrong and we should reject the null. However, due to
the randomness of sampling, we may not be able to reject the null every time. So a quantity we will be
interested in is: what is the probability of rejecting the null under such µ? In statistics, this probability (the
probability that we reject H0) is called the power of a test. Ideally, if H0 is incorrect, we want the power to
be as large as possible.

What will the power be when µ = 1? Here is the analytical derivation of the power (generally denoted as
β):

β = P (Reject H0|µ = 1)

= P (
√

16|X̄16| ≥ z1−α/2|µ = 1), X̄16 ∼ N(µ, 1/16)

= P (4 · |N(1, 1/16)| ≥ z1−α/2)

= P (|N(4, 1)| ≥ z1−α/2)

= P (N(4, 1) ≥ z1−α/2) + P (N(4, 1) ≤ −z1−α/2)

= P (N(0, 1) ≥ z1−α/2 − 4) + P (N(0, 1) ≤ −4− z1−α/2).

(2.3)

Well...this number does not seem to be an easy one...

What should we do in practice to compute the power? Here is an alternative approach of computing the
power using the Monte Carlo Simulation. The idea is that we generate N samples, each consists of 16 IID
random variables from N(1, 1) (the distribution under the alternative). For each sample, we compute the
Z-test statistic,

√
16|X̄16|, and check if we can reject H0 or not (i.e., checking if this number is greater than

or equal to z1−α/2). At the end, we use the ratio of total number of H0 being rejected as an estimate of the
power β. Here is a diagram describing how the steps are carried out:

N(1, 1)
generates−→ 16 observations

compute−→ test statistic
(√

16|X̄16|
)

RejectH0−→ D1 = Yes(1)/No(0)

N(1, 1)
generates−→ 16 observations

compute−→ test statistic
(√

16|X̄16|
)

RejectH0−→ D2 = Yes(1)/No(0)

...

N(1, 1)
generates−→ 16 observations

compute−→ test statistic
(√

16|X̄16|
)

RejectH0−→ DN = Yes(1)/No(0)

Each sample will end up with a number Di such that Di = 1 if we reject H0 and Di = 0 if we do not reject
H0.

Because the Monte Carlo Simulation approach is to use the ratio of total number of H0 being rejected to
estimate β, this ratio is

D̄N =

∑N
j=1Dj

N
.

Is the Monte Carlo Simulation approach a good approach to estimate β? The answer is–yes it is a good
approach of estimating β and moreover, we have already learned the statistical theory of such a procedure!
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The estimator D̄N is just a sample average and each Dj turns out to be a Bernoulli random variable with
parameter

p = P (Reject H0|µ = 1) = β

by equation (2.3). Therefore,

bias
(
D̄N

)
= E(D̄N )− β = p− β = 0

Var
(
D̄N

)
=
p(1− p)
N

=
β(1− β)

N

MSE
(
D̄N , β

)
=
β(1− β)

N
.

Thus, the Monte Carlo Simulation method yields a consistent estimator of the power:

D̄N
P→ β.

Although here we study the Monte Carlo Simulation estimator of such a special case, this idea can be easily
to generalize to many other situation as long as we want to evaluate certain numbers. In modern statistical
analysis, most papers with simulation results will use some Monte Carlo Simulations to show the numerical
results of the proposed methods in the paper.

The following two figures present the power β as a function of the value of µ (blue curve) with α = 0.10.
The red curves are the estimated power by Monte Carlo simulations using N = 25 and 100.
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−→ The gray line corresponds to the value of power being 0.10. Think about why the power curve (blue
curve) hits the gray line at µ = 0.

2.3 Estimating Distribution via Simulation

Monte Carlo Simulation can also be applied to estimate an unknown distribution as long as we can generate
data from such a distribution. In Bayesian analysis, people are often interested in the so-called posterior
distribution. Very often, we known how to generate points from a posterior distribution but we cannot
write down its closed form. In this situation, what we can do is to simulate many points and estimate the
distribution using these simulated points. So the task becomes:
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given X1, · · · , Xn ∼ F (or PDF p), we want to estimate F (or the PDF p).

Estimating the CDF using EDF. To estimate the CDF, a simple but powerful approach is to use the
EDF:

F̂n(x) =
1

n

n∑
i=1

I(Xi ≤ x).

We have already learned a lot about EDF in the previous chapter.

Estimating the PDF using histogram. If the goal is to estimate the PDF, then this problem is called
density estimation, which is a central topic in statistical research. Here we will focus on the perhaps simplest
approach: histogram. Note that we will have a more in-depth discussion about other approaches in Chapter
8.

For simplicity, we assume that Xi ∈ [0, 1] so p(x) is non-zero only within [0, 1]. We also assume that p(x) is
smooth and |p′(x)| ≤ L for all x (i.e. the derivative is bounded). The histogram is to partition the set [0, 1]
(this region, the region with non-zero density, is called the support of a density function) into several bins
and using the count of the bin as a density estimate. When we have M bins, this yields a partition:

B1 =

[
0,

1

M

)
, B2 =

[
1

M
,

2

M

)
, · · · , BM−1 =

[
M − 2

M
,
M − 1

M

)
, BM =

[
M − 1

M
, 1

]
.

In such case, then for a given point x ∈ B`, the density estimator from the histogram will be

p̂n(x) =
number of observations within B`

n
× 1

length of the bin
=
M

n

n∑
i=1

I(Xi ∈ B`).

The intuition of this density estimator is that the histogram assign equal density value to every points within
the bin. So for B` that contains x, the ratio of observations within this bin is 1

n

∑n
i=1 I(Xi ∈ B`), which

should be equal to the density estimate times the length of the bin.

Now we study the bias of the histogram density estimator.

E (p̂n(x)) = M · P (Xi ∈ B`)

= M

∫ `
M

`−1
M

p(u)du

= M

(
F

(
`

M

)
− F

(
`− 1

M

))
=
F
(
`
M

)
− F

(
`−1
M

)
1/M

=
F
(
`
M

)
− F

(
`−1
M

)
`
M −

`−1
M

= p(x∗), x∗ ∈
[
`− 1

M
,
`

M

]
.

The last equality is done by the mean value theorem with F ′(x) = p(x). By the mean value theorem again,
there exists another point x∗∗ between x∗ and x such that

p(x∗)− p(x)

x∗ − x
= p′(x∗∗).



2-6 Lecture 2: Monte Carlo Simulation

Thus, the bias
bias(p̂n(x)) = E (p̂n(x))− p(x)

= p(x∗)− p(x)

= p′(x∗∗) · (x∗ − x)

≤ |p′(x∗∗)| · |x∗ − x|

≤ L

M
.

(2.4)

Note that in the last inequality we use the fact that both x∗ and x are within B`, whose total length is 1/M ,
so the |x∗ − x| ≤ 1/M . The analysis of the bias tells us that the more bins we are using, the less bias the
histogram has. This makes sense because when we have many bins, we have a higher resolution so we can
approximate the fine density structure better.

Now we turn to the analysis of variance.

Var(p̂n(x)) = M2 · Var

(
1

n

n∑
i=1

I(Xi ∈ B`)

)

= M2 · P (Xi ∈ B`)(1− P (Xi ∈ B`))
n

.

By the derivation in the bias, we know that P (Xi ∈ B`) = p(x∗)
M , so the variance

Var(p̂n(x)) = M2 ·
p(x∗)
M ×

(
1− p(x∗)

M

)
n

= M · p(x
∗)

n
− p2(x∗)

n
.

(2.5)

The analysis of the variance has an interesting result: the more bins we are using, the higher variance we
are suffering.

Now if we consider the MSE, the pattern will be more inspiring. The MSE is

MSE(p̂n(x)) = bias2(p̂n(x)) + Var(p̂n(x)) ≤ L2

M2
+M · p(x

∗)

n
− p2(x∗)

n
. (2.6)

An interesting feature of the histogram is that: we can choose M , the number of bins. When M is too large,
the first quantity (bias) will be small while the second quantity (variance) will be large; this case is called
undersmoothing. When M is too small, the first quantity (bias) is large but the second quantity (variance)
is small; this case is called oversmoothing.

To balance the bias and variance, we choose M that minimizes the MSE, which leads to

Mopt =

(
n · L2

p(x∗)

)1/3

. (2.7)

Although in practice the quantity L and p(x∗) are unknown so we cannot chose the optimal Mopt, the rule in
equation (2.7) tells us how we should change the number of bins when we have more and more sample size.
Practical rule of selecting M is related to the problem of bandwidth selection, a research topic in statistics.
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