
STAT/Q SCI 403: Introduction to Resampling Methods Spring 2025

Lecture 9: Missing Data and Imputation
Instructor: Course notes courtesy of Yen-Chi Chen

Consider a regression problem where we have a binary covariate X ∈ {0, 1} and a continuous response Y ∈ R.
However, in our data, some response variables are missing and only the covariates are observed. So our data
can be represented as

(X1, Y1), · · · , (Xn, Yn), (Xn+1, ?), · · · , (Xn+m, ?).

The symbol ? denotes a missing value. Namely, we have n observations that are fully observed while the
other m observations that we only observe the covariate, not the response. Suppose that the parameter of
interest is the marginal median of the response variable mY . How should we estimate the median?

We can introduce an additional variable R to denote the missingness such that R = 0 means that Y is not
observed whereas R = 1 means that Y is observed. Note that R itself is another random variable.

Without any assumptions on the missing data, we are not able to accurately estimate the median consistently.
There are two common assumptions people made about the missingness:

1. MCAR: missing completely at random. This means that the missingness is independent of any
variables. Under the above notations, MCAR means that

R ⊥ X,Y.

2. MAR: missing at random. Under MAR, the missingness depends only on the observed pattern. In
our case.

P (R = 0|X,Y ) = P (R = 0|X)

since Y is not observed when R = 0.

When the missingness is neither MCAR nor MAR, it is called MNAR–missing completely at random.

Under MCAR, we can completely ignore the data with missing values and just use the sample median as an
estimate of mY . However, under MAR, we cannot do such thing because the missingness may depends on
X and if the distribution of covariate is different under fully observed data (R = 1) and partially observed
data (R = 0), we will obtain a biased estimate.

While there are other ways to estimate the median under MAR, we will focus on the method of imputation.

9.1 Imputation

The idea of imputation is to impute a value to the missing entry so that after imputing all missing entries,
we obtain a data without any missingness. Then we can simply apply a regular estimator (in the above
example, sample median) to estimate the parameter of interest.

However, we cannot impute any number to the missing entry because this would cause bias in the estimation.
We need to impute the value in a smart way. Generally, we want to impute the value according to the
conditional density

p(y|x,R = 0),
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the conditional density of response variable Y given the covariate X and the missing pattern R = 0. Namely,
for n+ i-th observation where only Xn+i is observed, we want to draw a random number

Ỹn+i ∼ p(y|Xn+i, R = 0).

If indeed Yn+1 is from the above density function, one can show that the sample median

median{Y1, · · · , Yn, Ỹn+1, · · · , Ỹn+m}

is an unbiased estimator of mY .

This idea works regardless of what missing assumption is. However, the problem is that the density function
p(y|x,R = 0) cannot be estimated using our data because the only case we observed Y is when R = 1.

Under this case, MAR implies a powerful result:

p(y|x,R = 0) = p(y|x,R = 1). (9.1)

Namely, the conditional density of Y given X is independent of the missing indicator R. To see how equation
(9.1) is derived, note that MAR implies

P (R = 1|X,Y ) = 1− P (R = 0|X,Y ) = 1− P (R = 0|X) = P (R = 1|X).

Thus, the conditional density

p(y|x,R = 0) =
p(y, x,R = 0)

P (x,R = 0)

=
p(x, y)P (R = 0|x, y)

P (x,R = 0)

= p(x, y)
P (R = 0|x)

P (x,R = 0)

= p(x, y)
1

p(x)

= p(x, y)
P (R = 1|x)

P (x,R = 1)

=
p(x, y)P (R = 1|x, y)

P (x,R = 1)

=
p(y, x,R = 1)

P (x,R = 1)

= p(y|x,R = 1).

Thus, we obtain equation (9.1).

The power of equation (9.1) is that p(y|x,R = 1) can be estimated by a KDE:

p̂(y|x,R = 1) =

1
nh

∑n
i=1K

(
Yi−y
h

)
I(Xi = x)

1
n

∑n
i=1 I(Xi = x)

=
1

nxh

n∑
i=1

K

(
Yi − y
h

)
I(Xi = x),

where nx =
∑n
i=1 I(Xi = x) is the number of Xi = x in the completely observed data and x ∈ {0, 1}.

Namely, p̂(y|x,R = 1) is the KDE applied to the completely observed data with the covariate X = x.
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Given an observation Xn+i = x, how should we sample Ŷn+i from p̂(y|x,R = 1)? It is very simple. We first
sample the index I such that

P (I = i|data) =
1

nx
I(Xi = x).

Namely, I is chosen from those fully observed data with the covariate Xi = x with equal probability. Given
I we then sample Yn+i from the density function

q(y) =
1

h
K

(
YI − y
h

)
.

Although this may look scary, if the kernel function is Gaussian, q(y) is the normal density with mean YI
and variance h2. Namely, when K is a Gaussian,

Ŷn+i ∼ N(YI , h
2).

Remark.

� The use of KDE is just one example. You can use any density estimator for p̂(y|x,R = 1) as long as
you are able to sample from it.

� The equation (9.1) relies on the MAR assumption along with the fact that only one variable is subject
to missing. When there are more than one variables that can be missing, we no longer have such a
simple equivalence.

� The imputed data can be used for other estimators as well, not limited to estimating the median. You
may notice that during our imputation process, we do not use any information about the estimator.

� There imputation methods that only imputes a fixed, non-random number for each missing entries.
This is often called a deterministic imputation. For certain problem, a deterministic imputation works
but in general, it may not work. So a rule thumb is to use a random imputation if possible.

9.2 Multiple imputation

After doing the imputation for all missing entries, we obtain a complete data

(X1, Y1), · · · , (Xn, Yn), (Xn+1, Ŷn+1), · · · , (Xn+m, Ŷn+1).

The estimate of mY is just the sample median of this impute dataset. However, there will be Monte Carlo
errors in this estimator because every time we do the imputation, we will not get the same number (due to
sampling from p(y|x,R = 0)). If we just impute the data once (this is often called single imputation), we
may suffer from the Monte Carlo errors a lot. Thus, a better approach is to perform a multiple imputation.

Multiple Imputation.1 After obtaining a complete data, we do the same imputation procedure again,
which gives us another new complete data. Then we keep repeating the above process, leading to several
complete data, which can be represented as

(X1, Y1), · · · , (Xn, Yn), (Xn+1, Ŷ
(1)
n+1), · · · , (Xn+m, Ŷ

(1)
n+1)

(X1, Y1), · · · , (Xn, Yn), (Xn+1, Ŷ
(2)
n+1), · · · , (Xn+m, Ŷ

(2)
n+1)

· · ·

(X1, Y1), · · · , (Xn, Yn), (Xn+1, Ŷ
(N)
n+1), · · · , (Xn+m, Ŷ

(N)
n+1).

1For more introduction on this topic, see https://stats.idre.ucla.edu/stata/seminars/mi_in_stata_pt1_new/

https://stats.idre.ucla.edu/stata/seminars/mi_in_stata_pt1_new/
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We then combine all these datasets to a huge dataset and compute the estimator of the parameter of interest
(in our case, median of the response variable). This estimator has a smaller Monte Carlo error.

9.3 More than one variable missing

When there are more than one variable that are subject to missing, the problem gets a lot more complex.
Consider the case where each individual has p variables X1, · · · , X5 and all of them may be missing and we
may even have many of them missing at the same time. There are two categories of the missing patterns:

1. Monotone missingness. In this case, if Xt is missing, then Xs is also missing for any s > t. This
occurs a lot in medical research due to dropout of the individuals. For instance, let Xt denote the
BMI of an individual at year t. If this individual left the study at time point τ , then we only observe
X1, · · · , Xτ from this individual. Any information beyond year τ is missing.

2. Non-monotone missingness. When the missing pattern is not monotone, it is called non-monotone
missingness. The non-monotone missing data is a lot more challenging than monotone missing data
because there are many possible missing pattern that can occur in the data. If there are p variables,
them monotone missing data has p different missing patterns but the non-monotone case may have up
to 2p different missing patterns!

Let R ∈ {0, 1}5 be a multi-index set that denotes the observed pattern and we use the notation XR = (Xi :
Ri = 1). For instance, R = 11001 means that we observe variable X1, X2, and X5 and X11001 = (X1, X2, X5).
Under this notation, the MAR assumption can be written as

P (R = r|X) = P (R = r|Xr),

namely, the probability of seeing a pattern R = r only depends on the observed variable.

9.4 MAR: a deeper look ♠ (optional)

MAR is a very popular assumption that people often assumed in practice (although it may not be reasonable
in some cases). However, under the non-monotone case, MAR tells us little about the missingness and it is
actually not very to work with. Why is the MAR still so popular in practice?

There are two reasons for why MAR is so popular. The first reason is that under monotone missing data
problem, MAR provides an elegant way to identify the entire distribution function. The second reason is
that in both monotone and non-monotone case, MAR makes the likelihood inference a lot easier.

9.4.1 MAR under monotone case

Under the monotone missing problem, let T denotes the index of the last observed variable. Namely, the
individual dropouts after time point T . We use the notation X≤t = (X1, · · · , Xt). Then the MAR can be
written as

P (T = t|X) = P (T = t|X≤t).

The above equation gives us a very powerful result–we can estimate the missing probability P (T = t|X) for
every t = 1, · · · , p!
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To see this, consider the case t = 1 so MAR implies

P (T = 1|X) = P (T = 1|X1).

Note that P (T > 1|X) = 1 − P (T = t|X) = P (T = 1|X1) = P (T > 1|X1). Thus, we can estimate
P (T = 1|X1) by comparing pattern T = 1 against T > 1 given the variable X1, which is always observed.
Thus, P (T = 1|X) is estimatible. For t = 2, the MAR implies

P (T = 2|X) = P (T = 2|X1, X2).

Thus,

P (T > 2|X) = P (T = 2|X) + P (T = 1|X) = P (T = 2|X1, X2) + P (T = 1|X1) = P (T > 2|X1, X2).

Again, we can compare the pattern T = 2 against T > 2 and estimate the probability P (T = 2|X). We can
keep doing this procedure, and eventually all missing probability P (T = t|X) can be estimated.

For instance, if we are interested in estimating the parameter of interest ρ = E(ω(X1, · · · , Xp)), we can then
use the famous inverse probability weighting estimator2:

ρ̂ =
1

nP̂ (T = p|X)

n∑
i=1

ω(Xi,1, · · · , Xi,p)I(Ti = p),

where P̂ (T = p|X) is an estimate of P (T = p|X). Sometimes, people also called P (T = p|X) as the
propensity score.

Actually, MAR under monotone missingness is equivalent to the available case missing value (ACMV)
assumption:

p(xt+1|x≤t, T = t) = p(xt+1|x≤t, T > t)

for every t. The right-hand side can be estimated by conditional KDE so the density function3

p(x>t|x≤t, T = t) =

p−1∏
s=t

p(xs+1|x≤s, T = s)

can be estimated under ACMV assumption. Why is the above density estimatible so useful? This is because
the joint density function has the following pattern mixture model formulation:

p(x) =

p∑
t=1

p(x, t) =

p∑
t=1

p(x>t | x≤t, T = t)p(x≤t | T = t)p(T = t),

where both p(x≤t | T = t) and P (T = t) can be directly estimated using our data so what remains unknown
is the density function p(x>t | x≤t, T = t). ACMV implies an estimator of this density function, so the entire
joint density function can be estimated.

9.4.2 Likelihood inference with MAR

Another reason why MAR is so popular is its ignorability property, which hold even when the missing is
non-monotone. Consider the joint density function p(x, r) of both variable of interest X and the missing
pattern R. Recall that XR = (Xi : Ri = 1) are the observed variables under pattern R. We also denote
XR̄ = (Xi : Ri = 0) as the missing variables.

2See https://en.wikipedia.org/wiki/Inverse_probability_weighting for more details.
3Also called the extrapolation density.

https://en.wikipedia.org/wiki/Inverse_probability_weighting
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We can then factorize it into
p(x, r) = P (R = r|X = x)p(x).

Suppose we use parametric models separately for both P (R = r|X = x) and p(x), leading to

p(x, r;φ, θ) = P (R = r|X = x;φ)p(x; θ)
(MAR)

= P (R = r|Xr = xr;φ)p(x; θ).

In our data, what we observed are (xr, r) so we should integrate over the missing variables xr̄:

p(xr, r;φ, θ) =

∫
p(x, r;φ, θ)dxr̄ = P (R = r|Xr = xr;φ)

∫
p(x; θ)dxr̄.

Thus, the log-likelihood function is

`(θ, φ|xr, r) = logP (R = r|Xr = xr;φ) + log

∫
p(x; θ)dxr̄

= `(φ|xr, r) + `(θ|xr, r),
`(φ|xr, r) = logP (R = r|Xr = xr;φ)

`(θ|xr, r) = log

∫
p(x; θ)dxr̄.

Since θ is the parameter of the distribution of the variable of interest X, we are often just interested in it.
The above log-likelihood shows that maximizing θ and maximizing φ can be done separately. So finding the
MLE of θ can be done without estimating the parameter φ, leading to a simple procedure4.

4Here the likelihood function is defined through `(θ|xr, r) = log
∫
p(x; θ)dxr̄. The maximization of this function is often

done through the EM algorithm and is related to problems such as mixture model. See https://en.wikipedia.org/wiki/

Expectation%E2%80%93maximization_algorithm.

https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm
https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm
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