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MOTIVATION AND OVERVIEW

We have seen that the jackknife sampling method can produce
estimates of bias and variance, by resampling from the observed
data.

But, the jackknife does not work for all statistics, for example, it does
not work for the median.

Conformal prediction is a method for a particular type of prediction
problem.

We now study the bootstrap, which is more computationally
expensive than the jackknife to use, but offers some advantages.

The bootstrap is extremely popular, but is sometimes used, when it
shouldn’t (because there are rules!).
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THE BOOTSTRAP
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BooTsTRAP METHODS

The bootstrap is a popular resampling technique that is useful in
situations in which:

» We wish to relax the assumptions of a parametric modeling
approach.

» The asymptotic sampling distribution of the estimator is difficult
to derive.

References: Efron and Tibshirani (1993); Davison and Hinkley
(1997); Chernick (2011); Efron and Hastie (2016).
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BooTsTRAP METHODS

We may be interested in bootstrap methods for:
» Estimating the variance of an estimator.
» Constructing Cls for parameters.

For simplicity, suppose we are in a population setting where we have
independent and identically distributed (iid) data Yi,..., Y, and
denote the (unknown) cumulative distribution function of Y by F.
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PARAMETERS OF INTEREST

Let @ = T(F) be a parameter of interest.

Examples:

1. Suppose Yi,..., Y, ~ Fwhere F e (Fy,0 € ©) and §n be the
MLE of 8. We would like to estimate var(6,) anda 1 — «
confidence interval (Cl) for 6.

2. Suppose Yi,..., Y, ~ F,and 0 = T(F) is the mean of F, i.e.,
0 =E[Y]=(ydF(y)and 6, =13, Y;is the sample mean.
Again, we would like to estimate var(f,) and a 1 — a Cl for .

3. Suppose Yi,..., Y, ~ F,and 8 = T(F) is the median of F, i.e.,

Pr(Y; < 0)=Pr(Y;>0)=1/2 and 6, is the sample median.
Again, we would like to estimate var(6,) and a 1 — « Cl for 6.

8/51



PARAMETERS OF INTEREST

In 1., 0 is a parameter in a parametric model — in this case applying
the delta method may be cumbersome, and we might also want to
find a Cl that doesn’t depend on the model being correct (and
evaluating the sandwich would be tricky).

In 2. and 3., we are in a nonparametric situation, as we have no
specific model.
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INFERENCE FOR THE SAMPLE MEDIAN

For the sample mean, a 1 — a confidence interval for the population

mean p is

_ Sh

Yntzi o x NG
where Y, and s, are the sample mean and sample standard
deviation.

Can we do the same thing for the sample median, which we denote
by 6,7
Note that if ¢ is the population median (and F~' has a continuous
derivative in a neighborhood of 1/2):
~ 1
\/E(Qn - 9) —a N <0a fQ(H)) )

where f(-) is the density of Y. This is not straightforward to use in
practice, because of the dependence on the unknown f(-).
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MONTE CARLO METHODS

If Fis known, it is straightforward to mimic frequentist inference; for
simplicity, suppose we have a univariate parameter 6.

Forb=1,...,Bsamples:
» Generate a random sample y;® ..., y3® < F.
» Compute 05 using y;7 @, ..., y;®).
Use 5,*,(”)7 b=1,...,B, to estimate the sampling distribution of 0.

If B — oo, we approach the theoretical sampling distribution of 0.

Of course, in practice, F is unknown and the idea behind the
bootstrap is to resample datasets from an estimate of F.
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BoOTSTRAP METHODS: UNKNOWN F

Two obvious choices for estimating F:

» Use theAempiricaI distribution function of the data, which we
denote F, — this is by far the most common approach used.

» If one has some faith in the assumed model then we may use
this model, call this F; , where the notation emphasizes that the
distribution function is fully specified by the parameter ¢, which
we estimate by 6.

Then we may:

» Sample data with replacement from Fnto give the
nonparametric bootstrap.

> Sample data from F; to give the parametric bootstrap.
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THE EMPIRICAL DISTRIBUTION FUNCTION

The empirical distribution function (EDF) is an estimator of the
cumulative distribution function (CDF).

The CDF at a fixed value y; is,

F(¥0) = Pr(Y; < yo),
fori=1,...,n, so that F(yp) is the probability of the event {Y; < yo}.
The natural estimator of this probability is the empirical proportion:

Folyo) = Number of Y; < yo YL Y < vo)
n\Y0) = Total number of observations n ‘

We can do this for all y to give the EDF (this is also the
nonparametric MLE of F).

In Figure 1 we see that as nincreases we approach the true CDF.
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EDF n=10 EDF n=50 EDF n=500

Cumulative Probability

]
H
3

Ficure 1: Empirical distribution function estimate along with true CDF (in
red). There are jumps of 1/n at every data point, and between data points,

the EDF Fy(y) is flat.
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THE EMPIRICAL DF

The EDF at y is an average of Z; = I(Y; < y) so that

1 ifYi<y
2 {onn>y

is such that Z; ~ Bernoulli(F(x)) so that
E[ItYi<y)] = E[Z]=F(y)
var(l(Yi<y)) = var(Z)=F(y)(1 - F(y))

for a given y.
Recall that F,(y) = X7, (Vi< y) = Y, Z, so
E[/(Yi <y)] = F(y)
var(Bo(y)) = Z,-”=1;’/§r(2f) _ F(y)<1; Fy))

m

s

=
[
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THE EMPIRICAL DF AS AN ESTIMATOR OF F(y)

Properties as an estimator,
Bias <,:-n(}/)) =E [’:_n(}’)] —F(y)=0.
The variance converges to 0 as n — oo so that
IA:n(Y) —p F(y),

so that I:',,(y) is a consistent estimator of F(y).

In addition,

A~

Vi (Faly) = F(9)) —a NO,F(y)(1 = F(1))).

These are pointwise properties of the estimator, i.e., at y.

It can also be shown that the complete empirical DF converges to F,
i.e., R

\/E(Fl'l - F) —d Ba
where B is a Brownian bridge.
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THE NON-PARAMETRIC BOOTSTRAP

Again, consider a univariate parameter, 6 = T(F).

For b=1,..., B samples the non-parametric bootstrap samples:

» Generate a random ~sample (known as a bootstrap sample)
yf(b yen .,yn ~iid F — this is equivalent to drawing n
observations, with replacement from the original data
{Yna"'a Yn}

» Compute 6, using y;® ..., y;®).

Use 5;“’), b=1,...,B, to estimate the sampling distribution of @n.

Note that we can’t enumerate all possible bootstrap samples, as there
are (®"") of them!
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BooTsTRAP METHODS

There are two approximations/sources of error in the bootstrap:
1. Statistical: F,, # F.
2. Simulation: B # oo, but we can take B large.

For 1., if nis small, the approximation will be poorer when we use I:'n.
For 2., for some targets such as the bias and variance, we can get
away with smaller B (e.g., B = 200), but for others such as
confidence intervals we need larger B (e.g., B > 1000).

Lehmann (1999, p.426), refers to T(IA-';) as an approximator of T(IA-'n)
rather than an estimator.
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BooTsTRAP METHODS

Theoretical: The population is to the sample

Bootstrap: The sample is to the bootstrap sample

As an example, the theoretical bias of as estimator is
E[A(Y)|F] — 6.
The bootstrap attempts to estimate this by
E[6(Y")|Fa] — _ 0

Average over Population
Samples

And in practice this is estimated by

A
B
1 N ~
FR0® — A

—_— Sample Estimate
Average over

Bootstrap Samples 19 /51



HEURISTIC OF WHY THE BOOTSTRAP WORKS FOR

THE MEDIAN

» Wehave Yy,...,Ys~ F.

» The distribution of the median, based on a sample of size n, will
be denoted Fy,, (y) which we write as,

Fu,(y) = V(y: F,n),
where W is some complicated function.
» We know that I:'n ~ F when nis large so as long as V is smooth
with respect to F then V(y; F,, n) will be similar to W(y; F, n), i.e.,
FonF = Fpoly) = W(yiFun)
~ V(y;F,n) = Fu,(y),

where M,’;“’) is the function evaluated for the b-th bootstrap
sample.
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HEURISTIC OF WHY THE BOOTSTRAP WORKS FOR

THE MEDIAN

» Hence, since the bootstrap samples are all from F, and we have

Vy:F.n) = Fypo(y) = Fpaly) = =Fpoy).

n

» What this means is:

The CDF of the median based on the bootstrap samples, Fy: (y)
is approximating the CDF of the true CDF of the median in a
sample of size n, Fy,(y).
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OVERVIEW OF THE THEORY

There is a great deal of theory on when the bootstrap does and does
not work.

A key observation is to note that, while the bootstrap is applicable in
many situations, it is not valid in all situations, and so care should be
taken in when it is applied.

A starting rule is that if we are in a situation where the delta method is
valid, then the bootstrap will also work — this needs asymptotic
normality and smoothness.

From Section 4 of Chapter 18 at:

https://sites.stat.washington.edu/jaw/COURSES/580s/581/
lectnotes.18.html
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OVERVIEW OF THE THEORY

The theory needs to show that the asymptotic behavior of the
distribution of the nonparametric bootstrap “mimics” the behavior of
the original estimator in probability or almost surely (a.s.).

If we are estimating T(F) by T(IEn) and we know (perhaps from a
delta method argument) that

\/E(T(IA-',,) — T(F)) —a N(O,varg(T)),
Jag
0n—0

then we need to show that the bootstrap estimator, T(F), satisfies:

~

VN(T(F?) = T(Fp)) —a N(O,varg(Y)), in probability or a.s.
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OVERVIEW OF THE THEORY

For the sample mean of a distribution Fon R, if Y ~ F and
E[Y?] < oo then for

T(F) = f ydF(y) = u(F)
we know that
VA(T(En) = T(F)) = V/A(Ya — j(F)) —a N(O,var(Y)).

For the bootstrap, the corresponding statement is: If E[Y?] < oo then
for Y1, Yg,...,

Vn(T(Fp) = T(Fa) = Vn(Yy, — V) —q N(O, var(Y)).

This can be proved using a central limit theorem, see Bickel and
Freedman (1981).
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VARIANCE ESTIMATION VIA THE BOOTSTRAP
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BOOTSTRAP VARIANCE ESTIMATOR

The bootstrap variance estimator is

@y - L3 (30 -7’

b=1

where 8" = 138 652

When B is large the sample variance of the bootstrap estimators
var(0%) ~ var(0%|F), (1)

where we have conditioned on F, being fixed.
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BOOTSTRAP VARIANCE ESTIMATOR

To argue that the bootstrap variance is a good estimate of the target
variance v(6,), we need to have

var(0y) ~ var(0;|F,) ~ var(6,),

but because in (1) can be controlled with B large what really matters
is
var(0%|F,) ~ var(f,),

or, more formally,

var(0%| F,)
var(@,,)

The ratio is often used when both quantities converge to 0 as n — oo.

Not too tricky to show this for many statistics 6 = T(F).
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SANDWICH ESTIMATION AND THE BOOTSTRAP

We heuristically show why we would often expect sandwich and
bootstrap variance estimates to be in close correspondence.

For simplicity, we consider a univariate parameter ¢, and let 6, denote
the MLE arising from a sample of size n.

In a change of notation we denote the score by
S(0) = [51(6), ..., Sa(0)],

where S;(0) = d¢;/do is the contribution to the score from observation
Yi,i=1,...,n.

Hence,
S(0) = > Si(0) = S(6)1
i=1

where 1 is an n x 1 vector of 1’s.
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SANDWICH ESTIMATION AND THE BOOTSTRAP

The sandwich form of the asymptotic variance of O is

~ 1 By
var(f,) = EA?
where P
mo) -] B —E[si07)
which may be empirically estimated via
- 1dS 1 & dS
An = _—— = — —_—
ndo|, n~ do|._
n i=1 0,
- 1 13
B, = —S(0)'S(0)] = —) Si(0)
n §n n iz .
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SANDWICH ESTIMATION AND THE BOOTSTRAP

A convenient representation of a bootstrap sampleis Y* = Y x D
where D = diag(Dy, ..., D,) is a diagonal matrix consisting of
multinomial random variables

b 11
~ Multinomial [n, <, vy )]
: n n
Dy
with
E([Dy,...,D5]") = 1
var([Dy,...,Dp]") = Ip— 1n11T —
as n — oo.

The MLE of 8 in the bootstrap sample is denoted §; and satisfies
S*(01) = 0, where S*(0) is the score corresponding to Y*. Note that,

§°(6) = >, S7(6) = ) Si(6)D.
i=1 i=1
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SANDWICH ESTIMATION AND THE BOOTSTRAP

We consider a Taylor series expansion
0= 5*(6;) ~ S (Bn) + (B — ) —-

which leads to the one-step approximation

by = b — o )

The bootstrap score evaluated at §,, is

n n
Z = Y1 Si(n)D; # 0,

i=1

unless the bootstrap sample coincides with the original sample, i.e.,
unless D = |,,.
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SANDWICH ESTIMATION AND THE BOOTSTRAP

We replace S*(0) [d% S*(0)] §n] by its limit

2] i

where A, = £ 5(0)

6"
Therefore, the one-step bootstrap estimator is approximated by

A A 6,)D
ﬁx%faﬁ
nA,

and is approximately unbiased as an estimator since

S@O)E[D] _ S(fn)1
n/an nI/An

E[6} — 6] ~ — )

and, recall, 0, is being held constant.
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SANDWICH ESTIMATION AND THE BOOTSTRAP

The variance is

S(On)var([Dy, ..., Da))S(B)  S(0n) (1 - 1117) S(8,)
(nAp)2 - (nA,)2
S(0.)18(6,) nB, B,

,\, = =,

(nAp)2 (nAn)2  nA2

var(0; —0,) ~

which is the sandwich estimator.

Hence, var(@; - @,) approximates var(@n — 0), which is a fundamental
link to the bootstrap.

For a more theoretical treatment, see Arcones and Giné (1992) and
Section 10.3 of Kosorok (2008).
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CONSTRUCTING A CONFIDENCE INTERVAL
VIA THE BOOTSTRAP
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BooTsSTRAP METHODS: CI ESTIMATION

For Cl construction, many improvements on the above normal-based
method have been suggested:

» Wald-type Cls.
» The percentile method — pick the appropriate sample quantiles.

» Various improved and bias corrected versions have been
proposed. Figure 2 is from Section 3.1 of Chernick (2011). See
also Sections 11.3—11.5 of Efron and Hastie (2016).
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Table 3.1 Four Methods of Setting Approximate Confidence Intervals for a Real

Valued Parameter 6

Method Abbreviation

a-Level Endpoint

Correct if

1. Standard o]

2. Percentile B[]

3. Bias- Buc[e]
corrected

4. BC, e, []

0+67

G (e

G (9224 + )

é’](¢[zu +

[20+2]

1-a[zp+2"]

)

9= N(8,06%) ois
constant

There exists a
monetone
transformation
such that ¢=g(@),
where, ¢ = g(6),
$=N(4,7°) and
Tis constant.

There exists a
monotone
transformation
such that
¢ N(9- 27,7
and zp and Tare
constant.

There exists a
monetone
transformation
such that
6= N(p— 2T, 75),
where ¢ =1 + ad
and z, and a are
constant.

Note: Each method is correct under more general assumptions than its predecessor. Methods 2,
3, and 4 are defined in terms of the percentile of G, the bootstrap distribution.
Source: Efron and Tibshirani (1986, Table 6) with permission from The Institute of Mathematical

Statistics.

Ficure 2: From Chernick (2011).
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BooTSTRAP METHODS: VARIANCE AND CI

ESTIMATION

Recall
B - 5
var E ( g=0) _ )

b=1

UJ\—*

where 0" = 132 9;®.

If nis sufficiently large that asymptotic normality of the estimator may
be appealed to and a Cl estimate may be based upon

é\n + Zi—aj2 X V/a\r((/)\;)

This is a Wald-type Cl, and is not invariant to reparametrization.
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BooOTSTRAP CONFIDENCE INTERVAL: THE

PERCENTILE METHOD

Let
BZ/( 0 — ) <1t).

Then a 1 — « bootstrap percentile method confidence interval is

N t—(x o t(x
Cn:|:0n1 /279n\//ﬁ2]»

where t, o = G (/2) and ty o = G (1 — /2).

Under appropriate regularity conditions,

Pr(@eCn)=1—a—O(\;ﬁ).

Note that this method, unlike the Wald-type interval given earlier, is
invariant to the parameterization adopted.
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FAILURE OF THE BOOTSTRAP

Let Yi,..., Y, ~ig Uniform(0, 8), and 5,, =min{Y1,..., Yn}, be the
minimum of the sample and corresponds to the MLE.
It can be shown that
n(6 — 5,,) — g Exponential(6),
i.e., converges to a exponential distribution with mean 6.

However,
Prfy = YimlFa) = 1—Pr(Y}y < YinlFn)

. - n—1\"
1—Pr(all Y} < YylFp) =1- -

1 n
= 1-(1-) —1-e 120632
n

Thus, the bootstrap will select the maximum in the observed data a
big chunk of the time, and is not close to the exponential distribution.

Figure 3 compares the non-parametric and parametric bootstraps.

39 /51



Non-parametric Bootstrap Parametric Bootstrap

150
|

100
I
il

Density
Density

0.85 0.90 0.95 1.00 0.85 0.90 0.95 1.00

Ficure 3: Simulated data from Uniform(0, 6) with 6 = 1 and n = 50.
Bootstrap samples of size B = 2000 were obtained for a non-parametric
bootstrap (left) and a parametric bootstrap (right), i.e., from Uniform(0, 9).
The problem here is that the empirical distribution is not a good

approximation to the true distribution in the tail.
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ExAMPLE: LUNG CANCER AND RADON

For the lung cancer and radon example we implement the
nonparametric bootstrap resampling, with replacement, B = 1000
sets of ncase triples [ Y, Ef x5, b=1,...,B,i=1,....n.

Figure 4 displays the histogram of estimators arising from the
bootstrap samples, along with the asymptotic normal approximations
to the sampling distribution of the estimator under the Poisson and
quasi-Poisson models.

We see that the distribution under the quasi-likelihood model is much
wider than that under the Poisson model.

This is not surprising since we have already seen that the lung cancer
data are overdispersed relative to a Poisson distribution.

The bootstrap histogram and quasi-Poisson sampling distribution are
very similar, however.
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FI1GURE 4: Sampling distribution of 31 arising from the nonparametric
bootstrap samples. The solid curve is the asymptotic distribution of the MLE
under the Poisson model, and the dashed line is the asymptotic distribution
under the quasi-Poisson model.
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ExAMPLE: LUNG CANCER AND RADON

Table 1 summarizes inference for 3, for a number of different
methods, and again confirms the similarity of asymptotic inference
and the parametric bootstrap under the Poisson model.

The parametric bootstrap cannot be used with a quasi-likelihood
model since there is no probability distribution for the data.

Point estimates from the Poisson, quasi-likelihood and sandwich
approaches are identical.
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ExAMPLE: LUNG CANCER AND RADON

Inferential Method 31 s.e.(@) 95% confidence
(x10%) | (x10%) | interval for e'%%

Poisson -0.036 | 0.0054 0.954, 0.975

Quasi-Likelihood -0.036 | 0.0090 0.947, 0.982

Quadratic Variance -0.030 | 0.0085 0.955, 0.987
Sandwich Estimation | -0.036 | 0.0080 0.949, 0.980
Bootstrap Normal -0.036 | 0.0087 0.948, 0.981
Bootstrap Percentile | -0.036 | 0.0087 0.949, 0.981

TaBLE 1: Comparison of inferential approaches for the lung cancer example.
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FAILURE OF THE BOOTSTRAP
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FAILURE OF THE BOOTSTRAP

» Dependence:

» If there are “natural” structure to the data that lead to correlated
outcomes, such as over time, space, over networks or within
families, or “induced” structure due to the experimental design, or
complex survey structure. In these cases, the bootstrap distribution
will not correspond to the true asymptotic distribution, unless the
bootstrap sampling respects the data structure.

» Lack of Smoothness (cube-root asymptotics):

» A number of estimators converge at a rate of n~ '/, rather than the
more usual n~—'/2 rate. For example, the least median of squares
estimator in a linear regression. For other examples of cube root
asymptotics, see Kim and Pollard (1990). The limit distributions are
non-normal, and the bootstrap does not work.
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FAILURE OF THE BOOTSTRAP

» Machine Learning Methods:

» Sparse estimators, such as the lasso (Tibshirani, 1996), are not
amenable to being bootstrapped, because zero is a special case
for the regression coefficients. Dezeure et al. (2015) with respect to
the bootstrap and high-dimensional inference say, “...the
asymptotic distribution of the Lasso has point mass at zero. This
implies, because of noncontinuity of the distribution, that standard
bootstrapping and subsampling schemes are delicate to apply and
uniform convergence to the limit seems hard to achieve”.

» Chatterjee and Lahiri (2013) discuss the residual bootstrap in
which bootstrap samples are generated from,

yi=x"B+ e, i=1,...,n,

and where {e]}7_,, are sampled with replacement from the
centered residuals obtained from the initial lasso fit.
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FAILURE OF THE BOOTSTRAP

» Machine Learning Methods:

» Dezeure et al. (2015) critique this approach since there is
non-uniform convergence to the limiting distribution and problems
with the Cls both when j; = 0 (zero-length intervals at 0) and when
B; # 0 (poor coverage and wide Cls).

» To obtain improved asymptotic behavior there has been much
research on the debiased (or de-sparsified) lasso estmator that
makes an adjustment to the original estimator (Van de Geer et al.,
2014).
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FAILURE OF THE BOOTSTRAP

When does the bootstrap fail?

» Extrema: We have already discussed the example in which
Y ~iig Uniform(0, ), and the bootstrap points #*(?) put mass
0.632 on the largest point.

» Small n: The justification for the bootstrap follows an asymptotic
argument, but will be accurate when we have “small” n.

This was based in part on

https://notstatschat.rbind.io/2017/02/01/
when-the-bootstrap-doesnt-work/

Other examples can be found on this page.
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DiscussioN
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Di1scusSIoN

» Check the small print when you want to use the bootstrap!
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