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Motivation and Overview

We have seen that the jackknife sampling method can produce
estimates of bias and variance, by resampling from the observed
data.

But, the jackknife does not work for all statistics, for example, it does
not work for the median.

Conformal prediction is a method for a particular type of prediction
problem.

We now study the bootstrap, which is more computationally
expensive than the jackknife to use, but offers some advantages.

The bootstrap is extremely popular, but is sometimes used, when it
shouldn’t (because there are rules!).
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The Bootstrap
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Bootstrap Methods

The bootstrap is a popular resampling technique that is useful in
situations in which:

§ We wish to relax the assumptions of a parametric modeling
approach.

§ The asymptotic sampling distribution of the estimator is difficult
to derive.

References: Efron and Tibshirani (1993); Davison and Hinkley
(1997); Chernick (2011); Efron and Hastie (2016).
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Bootstrap Methods

We may be interested in bootstrap methods for:

§ Estimating the variance of an estimator.

§ Constructing CIs for parameters.

For simplicity, suppose we are in a population setting where we have
independent and identically distributed (iid) data Y1, . . . ,Yn, and
denote the (unknown) cumulative distribution function of Y by F .
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Parameters of Interest

Let θ “ T pF q be a parameter of interest.

Examples:

1. Suppose Y1, . . . ,Yn „ F where F P pFθ, θ P Θ) and pθn be the
MLE of θ. We would like to estimate varppθnq and a 1 ´ α
confidence interval (CI) for θ.

2. Suppose Y1, . . . ,Yn „ F , and θ “ T pF q is the mean of F , i.e.,
θ “ ErY s “

ş

y dF pyq and pθn “ 1
n

řn
i“1 Yi is the sample mean.

Again, we would like to estimate varppθnq and a 1 ´ α CI for θ.

3. Suppose Y1, . . . ,Yn „ F , and θ “ T pF q is the median of F , i.e.,
PrpYi ď θq “ PrpYi ą θq “ 1{2 and pθn is the sample median.
Again, we would like to estimate varppθnq and a 1 ´ α CI for θ.
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Parameters of Interest

In 1., θ is a parameter in a parametric model – in this case applying
the delta method may be cumbersome, and we might also want to
find a CI that doesn’t depend on the model being correct (and
evaluating the sandwich would be tricky).

In 2. and 3., we are in a nonparametric situation, as we have no
specific model.
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Inference for the Sample Median

For the sample mean, a 1 ´ α confidence interval for the population
mean µ is

Y n ˘ z1´α{2 ˆ
sn
?

n
,

where Y n and sn are the sample mean and sample standard
deviation.

Can we do the same thing for the sample median, which we denote
by pθn?

Note that if θ is the population median (and F ´1 has a continuous
derivative in a neighborhood of 1/2):

?
nppθn ´ θq Ñd N

ˆ

0,
1

4f 2pθq

˙

,

where f p¨q is the density of Y . This is not straightforward to use in
practice, because of the dependence on the unknown f p¨q.
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Monte Carlo Methods

If F is known, it is straightforward to mimic frequentist inference; for
simplicity, suppose we have a univariate parameter θ.

For b “ 1, . . . ,B samples:

§ Generate a random sample y‹pbq

1 , . . . , y‹pbq
n „iid F .

§ Compute pθ
‹pbq
n using y‹pbq

1 , . . . , y‹pbq
n .

Use pθ
‹pbq
n ,b “ 1, . . . ,B, to estimate the sampling distribution of pθn.

If B Ñ 8, we approach the theoretical sampling distribution of pθn.

Of course, in practice, F is unknown and the idea behind the
bootstrap is to resample datasets from an estimate of F .
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Bootstrap Methods: Unknown F

Two obvious choices for estimating F :

§ Use the empirical distribution function of the data, which we
denote pFn – this is by far the most common approach used.

§ If one has some faith in the assumed model then we may use
this model, call this F

pθn
, where the notation emphasizes that the

distribution function is fully specified by the parameter θ, which
we estimate by pθn.

Then we may:

§ Sample data with replacement from pFn to give the
nonparametric bootstrap.

§ Sample data from F
pθn

to give the parametric bootstrap.
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The Empirical Distribution Function

The empirical distribution function (EDF) is an estimator of the
cumulative distribution function (CDF).

The CDF at a fixed value y0 is,

F py0q “ PrpYi ď y0q,

for i “ 1, . . . ,n, so that F py0q is the probability of the event tYi ď y0u.

The natural estimator of this probability is the empirical proportion:

pFnpy0q “
Number of Yi ď y0

Total number of observations
“

řn
i“1 IpYi ď y0q

n
.

We can do this for all y to give the EDF (this is also the
nonparametric MLE of F ).

In Figure 1 we see that as n increases we approach the true CDF.
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Figure 1: Empirical distribution function estimate along with true CDF (in
red). There are jumps of 1{n at every data point, and between data points,
the EDF pFnpyq is flat.
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The Empirical DF

The EDF at y is an average of Zi “ IpYi ď yq so that

Zi “

"

1 if Yi ď y
0 if Yi ą y

is such that Zi „ BernoullipF pxqq so that

ErIpYi ď yqs “ ErZi s “ F pyq

varpIpYi ď yqq “ varpZiq “ F pyqp1 ´ F pyqq

for a given y .

Recall that pFnpyq “
řn

i“1 IpYi ď yq “
řn

i“1 Zi , so

ErpFnpyqs “ ErIpY1 ď yqs “ F pyq

varppFnpyqq “

řn
i“1 varpZiq

n2 “
F pyqp1 ´ F pyqq

n
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The Empirical DF as an Estimator of F pyq

Properties as an estimator,

Bias
´

pFnpyq

¯

“ E
”

pFnpyq

ı

´ F pyq “ 0.

The variance converges to 0 as n Ñ 8 so that

pFnpyq Ñp F pyq,

so that pFnpyq is a consistent estimator of F pyq.

In addition,
?

n
´

pFnpyq ´ F pyq

¯

Ñd Np0,F pyqp1 ´ F pyqqq.

These are pointwise properties of the estimator, i.e., at y .

It can also be shown that the complete empirical DF converges to F ,
i.e., ?

nppFn ´ F q Ñd B,

where B is a Brownian bridge.
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The Non-Parametric Bootstrap

Again, consider a univariate parameter, θ “ T pF q.

For b “ 1, . . . ,B samples the non-parametric bootstrap samples:

§ Generate a random sample (known as a bootstrap sample)
y‹pbq

1 , . . . , y‹pbq
n „iid

pFn – this is equivalent to drawing n
observations, with replacement from the original data
tYn, . . . ,Ynu.

§ Compute pθ
‹pbq
n using y‹pbq

1 , . . . , y‹pbq
n .

Use pθ
‹pbq
n ,b “ 1, . . . ,B, to estimate the sampling distribution of pθn.

Note that we can’t enumerate all possible bootstrap samples, as there
are

`2n´1
n

˘

of them!
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Bootstrap Methods

There are two approximations/sources of error in the bootstrap:

1. Statistical: pFn ‰ F .

2. Simulation: B ‰ 8, but we can take B large.

For 1., if n is small, the approximation will be poorer when we use pFn.

For 2., for some targets such as the bias and variance, we can get
away with smaller B (e.g., B ě 200), but for others such as
confidence intervals we need larger B (e.g., B ě 1000).

Lehmann (1999, p.426), refers to T ppF ‹
n q as an approximator of T ppFnq

rather than an estimator.
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Bootstrap Methods

Theoretical: The population is to the sample

Bootstrap: The sample is to the bootstrap sample

As an example, the theoretical bias of as estimator is

ErpθpY q|F s ´ θ.

The bootstrap attempts to estimate this by

ErpθpY ‹
q|pFns

loooooomoooooon

Average over
Samples

´ θ
loomoon

Population

.

And in practice this is estimated by
pF ‹

n
hkkkkkkkikkkkkkkj

1
B

B
ÿ

b“1

pθ‹pbq

looooomooooon

Average over
Bootstrap Samples

´ pθpyq
loomoon

Sample Estimate

.
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Heuristic of why the Bootstrap works for
the Median

§ We have Y1, . . . ,Yn „ F .

§ The distribution of the median, based on a sample of size n, will
be denoted FMn pyq which we write as,

FMn pyq “ Ψpy ;F ,nq,

where Ψ is some complicated function.

§ We know that pFn « F when n is large so as long as Ψ is smooth
with respect to F then Ψpy ; pFn,nq will be similar to Ψpy ;F ,nq, i.e.,

pFn « F ùñ FM‹pbq
n

pyq “ Ψpy ; pFn,nq

« Ψpy ;F ,nq “ FMn pyq,

where M‹pbq
n is the function evaluated for the b-th bootstrap

sample.
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Heuristic of why the Bootstrap works for
the Median

§ Hence, since the bootstrap samples are all from pFn and we have

Ψpy ;F ,nq “ FM‹p1q
n

pyq “ FM‹p2q
n

pyq “ ¨ ¨ ¨ “ FM‹pBq
n

pyq.

§ What this means is:

The CDF of the median based on the bootstrap samples, FM‹
n
pyq

is approximating the CDF of the true CDF of the median in a
sample of size n, FMn pyq.
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Overview of the Theory

There is a great deal of theory on when the bootstrap does and does
not work.

A key observation is to note that, while the bootstrap is applicable in
many situations, it is not valid in all situations, and so care should be
taken in when it is applied.

A starting rule is that if we are in a situation where the delta method is
valid, then the bootstrap will also work – this needs asymptotic
normality and smoothness.

From Section 4 of Chapter 18 at:

https://sites.stat.washington.edu/jaw/COURSES/580s/581/

lectnotes.18.html
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Overview of the Theory

The theory needs to show that the asymptotic behavior of the
distribution of the nonparametric bootstrap “mimics” the behavior of
the original estimator in probability or almost surely (a.s.).

If we are estimating T pF q by T ppFnq and we know (perhaps from a
delta method argument) that

?
npT ppFnq ´ T pF q

looooooomooooooon

pθn´θ

q Ñd Np0, varF pT qq,

then we need to show that the bootstrap estimator, T ppF ‹
n q, satisfies:

?
npT ppF ‹

n q ´ T ppFnqq Ñd Np0, varF pY qq, in probability or a.s.
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Overview of the Theory

For the sample mean of a distribution F on R, if Y „ F and
ErY 2s ă 8 then for

T pF q “

ż

ydF pyq “ µpF q

we know that
?

npT ppFnq ´ T pF qq “
?

npY n ´ µpF qq Ñd Np0, varpY qq.

For the bootstrap, the corresponding statement is: If ErY 2s ă 8 then
for Y1,Y2, . . . ,

?
npT ppF ‹

n q ´ T ppFnqq “
?

npY
‹

n ´ Y nq Ñd Np0, varpY qq.

This can be proved using a central limit theorem, see Bickel and
Freedman (1981).
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Variance Estimation via the Bootstrap
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Bootstrap Variance Estimator

The bootstrap variance estimator is

xvarppθ‹
nq “

1
B

B
ÿ

b“1

´

pθ
‹pbq
n ´ θ

‹
¯2

,

where θ
‹

“ 1
B

řB
b“1

pθ
‹pbq
n .

When B is large the sample variance of the bootstrap estimators

xvarppθ‹
nq « varppθ‹

n |pFnq, (1)

where we have conditioned on pFn being fixed.
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Bootstrap Variance Estimator

To argue that the bootstrap variance is a good estimate of the target
variance vppθnq, we need to have

xvarppθ‹
nq « varppθ‹

n |pFnq « varppθnq,

but because in (1) can be controlled with B large what really matters
is

varppθ‹
n |pFnq « varppθnq,

or, more formally,

varppθ‹
n |pFnq

varppθnq
Ñp 1 as n Ñ 8.

The ratio is often used when both quantities converge to 0 as n Ñ 8.

Not too tricky to show this for many statistics θ “ T pF q.
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Sandwich Estimation and the Bootstrap

We heuristically show why we would often expect sandwich and
bootstrap variance estimates to be in close correspondence.

For simplicity, we consider a univariate parameter θ, and let pθn denote
the MLE arising from a sample of size n.

In a change of notation we denote the score by

Spθq “ rS1pθq, . . . ,SnpθqsT,

where Sipθq “ dℓi{dθ is the contribution to the score from observation
Yi , i “ 1, . . . ,n.

Hence,

Spθq “

n
ÿ

i“1

Sipθq “ SpθqT1

where 1 is an n ˆ 1 vector of 1’s.
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Sandwich Estimation and the Bootstrap

The sandwich form of the asymptotic variance of pθn is

varppθnq “
1
n

B1

A2
1

where

A1pθq “ E
„

BS1

Bθ

ȷ

, B1pθq “ E
“

S1pθq2‰

which may be empirically estimated via

pAn “
1
n

dS
dθ

ˇ

ˇ

ˇ

ˇ

pθn

“
1
n

n
ÿ

i“1

dSi

dθ

ˇ

ˇ

ˇ

ˇ

ˇ

pθn

pBn “
1
n

SpθqTSpθq

ˇ

ˇ

ˇ

ˇ

pθn

“
1
n

n
ÿ

i“1

Sipθq2

ˇ

ˇ

ˇ

ˇ

ˇ

pθn

.
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Sandwich Estimation and the Bootstrap

A convenient representation of a bootstrap sample is Y ‹
“ Y ˆ D

where D “ diagpD1, . . . ,Dnq is a diagonal matrix consisting of
multinomial random variables

»

—

–

D1
...

Dn

fi

ffi

fl

„ Multinomial
„

n,
ˆ

1
n
, ...,

1
n

˙ȷ

with

E prD1, . . . ,DnsTq “ 1

varprD1, . . . ,DnsTq “ In ´
1
n

11T
Ñ In

as n Ñ 8.

The MLE of θ in the bootstrap sample is denoted pθ‹
n and satisfies

S‹ppθ‹
nq “ 0, where S‹pθq is the score corresponding to Y ‹. Note that,

S‹pθq “

n
ÿ

i“1

S‹
i pθq “

n
ÿ

i“1

SipθqDi .
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Sandwich Estimation and the Bootstrap

We consider a Taylor series expansion

0 “ S‹ppθ‹
nq « S‹ppθnq ` ppθ‹

n ´ pθnq
dS‹

dθ

ˇ

ˇ

ˇ

ˇ

pθn

which leads to the one-step approximation

pθ‹
n “ pθn ´

S‹ppθq

d
dθS‹pθq|

pθn

.

The bootstrap score evaluated at pθn is

n
ÿ

i“1

S‹
i ppθnq “

n
ÿ

i“1

SippθnqDi ‰ 0,

unless the bootstrap sample coincides with the original sample, i.e.,
unless D “ In.
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Sandwich Estimation and the Bootstrap

We replace S‹ppθq

”

d
dθS‹pθq|

pθn

ı´1
by its limit

E

«

d
dθ

S‹pθq

ˇ

ˇ

ˇ

ˇ

pθn

ff

“ E

»

–

n
ÿ

i“1

d
dθ

SipθqDi

ˇ

ˇ

ˇ

ˇ

ˇ

pθn

fi

fl “
d
dθ

Spθq

ˇ

ˇ

ˇ

ˇ

pθn

ErDs “ nˆ pAn

where pAn “ d
dθSpθq

ˇ

ˇ

pθn
.

Therefore, the one-step bootstrap estimator is approximated by

pθ‹
n « pθn ´

SppθnqD

npAn

and is approximately unbiased as an estimator since

Erpθ‹
n ´ pθns « ´

SppθnqErDs

npAn
“ ´

Sppθnq1

npAn
“ 0

and, recall, pθn is being held constant.
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Sandwich Estimation and the Bootstrap

The variance is

varppθ‹
n ´ pθnq «

SppθnqvarprD1, ...,DnsqSppθnq

pnpAnq2
“

Sppθnq
`

I ´ 1
n 11T

˘

Sppθnq

pnpAnq2

«
SppθnqISppθnq

pnpAnq2
“

npBn

pnpAnq2
“

pBn

npA2
n

,

which is the sandwich estimator.

Hence, varppθ‹
n ´ pθnq approximates varppθn ´ θq, which is a fundamental

link to the bootstrap.

For a more theoretical treatment, see Arcones and Giné (1992) and
Section 10.3 of Kosorok (2008).
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Constructing a Confidence Interval
via the Bootstrap
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Bootstrap Methods: CI Estimation

For CI construction, many improvements on the above normal-based
method have been suggested:

§ Wald-type CIs.

§ The percentile method – pick the appropriate sample quantiles.

§ Various improved and bias corrected versions have been
proposed. Figure 2 is from Section 3.1 of Chernick (2011). See
also Sections 11.3–11.5 of Efron and Hastie (2016).
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Figure 2: From Chernick (2011).
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Bootstrap Methods: Variance and CI
Estimation

Recall

xvarppθ‹
nq “

1
B

B
ÿ

b“1

´

pθ
‹pbq
n ´ θ

‹
¯2

,

where θ
‹

“ 1
B

řB
b“1

pθ
‹pbq
n .

If n is sufficiently large that asymptotic normality of the estimator may
be appealed to and a CI estimate may be based upon

pθn ˘ z1´α{2 ˆ

b

xvarppθ‹
nq.

This is a Wald-type CI, and is not invariant to reparametrization.
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Bootstrap Confidence Interval: The
Percentile Method

Let

pGptq “
1
B

B
ÿ

b“1

I
´?

nppθ
‹pbq
n ´ pθnq ď t

¯

.

Then a 1 ´ α bootstrap percentile method confidence interval is

Cn “

„

pθn ´
t1´α{2

?
n

, pθn ´
tα{2
?

n

ȷ

,

where tα{2 “ pG´1pα{2q and t1´α{2 “ pG´1p1 ´ α{2q.

Under appropriate regularity conditions,

Prpθ P Cnq “ 1 ´ α ´ O
ˆ

1
?

n

˙

.

Note that this method, unlike the Wald-type interval given earlier, is
invariant to the parameterization adopted.
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Failure of the Bootstrap

Let Y1, . . . ,Yn „iid Uniformp0, θq, and pθn “ mintY1, . . . ,Ynu, be the
minimum of the sample and corresponds to the MLE.

It can be shown that

npθ ´ pθnq Ñd Exponentialpθq,

i.e., converges to a exponential distribution with mean θ.

However,

Prppθ‹
n “ Ypnq|pFnq “ 1 ´ PrpY ‹

pnq ă Ypnq|pFnq

“ 1 ´ Prp all Y ‹
i ă Ypnq|pFnq “ 1 ´

ˆ

n ´ 1
n

˙n

“ 1 ´

ˆ

1 ´
1
n

˙n

Ñ 1 ´ e´1 « 0.632.

Thus, the bootstrap will select the maximum in the observed data a
big chunk of the time, and is not close to the exponential distribution.

Figure 3 compares the non-parametric and parametric bootstraps.
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Non−parametric Bootstrap
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Figure 3: Simulated data from Uniform(0, θq with θ “ 1 and n “ 50.
Bootstrap samples of size B “ 2000 were obtained for a non-parametric
bootstrap (left) and a parametric bootstrap (right), i.e., from Uniformp0, pθq.
The problem here is that the empirical distribution is not a good
approximation to the true distribution in the tail.
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Example: Lung Cancer and Radon

For the lung cancer and radon example we implement the
nonparametric bootstrap resampling, with replacement, B “ 1000
sets of n case triples rY ‹

bi ,E
‹
bi , x

‹
bi s, b “ 1, . . . ,B, i “ 1, . . . ,n.

Figure 4 displays the histogram of estimators arising from the
bootstrap samples, along with the asymptotic normal approximations
to the sampling distribution of the estimator under the Poisson and
quasi-Poisson models.

We see that the distribution under the quasi-likelihood model is much
wider than that under the Poisson model.

This is not surprising since we have already seen that the lung cancer
data are overdispersed relative to a Poisson distribution.

The bootstrap histogram and quasi-Poisson sampling distribution are
very similar, however.
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Figure 4: Sampling distribution of pβ1 arising from the nonparametric
bootstrap samples. The solid curve is the asymptotic distribution of the MLE
under the Poisson model, and the dashed line is the asymptotic distribution
under the quasi-Poisson model.
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Example: Lung Cancer and Radon

Table 1 summarizes inference for β1 for a number of different
methods, and again confirms the similarity of asymptotic inference
and the parametric bootstrap under the Poisson model.

The parametric bootstrap cannot be used with a quasi-likelihood
model since there is no probability distribution for the data.

Point estimates from the Poisson, quasi-likelihood and sandwich
approaches are identical.
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Example: Lung Cancer and Radon

Inferential Method pβ1 s.e.ppβ1q 95% confidence
pˆ103q pˆ104q interval for e10β1

Poisson -0.036 0.0054 0.954, 0.975
Quasi-Likelihood -0.036 0.0090 0.947, 0.982
Quadratic Variance -0.030 0.0085 0.955, 0.987
Sandwich Estimation -0.036 0.0080 0.949, 0.980
Bootstrap Normal -0.036 0.0087 0.948, 0.981
Bootstrap Percentile -0.036 0.0087 0.949, 0.981

Table 1: Comparison of inferential approaches for the lung cancer example.
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Failure of the Bootstrap
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Failure of the Bootstrap

§ Dependence:

§ If there are “natural” structure to the data that lead to correlated
outcomes, such as over time, space, over networks or within
families, or “induced” structure due to the experimental design, or
complex survey structure. In these cases, the bootstrap distribution
will not correspond to the true asymptotic distribution, unless the
bootstrap sampling respects the data structure.

§ Lack of Smoothness (cube-root asymptotics):

§ A number of estimators converge at a rate of n´1{3, rather than the
more usual n´1{2 rate. For example, the least median of squares
estimator in a linear regression. For other examples of cube root
asymptotics, see Kim and Pollard (1990). The limit distributions are
non-normal, and the bootstrap does not work.
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Failure of the Bootstrap

§ Machine Learning Methods:

§ Sparse estimators, such as the lasso (Tibshirani, 1996), are not
amenable to being bootstrapped, because zero is a special case
for the regression coefficients. Dezeure et al. (2015) with respect to
the bootstrap and high-dimensional inference say, “...the
asymptotic distribution of the Lasso has point mass at zero. This
implies, because of noncontinuity of the distribution, that standard
bootstrapping and subsampling schemes are delicate to apply and
uniform convergence to the limit seems hard to achieve”.

§ Chatterjee and Lahiri (2013) discuss the residual bootstrap in
which bootstrap samples are generated from,

y‹
i “ xT

pβ ` e‹
i , i “ 1, . . . , n,

and where te‹
i u

n
i“1, are sampled with replacement from the

centered residuals obtained from the initial lasso fit.
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Failure of the Bootstrap

§ Machine Learning Methods:

§ Dezeure et al. (2015) critique this approach since there is
non-uniform convergence to the limiting distribution and problems
with the CIs both when βj “ 0 (zero-length intervals at 0) and when
βj ‰ 0 (poor coverage and wide CIs).

§ To obtain improved asymptotic behavior there has been much
research on the debiased (or de-sparsified) lasso estmator that
makes an adjustment to the original estimator (Van de Geer et al.,
2014).
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Failure of the Bootstrap

When does the bootstrap fail?

§ Extrema: We have already discussed the example in which
Y „iid Uniformp0, θq, and the bootstrap points θ‹pbq put mass
0.632 on the largest point.

§ Small n: The justification for the bootstrap follows an asymptotic
argument, but will be accurate when we have “small” n.

This was based in part on

https://notstatschat.rbind.io/2017/02/01/

when-the-bootstrap-doesnt-work/

Other examples can be found on this page.
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Discussion

§ Check the small print when you want to use the bootstrap!
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