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1 What is a Markov chain?

The Markov chain model or shortly the Markov model is a process where the
outcomes of consecutive trials depend on each other.

For example, if the sample space S represents the set of rooms in a building,
then from any room you can get only to neighboring rooms. Thus the state (i.e
which room you are in) at time t will depend on the state at the previous time
step. If it does not depend on anything else, this is a Markov chain.

Formally, we call S the state space and we have a time variable t taking
values from 0, 1, 2, . . . T . At each moment t, we denote by Xt the outcome of
the t-th experiment on S – which in this framework is called the state at time
t. The state Xt depends on the previous state Xt−1 for t > 0 and given Xt−1 is
independent of all the other states in the past.

Xt ⊥ Xt−k |Xt−1 for all k > 1 (1)

and for all t > 1. In words this means: “the present makes the future indepen-
dent on the past” and it is known as the Markov property.

From the Markov property we can derive (by induction) more general inde-
pendence relationships of the form

Xr ⊥ Xt | Xs if r < s < t (2)

We can represent all the dependencies and independencies in a Markov chain
(or Markov model) by a graph like the one figure 1.

2 Parametrization

Let us now construct a probability model that describes the Markov chain, that
is a probability distribution over all sequences of states up to time T (for any
T !). For this we start by introducing some notation.

Let S = {1, . . . m} and
pi[t] = PXt

(i) (3)

the probability that at time t the chain is in state i for i ∈ S. Then

p[t] = [p1[t] . . . pm[t]] (4)
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Figure 1: Graphical representation of a Markov chain. States Xr, Xt are
(marginally) dependent, but they are independent conditioned on state Xt with
r < s < t.

describes the probability distribution of state Xt and therefore

m∑

i=1

pi[t] = 1 (5)

We call p[0] the initial probability. Then we define the transition probabilities
as

aij [t] = PXt|Xt−1
(j|i) (6)

In words, aij [t] is the probability of transitioning to state j at t given that the
chain is in state i at t − 1. We assume that this probability doesn’t depend on
t and from now on write

aij [t] = aij for all t > 1 (7)

The matrix A = [aij ]
m
i,j=1 is called the transition matrix. It has the property

that
m∑

j=1

aij = 1 (8)

A matrix with non-negative elements that has the property (8) is called a
stochastic matrix.

Example 1

A =





0 0.5 0.5
0.5 0.25 0.25
0.25 0.75 0



 (9)

is a stochastic matrix. It represents the transition matrix for a Markov chain
with 3 states.

A Markov chain is called reducible if there are 2 states i, j ∈ S such that
i cannot be reached from j in finite time. Intuitively, a reducible chain can
be decomposed into two chains over disjoint subsets of S. A chain that is not
reducible is irreducible. The chain in example 1 is irreducible.

Example 2 A reducible chain:

A =





1 0 0
0 0.75 0.25
0 0.5 0.5



 (10)

In this chain state 1 cannot be reached from 2 or 3.
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A Markov chain is called periodic if there exists at least one state i for which
PXt+t′ |Xt

(i|i) = 0 for t′ > 0, t′ 6= kt0, k = 1, 2, . . . , t0 > 1. The state i is called
a periodic state. A chain that is not periodic is aperiodic. The chain in
example 1 is aperiodic.

Example 3 A periodic chain:

A =





0 1 0
0 0 1
1 0 0



 (11)

This chain cycles through the states in the order 1–2–3–1–. . . .

A chain that is aperiodic and irreducible is ergodic.

3 State distributions over time. The ergodic

theorem

In this section we assume that a Markov chain is ergodic. We want to describe
how the state distribution p[t] evolves in time, given the transition matrix A

and an initial distribution p[0].
The first question is how does p[t + 1] depend on p[t]. We have

pj [t + 1] =

m∑

i=1

PXtXt+1(i, j) (12)

=

m∑

i=1

PXt
(i)PXt+1|Xt

(i|j) (13)

=

m∑

i=1

pi[t]aij (14)

In compact form (assuming p[t + 1], p[t] are row vectors) the above becomes:

p[t + 1] = p[t]A (15)

Hence, advancing one step in the chain corresponds to multiplying the state
distribution by the transition matrix A. You can verify that if p[t] is a probability
distribution, then p[t + 1] is also a probability distribution.

By induction
p[t + k] = p[t]Ak (16)

and
p[t] = p[0]At (17)

Thus, the distribution over the states at any time t can be described as
a simple function of the initial distribution and the transition matrix! This
suggests another question: as t → ∞, should the state distribution still depend
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on the starting state? Common sense makes us expect that the chain “forgets”
its origin as time goes by. This intuition is supported by mathematical proof if
the chain is ergodic.

The ergodic theorem If a Markov chain defined by transition matrix A is
ergodic, then

p[t] −→ p∞ (18)

for any initial distribution p[0].
The following sequence of simple facts helps understand why this theorem

is true. Most of them can be proved by verification.

1. p∞ is an eigenvector of AT with eigenvalue 1.

p∞A = p∞ (19)

2. Denote by 1 the vector [1 1 1 . . . 1]. Any stochastic matrix has an
eigenvalue equal to 1 with 1 as eigenvector.

1A = 1 (20)

3. If λ is an eigenvalue for A then |λ| ≤ 1. Hence λ = 1 is the largest
eigenvalue of A.

4. If A diagonalizes as
A = XDX−1 (21)

then
At = XDtX−1 (22)

Here D is the diagonal matrix of the eigenvalues, with 1 in the upper left
corner. Note: this is a simplification, A does not always diagonalize.

5. Assume all |λ|’s but the first are smaller than 1, we have that, when t → ∞

Dt −→; D∞ =







1 0 . . . 0
0 0 . . . 0

. . .

0 0 . . . 0







(23)

6. Hence At also converges to some matrix A∞. This matrix has identical
rows. Moreover, each row is equal to p∞. Or rather, having arrived here
we define p∞ to be a row of A.

At −→ A∞ =







p∞

p∞

. . .

p∞







(24)

4



Example 4 The Markov chain defined by example 1 starts from state 1 (hence
p[0] = [1 0 0]). The following table gives the succesive values for p[t].

0 1 2 3 4 5 6 7 8 9 10 11

1.0000 0 0.3750 0.2812 0.2812 0.2988 0.2856 0.2922 0.2898 0.2904 0.2904 0.2903

0 0.5000 0.5000 0.4062 0.4766 0.4414 0.4546 0.4513 0.4513 0.4519 0.4514 0.4517

0 0.5000 0.1250 0.3125 0.2422 0.2598 0.2598 0.2565 0.2589 0.2577 0.2582 0.2581

4 Maximum Likelihood parameter estimation

As usual, we set up the estimation problem as: given some data D, estimate
the parameters so as to maximize the likelihood of the data.

In this case, the data set consists of s sequences of observations

D = {x̄(1) = (x
(1)
0 , x

(1)
1 , . . . x

(1)
T1

), x̄(2) = (x
(2)
0 , x

(2)
1 , . . . x

(2)
T2

), . . . . . . x̄(s) = (x
(s)
0 , x

(s)
1 , . . . x

(s)
Ts

)}

The sequences are independent of each other, but the states within each se-
quence are not. The parameters of the Markov chain are the initial probabilities
pi[0], i = 1, . . .m and the transition matrix elements aij , i, j = 1, . . . m.

To write the expression of the likelihood we need the probability of a se-
quence. This is

P (x̄) = P (x0)
︸ ︷︷ ︸

px0 [0]

P (x1|x0)P (x2|x1) . . . P (xt|xt−1)
︸ ︷︷ ︸

aXt−1Xt

. . . P (xT |xT−1 (25)

= px0[0]

T∏

t=1

aXt−1Xt
(26)

= px0[0]

m∏

i,j=1

a
nij

ij (27)

where nij is the number of times transition i → j occurs in the sequence.
For example, for the chain

(x̄) = 1, 1, 3, 1, 2, 2, 2, 3, 1, 3 (28)

we have n11 = 1, n12 = 1, n13 = 2, n22 = 2, n23 = 1, n31 = 2 and the other
nij ’s equal 0. Of course the sum

m∑

i,j=1

nij = T. (29)

With this, the likelihood of s independent sequences is:

L(p[0], A) = P (D) (30)

=

s∏

k=1

p(k)
x0

[0]

m∏

i,j=1

a
n

(k)

ij

ij (31)
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=

m∏

i=1

p
n0

i

i [0]

m∏

i,j=1

a

∑

k
n

(k)
ij

ij (32)

=

m∏

i=1

p
n0

i

i [0]

m∏

i,j=1

a
nij

ij (33)

In the above n0
i is the number of sequences that start in state i (with

∑

i n0
i = s)

and nij =
∑

k n
(k)
ij is the total number of i → j transitions occuring in all

the sequences in the dataset. It is probably clear by now that nij , i, j =
1, . . . m, n0

i , i = 1, . . . m are the sufficient statistics of the Markov chain model.
To find the solution to the estimation problem, note that p[0] and [ aij =

P (i → j|i), j = 1, . . . m ] for each i are m + 1 separate probability distribution
over S. Hence their parameters can be estimated separately (i.e one can max-
imize L separately over each of these distribution’s parameters) just like the
parameters of any other discrete distribution. We get:

pi[0] =
n0

i

s
(34)

aij =
nij

m∑

j=1

nij

︸ ︷︷ ︸

ni

(35)

Example 5 For the dataset

D = {x̄(1) = (1, 1, 3, 1, 2, 2, 2, 3, 1), x̄(2) = (2, 2, 2, 3, 1, 1, 3, 1, 2)} (36)

we have s = 2, n11 = 2, n12 = 2, n13 = 2, n21 = 0, n22 = 4, n23 =
2, n31 = 3, n32 = 0, n33 = 0. The total numbers of times in each state are
n1 = 6, n2 = 6, n3 = 4; note that here we have not counted the last states in
each sequence, from which no transition occurs. Thus we obtain

p[0] =

[
1

2

1

2
0

]

(37)

A =





1
3

1
3

1
3

0 2
3

1
3

1 0 0



 (38)
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