STAT 403

5/16/25

Lecture 18

Gibbs Sampeing

Lecture Notes VIII - Markov Chain Monte Carlo

Marina Meila mmp@stat.washington.edu

> Department of Statistics University of Washington

> > April 2025

Notation

- ▶ $V = \{X_1, ..., X_n\}$ set of random variables (nodes of a graphical model) also known as Markov network
- $X_{1:n} \in \{\pm 1\}$ (for simplicity)
- $E = \{(i, j), 1 \le i < j \le n\}$ edges of graph
- graph is not complete, some edges are missing
- We write $i \sim j$ for $(i, j) \in E$ or $(j, i) \in E$
- neigh_i = neighbors of X_i

• Markov property $X_i \perp$ all other variables | neigh_i

• $x = (x_1, \dots, x_n) \in \{\pm 1\}^n = S$ an assignment to all variables in V

Notation

- ▶ $V = \{X_1, ..., X_n\}$ set of random variables (nodes of a graphical model) also known as Markov network
- $X_{1:n} \in \{\pm 1\}$ (for simplicity)
- $E = \{(i,j), 1 \le i < j \le n\}$ edges of graph
- graph is not complete, some edges are missing
- We write $i \sim j$ for $(i, j) \in E$ or $(j, i) \in E$
- neigh_i = neighbors of X_i

• Markov property $X_i \perp$ all other variables | neigh_i

▶ $x = (x_1, ..., x_n) \in \{\pm 1\}^n = S$ an assignment to all variables in V ▶ Distribution over S

$$P(x) = \frac{1}{Z} e^{-\phi(x)} \quad \text{with } \phi(x) = \sum_{i=1}^{n} h_i x_i + \sum_{(i,j) \in E} h_{ij} x_i x_j$$
(1)

(and $h_{ij} > 0$ for all $(i, j) \in E$) $Z = \sum_{x \in S} e^{-\phi(x)}$ Usually, intractable to compute Z

Wanted samples x^1, x^2, \ldots from *P*

Gibbs sampling idea

$$P(\mathbf{x}) = \frac{1}{\mathbf{Z}} e^{-\phi(\mathbf{x})} \quad \text{with } \phi(\mathbf{x}) = \sum_{i=1}^{n} h_i x_i + \sum_{(i,j) \in E} h_{ij} x_i x_j$$

We cannot sample directly from
$$P$$

But we can sample each $X_i \sim \frac{P_{X_i|X_{-i}}}{P_X} = P_{X_i|\text{neigh}}$ for any $i = 1 : n$
 $P_Y \times i$ all offer variables

Px; | neigh (xi)

Ergodic Markov Jain X° initial state

$$P_{\chi}^{(t)} \longrightarrow P_{\chi}^{\infty}$$
 for any χ_{0}

Gibbs sampling idea

$$P(\mathbf{x}) = \frac{1}{Z} e^{-\phi(\mathbf{x})} \quad \text{with } \phi(\mathbf{x}) = \sum_{i=1}^{n} h_i x_i + \sum_{(i,j) \in E} h_{ij} x_i x_j \quad \text{are Ling}$$

▶ We cannot sample directly from P
▶ But we can sample each
$$X_i \sim P_{X_i|X_{-i}} = P_{X_i|\text{neigh}_i}$$
 for any $i = 1 : n$
▶ Why? For any x_{-i} let
 $\pi_i^+ = Pr[X_i = +|x_{-i}] \quad \underline{\pi_i^- = Pr[X_i = -|x_{-i}]} \quad \Pi_i^+ + \overline{\pi_i^-} = 1$ (2)
 $\pi_i^+ = \frac{P(X_i = +1, x_{-i})}{P(x_{-i})} = \frac{P(X_i = +1, x_{-i})}{P(X_i = +1, x_{-i}) + P(X_i = -1, x_{-i})}$ (3)
 $\pi_i^- = \frac{P(X_i = -1, x_{-i})}{P(X_i = +1, x_{-i}) + P(X_i = -1, x_{-i})} \quad \text{hence}$ (4)
 $\frac{\pi_i^+}{\pi_i^-} = \frac{P(X_i = +1, x_{-i})}{P(X_i = -1, x_{-i})} = \frac{e^{-\phi(X_i = +1, x_{-i})}}{e^{-\phi(X_i = -1, x_{-i})}} = e^{-\phi(X_i = +1, x_{-i}) + \phi(X_i = -1, x_{-i})}$ (5)
 $= e^{-2h_i - 2\sum_{j \sim i} h_{ij}} X_j^-$ (6)
 $1 = \pi_i^+ + \pi_i^- \quad \text{hence} \ \pi_i^+ = \frac{e^{-2h_i - 2\sum_{j \sim i} h_{ij}}}{1 + e^{-2h_i - 2\sum_{j \sim i} h_{ij}}} = \frac{e^{-h_i - \sum_{j \sim i} h_{ij}}}{e^{h_i + \sum_{j \sim i} h_{ij}} + e^{-h_i - \sum_{j \sim i} h_{ij}}}$

 $\blacktriangleright X_i \, | \, \mathrm{neigh}_i \sim \mathrm{Bernoulli}(\pi_i^+)$

Gibbs sampling algorithm

- 1. Initialize x⁰ with some arbitrary values
- 2. For t = 1, 2, ... we will sample sequentially $x^t | x^{t-1}$ as follows
 - 2.1 Pick $i \in 1$: *n* uniformly at random
 - 2.2 Sample $X_i^t | \operatorname{neigh}_i \sim \operatorname{Bernoulli}(\pi_i^+)$
 - 2.3 Every T steps (where T is a LARGE number), output x^t
- Q Why does this work?
- A1 We are sampling from a Markov chain on S (transition probability matrix P on next page)
- A2 If we take enough steps T, the distribution converges to the stationary distribution of this chain, let's call it P. We take a sample from it x^T
- A3 If we continue for another T steps, the chain has "forgotten" about x^T ; the new sample x^{2T} is independent of x^T . Etc, samples $x^{T,2T,...NT}$ are i.i.d. from P^{∞}
- ODO To show that $P^{\infty} = P$ the distribution we wanted to sample from.