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Notation

Gibbs sampling

The detailed balance

Metropolis-Hastings sampling
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Notation

I V = {X1, . . .Xn} set of random variables (nodes of a graphical model)
also known as Markov network

I X1:n 2 {±1} (for simplicity)
I E = {(i , j), 1  i < j  n} edges of graph
I graph is not complete, some edges are missing
I We write i ⇠ j for (i , j) 2 E or (j , i) 2 E
I neighi = neighbors of Xi

I Markov property Xi ? all other variables | neighi

I x = (x1, . . . xn) 2 {±1}n = S an assignment to all variables in V
I Distribution over S

P(x) =
1

Z
e��(x) with �(x) =

nX

i=1

hi xi +
X

(i,j)2E

hij xi xj (1)

(and hij > 0 for all (i , j) 2 E)
I Z =

P
x2S e��(x)

I Usually, intractable to compute Z

Wanted samples x1, x2, . . . from P
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Gibbs sampling algorithm

1. Initialize x0 with some arbitrary values
2. For t = 1, 2, . . . we will sample sequentially xt |xt�1 as follows

2.1 Pick i 2 1 : n uniformly at random
2.2 Sample Xt

i | neighi ⇠ Bernoulli(⇡+
i )

2.3 Every T steps (where T is a LARGE number), output xt

Q Why does this work?
A1 We are sampling from a Markov chain on S (transition probability matrix P on next page)
A2 If we take enough steps T , the distribution converges to the stationary distribution of this

chain, let’s call it P. We take a sample from it xT

A3 If we continue for another T steps, the chain has “forgotten” about xT ; the new sample
x2T is independent of xT . Etc, samples xT ,2T ,...NT are i.i.d. from P1

TODO To show that P1 = P the distribution we wanted to sample from.






