STAT 403

Lecture 19

>> Don't miss hart hecture «

Gibbs sampling in practice

Lecture Notes VIII - Markov Chain Monte Carlo

Marina Meila mmp@stat.washington.edu

> Department of Statistics University of Washington

> > April 2025

The detailed balance

. .

Metropolis-Hastings sampling

Notation

- ▶ $V = \{X_1, ..., X_n\}$ set of random variables (nodes of a graphical model) also known as Markov network
- $X_{1:n} \in \{\pm 1\}$ (for simplicity)
- $E = \{(i,j), 1 \le i < j \le n\}$ edges of graph
- graph is not complete, some edges are missing
- We write $i \sim j$ for $(i, j) \in E$ or $(j, i) \in E$
- neigh_i = neighbors of X_i

• Markov property $X_i \perp$ all other variables | neigh_i

▶ $x = (x_1, ..., x_n) \in \{\pm 1\}^n = S$ an assignment to all variables in V ▶ Distribution over S

$$P(x) = \frac{1}{Z} e^{-\phi(x)} \quad \text{with } \phi(x) = \sum_{i=1}^{n} h_i x_i + \sum_{(i,j) \in E} h_{ij} x_i x_j$$
(1)

(and $h_{ij} > 0$ for all $(i, j) \in E$) $Z = \sum_{x \in S} e^{-\phi(x)}$ Usually, intractable to compute Z

Wanted samples x^1, x^2, \ldots from *P*

Gibbs sampling algorithm

- 1. Initialize \times^{0} with some arbitrary values
- 2. For t = 1, 2, ... we will sample sequentially $x^t | x^{t-1}$ as follows
 - 2.1 Pick $i \in 1$: *n* uniformly at random
 - 2.2 Sample $X_i^t | \operatorname{neigh}_i \sim \operatorname{Bernoulli}(\pi_i^+)$
 - 2.3 Every T steps (where T is a LARGE number), output x^{t}
- Q Why does this work?
- A1 We are sampling from a Markov chain on S (transition probability matrix P on next page)
- A2 If we take enough steps T, the distribution converges to the stationary distribution of this chain, let's call it P. We take a sample from it x^T
- A3 If we continue for another T steps, the chain has "forgotten" about x^T ; the new sample x^{2T} is independent of x^T . Etc, samples $x^{T,2T,...NT}$ are i.i.d. from P^{∞}
- ODO To show that $P^{\infty} = P$ the distribution we wanted to sample from.

M.C. <u>Ergodic</u> $\Rightarrow x^{t+T} \sim P_x^{\infty}$ stationary distribution <u>More detail</u> $x^{t+T} \perp x^t$ for T large $T_0 = \#$ burn-in steps (time) $x_0 \dots x^{T_0} = first sample \qquad x_0 \longrightarrow P^{\infty}$ T = # sampling steps (time) $x^t \sim P^{\infty}$ (artumption) $\Rightarrow t > T_0$

xt = state at - b E S

$$|S|=2^{n}$$

 $X = (X_{1:n})$

 $T_o > T$ in practice T = mixing time $\lambda_a([P_{jii}]) \approx O$ framition matrix

