'AT 403 GoodNote: Lecture

Lecture Notes I - CDF and EDF

Marina Meila mmp@stat.washington.edu

> Department of Statistics University of Washington

> > April 2025

CDF: Cumulative Distribution Function

Statistics and Motivation of Resampling Methods

EDF: Empirical Distribution Function

Properties of the EDF

Inverse of a CDF and sampling

Applications of EDF: testing if data come from known distribution

Reading: Lectures 0, 1, Lab 2

$$F(x) = P[X \le x] = P(-\infty, x] = \int_{-\infty}^{x} p(u)du \tag{1}$$

Here are some properties of F(x):

- ▶ (probability) $0 \le F(x) \le 1$.
- ▶ (monotonicity) $F(x) \le F(y)$ for every $x \le y$.
- ▶ (right-continuity) $\lim_{x\to y^+} F(x) = F(y)$, where $y^+ = \lim_{\epsilon>0. \epsilon\to 0} y + \epsilon$.

- $P(X = x) = F(x) F(x^{-}), \text{ where } x^{-} = \lim_{\epsilon < 0} x + \epsilon.$

Examples of CDF's

Example Uniform random variable over [0, 1]

$$F(x) = \int_0^x 1 \ du = x$$

when $x \in [0, 1]$ and F(x) = 0 if x < 0 and F(x) = 1 if x > 1.

Example Exponential random variable with parameter λ

$$F(x) = \int_0^x \lambda e^{-\lambda u} du = 1 - e^{-\lambda x}$$

when $x \ge 0$ and F(x) = 0 if x < 0. The following provides the CDF (left) and PDF (right) of an exponential random variable with $\lambda = 0.5$:

STAT 403 GoodNote: Lecture

- ▶ Sample maximum: $S(X_1, \dots, X_n) = \max\{X_1, \dots, X_n\}$.
- ▶ Sample range: $S(X_1, \dots, X_n) = \max\{X_1, \dots, X_n\} \min\{X_1, \dots, X_n\}$.
- Sample variance: $S(X_1, \dots, X_n) = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X}_n)^2$, $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$.

...and more statistics

- Number of observations above a threshold $t: S(X_1, \dots, X_n) = \sum_{i=1}^n I(X_i > t)$.
- ▶ Rank of the first observation (X_1) : $S(X_1, \dots, X_n) = 1 + \sum_{i=2}^n I(X_i > X_1)$.

 - ▶ If X_1 is the largest number, then $S(X_1, \dots, X_n) = 1$; ▶ if X_1 is the smallest number, then $S(X_1, \dots, X_n) = n$.
- ▶ Sample second moment: $S(X_1, \dots, X_n) = \frac{1}{n} \sum_{i=1}^n X_i^2$. (The sample second moment is a consistent estimator of $E(X_i^2)$.)

Statistics S_n are determined by CDF

- ▶ a statistic $S_n = S(X_1, \dots, X_n)$, it is a random variable
- ▶ because S_n is a function of the input data points X_1, \dots, X_n , the distribution of S_n is completely determined by the joint CDF of X_1, \dots, X_n .
- $ightharpoonup F_{S_n}(x)$ is determined by $F_{X_1,\dots,X_n}(x_1,\dots,x_n)$
- ▶ and $F_{X_1,\dots,X_n}(x_1,\dots,x_n)$ is determined by F(x) and n
- ▶ Therefore, F is sufficient to study the randomness of any statistic S_n .

Example Sample average for Normal(μ, σ^2)

- Assume $X_1, \dots, X_n \sim N(0,1)$, let $S_n = \frac{1}{n} \sum_{i=1}^n X_i$
- ► Then $S_n \sim N(0, 1/n)$.
- if $X_{1:n} \sim N(1,4)$, then $S_n \sim N(1,4/n)$.

Problem In practice the CDF F is unknown. How to estimate F from sample X_1, \dots, X_n ?

Recall Given a value x_0 , $F(x_0) = P(X_i \le x_0)$ for any $i = 1, \dots, n$.

▶ Namely, $F(x_0)$ is the probability of the event $\{X_i \le x_0\}$.

Idea Use $F_n(x_0)$ as the estimator of $F(x_0)$.

$$\hat{F}_n(x_0) = \frac{\text{number of } X_i \le x_0}{\text{total number of observations}} = \frac{\sum_{i=1}^n I(X_i \le x_0)}{n} = \frac{1}{n} \sum_{i=1}^n I(X_i \le x_0)$$

- ▶ Hence $\hat{F}_n(x)$ (as a function) is estimator for F(x) (as a function)
- ▶ We call $\hat{F}_n(x)$, empirical distribution function (EDF).

Example EDF of 5 observations 1, 1.2, 1.5, 2, 2.5

There are 5 jumps, each located at the position of an observation. Moreover, the height of each jump is the same: $\frac{1}{5}$.

TAT 403 GoodNote: Lecture

EDF for larger n

Example EDF versus CDF for n = 100, 1000 random points from N(0, 1)

red=true CDF

STAT 403 GoodNote: Lecture

CDF is an average

▶ Properties of $Y_i = I(X_i \le x)$

$$Y_i = \begin{cases} 1, & \text{if } X_i \le x \\ 0, & \text{if } X_i > x \end{cases}.$$

- ► Hence, for some fixed x, $Y_i \sim \text{Ber}(F(x))$. **Proof** $p = P(Y_i = 1) = P(X_i \le x) = F(x)$.
- ► Then,

$$\mathbb{E}(I(X_i \le x)) = \mathbb{E}(Y_i) = F(x)$$

$$Var(I(X_i \le x)) = Var(Y_i) = F(x)(1 - F(x))$$

for a given x.

STAT 403 GoodNote: Lecture

$$\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i \le x) = \frac{1}{n} \sum_{i=1}^n Y_i.$$

Then

$$\blacktriangleright \mathbb{E}\left(\hat{F}_n(x)\right) = \mathbb{E}(I(X_1 \le x)) = F(x)$$
 Bias= 0

$$\qquad \qquad \mathsf{Var}\left(\hat{F}_n(\mathsf{x})\right) \ = \ \tfrac{\sum_{i=1}^n \mathsf{Var}(\mathsf{Y}_i)}{n^2} = \tfrac{F(\mathsf{x})(1-F(\mathsf{x}))}{n}. \qquad \qquad \mathsf{variance \ converges \ to \ 0} \ \mathsf{when} \ n \to \infty.$$

▶ Hence, for a given x, $\hat{F}_n(x) \stackrel{P}{\to} F(x)$. i.e., $\hat{F}_n(x)$ is a consistent estimator of F(x).

Theorem

For a given x, $\sqrt{n}\left(\hat{F}_n(x) - F(x)\right) \stackrel{D}{\rightarrow} N(0, F(x)(1 - F(x)))$.

Example n=100 samples from uniform distribution over $\left[0,2\right]$

$$\blacktriangleright \mathbb{E}\left(\hat{F}_n(0.8)\right) = F(0.8) = P(x \le 0.8) = \int_0^{0.8} \frac{1}{2} dx = 0.4.$$

$$\mathsf{Var}\left(\hat{F}_n(0.8)\right) = \frac{F(0.8)(1 - F(0.8))}{100} = \frac{0.4 \times 0.6}{100} = 2.4 \times 10^{-3}.$$

Theorem (Uniform convergence (proof not elementary)) $\sup_{x} |\hat{F}_n(x) - F(x)| \stackrel{P}{\to} 0.$

STAT 403 GoodNote: Lecture

1

Inverse of a CDF and sampling

- Let X be a continuous random variable with CDF F(x).
- ▶ Let U be a uniform distribution over [0,1].
- We define a new random variable $W = F^{-1}(U)$

$$F_{W}(w) = P(W \le w)$$

$$= P(F^{-1}(U) \le w)$$

$$= P(U \le F(w))$$

$$= \int_{0}^{F(w)} 1 \, dx = F(w) - 0 = F(w).$$

Algorithm for sampling from F

Input F (the CDF of P we want to sample from)

1. Sample $u \sim \text{Uniform}[0,1]$

Output $x = F^{-1}(u)$

Example Sampling from $Exp(\lambda)$

$$F(x) = 1 - e^{-\lambda x}$$
 when $x \ge 0$.

$$F^{-1}(u) = \frac{-1}{\lambda} \log(1-u).$$

So the random variable $W = F^{-1}(U) = \frac{-1}{\lambda} \log(1 - U)$ will be an $\text{Exp}(\lambda)$ random variable.

13

Example Uniformization

- ▶ Let X be a r.v. with CDF F
- ▶ Let V = F(X) another r.v.
- ▶ The CDF of V

$$F_V(v) = P(V \le v) = P(F(X) \le v) = P(X \le F^{-1}(v)) = F(F^{-1}(v)) = v \text{ for any } v \in [0,1].$$

▶ Therefore, V is actually a uniform random variable over [0,1]!

- ▶ Given sample $X_1, \dots, X_n \sim \text{i.i.d.} P^{\text{unk}}$
- Question Is $P^{\mathrm{unk}} = \mathsf{some}\ P_0$? (e.g. normal)
 Question Given also $X_1', \cdots X_n' \sim P'^{\mathrm{unk}}$, is $P^{\mathrm{unk}} = P'^{\mathrm{unk}}$ true?

goodness of fit test two-sample test

- Let F_0 be the CDF of P_0
- 1. KS test (Kolmogorov-Smirnov test)¹,

$$T_{KS} = \sup |\hat{F}_n(x) - F_0(x)|.$$

2. Cramér-von Mises test²,

$$T_{CM} = \int \left(\hat{F}_n(x) - F_0(x)\right)^2 dF_0(x).$$

3. Anderson-Darling test³ and the test statistic is

$$T_{AD} = n \int \frac{\left(\hat{F}_n(x) - F_0(x)\right)^2}{F_0(x)(1 - F_0(x))} dF_0(x).$$

• Reject the null hypothesis $(H_0: X_1, \cdots, X_n \sim F_0)$ when the test statistic is greater than some threshold depending on the significance level α .

https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test

²https://en.wikipedia.org/wiki/Cram%C3%A9r%E2%80%93von_Mises_criterion

³https://en.wikipedia.org/wiki/Anderson%E2%80%93Darling_test