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CDF: Cumulative Distribution Function

Statistics and Motivation of Resampling Methods

EDF: Empirical Distribution Function

Properties of the EDF

Inverse of a CDF and sampling

Applications of EDF: testing if data come from known distribution

Reading: Lectures 0, 1, Lab 2
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The CDF
When x € § C (—o00, 00).
X
F(x) = P[X <x] = P(—o0,x] = / p(u)du
Here are some properties of F(x):
» (probability) 0 < F(x) < 1.
» (monotonicity) F(x) < F(y) for every x < y.

> (right-continuity) lim,_, + F(x) = F(y), where y* = lo'T—»oy +e.
> limy— —oo F(x) = F(—o0) = 0.

» limx— oo F(x) = F(o0) = 1.

> P(X =x)=F(x)— F(x7), where x~ = |lim x+e.

€<0,e—0
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Examples of CDF's

Example Uniform random variable over [0, 1]

X
F(x) = / 1du=x
0
when x € [0,1] and F(x) =0if x <0 and F(x) =1if x > 1.
Example Exponential random variable with parameter A

X
F(x) = / Ae Mdy=1—e M
0

when x > 0 and F(x) = 0 if x < 0. The following provides the CDF (left) and PDF (right) of
an exponential random variable with A = 0.5:

Exponential(0.5) Exponential(0.5)

p(x)
00 01 02 03 04 05

F(x)
02 04 06 08
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Statistics

Given a sample Xi,- -, X, (not necessarily an IID sample), a statistic S, = S(X1, -+, Xp) is a
function of the sample.

> Sample mean (average): S(Xy,---,Xn) =137, X
» Sample maximum: S(Xi, -+, Xp) = max{Xy, -+, Xn}.
» Sample range: S(X1,- -+, Xn) = max{Xy, -+, Xn} — min{Xy,--- , Xn}.

» Sample variance: S(Xi, -+, Xp) = nil > (X,- — )_<,,)27 X, = % S X

©
g

8
3
s

]
=

8

8
o
o
g
g
il
<
E
&




...and more statistics

> Number of observations above a threshold t: S(Xy,---,Xp) = >0 I(Xi > t).

» Rank of the first observation (X1): S(X1, -+, Xn) =14+ > 7, I(X; > X1).

» If X; is the largest number, then S(Xi, -, X,) = 1;
» if Xy is the smallest number, then S(Xy,--- , X,) = n.
> Sample second moment: S(X1, -, X,) =137 X2,

(The sample second moment is a consistent estimator of £(X?).)
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Statistics S, are determined by CDF

> a statistic S, = S(Xi,- -+, Xp), it is a random variable

» because S, is a function of the input data points Xi,--- , X,, the distribution of S, is

completely determined by the joint CDF of Xi,---, X,.
> Fs,(x) is determined by Fx, ... x,(x1, - ,n)
» and Fx, ... x,(x1, - ,xn) is determined by F(x) and n
» Therefore, F is sufficient to study the randomness of any statistic S,.

Example Sample average for Normal(, 02)

> Assume X1, -+, Xo ~ N(0,1), let S, =137 X;
» Then S, ~ N(0,1/n).

» if X1.n ~ N(1,4), then S, ~ N(1,4/n).

Problem In practice the CDF F is unknown. How to estimate F from sample X, ---



EDF: Empirical Distribution Function

Recall Given a value xp, F(xp) = P(X; < xg) forany i =1,--- ,n.
> Namely, F(xp) is the probability of the event {X; < xo}.
Idea Use Fp(xp) as the estimator of F(xp).

’:_n(XO) = =

number of X; < xo S X < x0) lzn:/(x- < %)
total number of observations n n‘— P70

> Hence F,(x) (as a function) is estimator for F(x) (as a function)
> We call £,(x), empirical distribution function (EDF).

Example EDF of 5 observations 1,1.2,1.5,2,2.5
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There are 5 jumps, each located at the position of an observation. Moreover, the height of
each jump is the same: %




EDF for larger n

Example EDF versus CDF for n = 100, 1000 random points from N(0, 1)
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CDF is an average
» Properties of Y; = I(X; < x)

1, i X <x
T lo, WX > x

» Hence, for some fixed x, Y; ~ Ber(F(x)).
Proof p = P(Y; =1) = P(X; < x) = F(x).
»> Then,
E(I(X; < x)) = E(Y;) = F(x)
Var(I(X; < x)) = Var(Y;) = F(x)(1 — F(x))

for a given x.




EDF is an average

Fa(x) = %Z?:l I(X; <x) = %27:1 Yi.

Then
> E (ﬁn(x)) = E(I(X1 < x)) = F(x)  Bias=0
> Var (F(x)) = T Vari) _ FU=F() variance converges to 0 when n — co.
n2 n

> Hence, for a given x, Fn(x) A F(x). i.e., Fa(x) is a consistent estimator of F(x).




EDF is asymptotically normal

Theorem
For a given x, \/n (I:_,,(X) — F(x)) 5 N(0, F(x)(1 — F(x))).
Example n = 100 samples from uniform distribution over [0, 2]

> E (ﬁn(o.s)) — F(0.8) = P(x < 0.8) = [>® Ldx = 0.4.

£ F(0.8)(1—F(0.8 . . —
> Var (F,,(O.8)) = FOB1-FO8) _ 04x0.6 — 34 x 10-3.

Theorem (Uniform convergence (proof not elementary))
supy |Fa(x) — F(x)| 5 0.



Inverse of a CDF and sampling

» Let X be a continuous random variable with CDF F(x).
» Let U be a uniform distribution over [0, 1].

> We define a new random variable W = F~1(U)

Fw(w)=P(W < w)
=P(F71(U) <w)
= P(U < F(w))

F(w)
:/ 1 dx = F(w) — 0 = F(w).
0

Algorithm for sampling from F

Input F (the CDF of P we want to sample from)
1. Sample u ~ Uniform[0, 1]
Dutput x = F~1(u)

Example Sampling from Exp(\)
F(x)=1—e"* when x > 0.

F~Y(u) = _71 log(1 — u).

So the random variable W = F~1(U) = _71 log(1 — U) will be an Exp()) random variable.



Uniformization

Example Uniformization

» Let X be a r.v. with CDF F
» Let V = F(X) another r.v.

> The CDF of V
Fy(v)=P(V <v)=P(F(X)<v)=P(X < FYv))=F(F}(v))=v forany v € [0,1].

» Therefore, V is actually a uniform random variable over [0, 1]!




Statistical tests

> Given sample X1, -, X ~ i.i.d.Purk
> Question Is P""K = some Py? (e.g. normal) goodness of fit test
> Question Given also X, --- X} ~ prunk g punk — prunk tp,e7 two-sample test




Does sample come from known distribution Py?

o Let Fy be the CDF of Py
1. KS test (Kolmogorov—Smirnov test)?!,

Tks = sup |Fa(x) — Fo(x)|.
2. Cramér—von Mises test?,

L 2
Tew = / (Fa(x) — Fo(x))” dFo(x).
3. Anderson-Darling test? and the test statistic is
. 2
ro=n | (Fa(x) = Fo()) o)
=n —_— ol X).
" Fo(x)(1 = Fo(x))

e Reject the null hypothesis (Hp : X1, -, Xa ~ Fg) when the test statistic is greater than
some threshold depending on the significance level .

'https://en.wikipedia.org/wiki/Kolmogorov4E2%80%93Smirnov_test
2https://en.wikipedia.org/wiki/CranC3%A9r)E2%80%93von_Mises_criterion
Shttps://en.wikipedia.org/wiki/Anderson%E2%80%93Darling_test



https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test
https://en.wikipedia.org/wiki/Cram%C3%A9r%E2%80%93von_Mises_criterion
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