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Notation /
Gibbs samplingl/ QC‘O:\‘Q& g&\am

The detailed balance

Metropolis-Hastings sampling ~ w—
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Notation
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V = {Xi,... Xs} set of random variables (nodes of a graphical model)
also known as Markov network

Xi:n € {£1} (for simplicity)

E = {(i,j), 1 <i<j < n} edges of graph

graph is not complete, some edges are missing

We write i ~ j for (i,j) € E or (j,i) € E

neigh; = neighbors of X;

Markov property ‘ X; L all other variables | neigh; ‘

x = (x1,...xn) € {£1}" = S an assignment to all variables in V
Distribution over S

P() = 2e ¥ with ¢(x) Zh xi+ D0 hixix @
(iJ)EE
(and hj > 0 for all (i,j) € E)

Z =3 cs e—?(x)
Usually, intractable to compute Z

Wanted samples x!,x?, ... from P
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Gibbs sampling algorithm

[y

Al
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. Initialize x? with some arbitrary values
. For t =1,2,... we will sample sequentially x!|x!~! as follows

2.1 Pick i € 1: n uniformly at random
2.2 Sample| X! | neigh; ~ Bernoulli(n;") 5 )Q “

2.3 Every T steps (where T is a LARGE number), output x* _ _~X‘ ) 5

Why does this work?

We are sampling from a_Markov chain on S (transition probability matrix P on next page)
If we take enough steps T, the distribution converges to the stationary distribution of this
chain, let's call it #. We take a sample from it xT

If we continue for another T steps, the chain has “forgotten” about xT; the new sample
x2T is independent of x”. Etc, samples x7:27-"NT are i.i.d. from P> ¥ Ay

To show that P°° = P the distribution we wanted to sample from.
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The detailed balance
Theorem Giobs

Let w be a distribution over S, and P a transition matrix of a Markov chain. Then if the
follTng detailed balance holds, m is the stationary distribution of P.

T(x)P(x,x") = 7(xX')P(x,x) 9)
dopnred - T
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The transition probability P of Gibbs sampling
> The transitions are between states x,x’ that only differ in one variable i. All the other

transition probabilities are 0.
> If xt and x’ differ only in variable i, then

+ . ! __
P(Xt+1 _ XI‘X) _ { 7T,;(X7,) i’ =41 )
1
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Gibbs sampling idea

P(x) = %e7¢(x) with ¢(x th,Jr Z hijxix;

(i.j)eE

» We cannot sample directly from P
> But we can sample each Xj ~ Px,|x_. = Px;|neigh; foranyi=1:n
» Why? For any x_; let

= PrlX;= +\x,3 T = Pr{X; = —|x_;. 2)
+ _ P(X, = -|—1,X,,') _ P(X, = +1,X,,’)
o= - 3)
' P(x—j) P(Xi = +1,x_;) + P(X; = —1,x_})
P(X; = —1,x_;
T = ( *i) hence (4)
J P(X; = 4+1,x_;) + P(X; = —1,x_;)
i _ P(X; = +1,x_;) _ e~ d(Xi=+1x_j) e X=X )+ (Xi=—1x_;) (5)
m PXi=—Lxy) e d(Ximo1x)
= e2hi—2% . hy ©6)
—2h; 2%, ; by e hi= i hi
1 = T4+ 77 hence i = = (7
i T T 14 e 2hi—23ihj et ijmihy | g=hi=2 i By )

> X;|neigh; ~ Bernoulli(x;")
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Metropolis-Hastings (MH) idea

v

MH is a rejection sampling algorithm

We sample x’ | xt~1 ~'S'a proposal distribution

Then we accept x* = x” with some acceptance probability a(x, x") that ensures the detail
balance

(if we don't accept, xt = xt~1)

vy

v

» With MH, we have more flexibility in exploring the sample space around x!~! than with
Gibbs




Metropolis-Hastings algorithm

In Proposal distributior, S(x,x’) o transition probability x — x’
no need to be normalized, no need to be symmetric
. Initialize x? with some arbitrary values
2. For t =1,2,... we will sample sequentially x|x
1 Sample x’ ~ S(xtil,x')
2.2 Compute acceptance probability

[y

t=1 a5 follows

a(x'"1,x') = min (1 M)

’ t—1 t—1
P(xt—1)S(x*—1, ')

’
¢ _ X w.p. a
23X = { x7! wp.1—a

2.4 Every T steps (where T is a LARGE number), output x*

P= M“Q&
Shachon

(10)



Does it satisfy the detailed balance? X > %/

> I?:x’ rejected »/@ )Cb‘:){ﬁ_\\/

> If x’ accepted
P(x’,x)

P(x)P(x,x")

—_—

dededed
balane f
.Qd“f hand

S(x',x)a(x', x)& 0CL2y

P_(X)S(x, x") min (17 (S (6

P(x")S(x, x)) )

‘ min ( P(x")S(X, x),Hf(‘x)S(x, x) )
P(x")P(x', %) by symmetry

(11)
(12)

(13)
(14)



