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Notation

Gibbs sampling

The detailed balance

Metropolis-Hastings sampling
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Notation

I V = {X1, . . .Xn} set of random variables (nodes of a graphical model)
also known as Markov network

I X1:n 2 {±1} (for simplicity)
I E = {(i , j), 1  i < j  n} edges of graph
I graph is not complete, some edges are missing
I We write i ⇠ j for (i , j) 2 E or (j , i) 2 E
I neighi = neighbors of Xi

I Markov property Xi ? all other variables | neighi

I x = (x1, . . . xn) 2 {±1}n = S an assignment to all variables in V
I Distribution over S

P(x) =
1

Z
e��(x) with �(x) =

nX

i=1

hi xi +
X

(i,j)2E

hij xi xj (1)

(and hij > 0 for all (i , j) 2 E)
I Z =

P
x2S e��(x)

I Usually, intractable to compute Z

Wanted samples x1, x2, . . . from P
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Gibbs sampling algorithm

1. Initialize x0 with some arbitrary values
2. For t = 1, 2, . . . we will sample sequentially xt |xt�1 as follows

2.1 Pick i 2 1 : n uniformly at random
2.2 Sample Xt

i | neighi ⇠ Bernoulli(⇡+
i )

2.3 Every T steps (where T is a LARGE number), output xt

Q Why does this work?
A1 We are sampling from a Markov chain on S (transition probability matrix P on next page)
A2 If we take enough steps T , the distribution converges to the stationary distribution of this

chain, let’s call it P. We take a sample from it xT

A3 If we continue for another T steps, the chain has “forgotten” about xT ; the new sample
x2T is independent of xT . Etc, samples xT ,2T ,...NT are i.i.d. from P1

TODO To show that P1 = P the distribution we wanted to sample from.
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The detailed balance

Theorem

Let ⇡ be a distribution over S , and P a transition matrix of a Markov chain. Then if the
following detailed balance holds, ⇡ is the stationary distribution of P.

⇡(x)P(x, x0) = ⇡(x0)P(x0, x) (9)
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The transition probability P of Gibbs sampling

I The transitions are between states x, x0 that only di↵er in one variable i . All the other
transition probabilities are 0.

I If xt and x0 di↵er only in variable i , then

P(xt+1 = x0|x) =

⇢
⇡+
i (x�i ) x0i = +1

⇡�
i (x�i ) x0i = �1

(8)
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Gibbs sampling idea

P(x) =
1

Z
e��(x) with �(x) =

nX

i=1

hi xi +
X

(i,j)2E

hij xi xj

I We cannot sample directly from P
I But we can sample each Xi ⇠ PXi |X�i

= PXi |neighi
for any i = 1 : n

I Why? For any x�i let

⇡+
i = Pr [Xi = +|x�i , ⇡�

i = Pr [Xi = �|x�i . (2)

⇡+
i =

P(Xi = +1, x�i )

P(x�i )
=

P(Xi = +1, x�i )

P(Xi = +1, x�i ) + P(Xi = �1, x�i )
(3)

⇡�
i =

P(Xi = �1, x�i )

P(Xi = +1, x�i ) + P(Xi = �1, x�i )
hence (4)

⇡+
i

⇡�
i

=
P(Xi = +1, x�i )

P(Xi = �1, x�i )
=

e��(Xi=+1,x�i )

e��(Xi=�1,x�i )
= e��(Xi=+1,x�i )+�(Xi=�1,x�i ) (5)

= e�2hi�2
P

j⇠i hij (6)

1 = ⇡+
i + ⇡�

i hence ⇡+
i =

e�2hi�2
P

j⇠i hij

1 + e�2hi�2
P

j⇠i hij
=

e�hi�
P

j⇠i hij

ehi+
P

j⇠i hij + e�hi�
P

j⇠i hij
(7)

I Xi | neighi ⇠ Bernoulli(⇡+
i )



S
T
A
T

4
0
3
G
o
o
d
N
o
te
:
L
ec

tu
re

V
II
I

8



S
T
A
T

4
0
3
G
o
o
d
N
o
te
:
L
ec

tu
re

V
II
I

10

Metropolis-Hastings (MH) idea

I MH is a rejection sampling algorithm
I We sample x0 | xt�1 ⇠ S a proposal distribution
I Then we accept xt = x0 with some acceptance probability a(x, x0) that ensures the detail

balance
I (if we don’t accept, xt = xt�1)

I With MH, we have more flexibility in exploring the sample space around xt�1 than with
Gibbs
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Metropolis-Hastings algorithm

In Proposal distribution S(x, x0) / transition probability x ! x0

no need to be normalized, no need to be symmetric
1. Initialize x0 with some arbitrary values
2. For t = 1, 2, . . . we will sample sequentially xt |xt�1 as follows

2.1 Sample x0 ⇠ S(xt�1, x0)
2.2 Compute acceptance probability

a(xt�1, x0) = min

 
1,

P(x0)S(x0, xt�1)

P(xt�1)S(xt�1, x0)

!
. (10)

2.3 xt =

⇢
x0 w.p. a
xt�1 w.p. 1 � a

2.4 Every T steps (where T is a LARGE number), output xt
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Does it satisfy the detailed balance?

I If x0 rejected X
I If x0 accepted

P(x0, x) = S(x0, x)a(x0, x) (11)

P(x)P(x, x0) = P(x)S(x, x0)min

✓
1,

P(x0)S(x0, x)

P(x)S(x, x0)

◆
(12)

= min
�
P(x0)S(x0, x),¶(x)S(x, x0)

�
(13)

= P(x0)P(x0, x) by symmetry (14)

Recap: What we need to be able to do MH sampling
I To calculate P(x)/P(x0) but not P itself (okay not to have Z)
I To calculate S(x, x0)/S(x0, x)
I To sample from S(x, x0)


