STAT 403

5/21/25

Lecture 20

Gibbe - poof M.H.

Lecture Notes VIII - Markov Chain Monte Carlo

Marina Meila mmp@stat.washington.edu

> Department of Statistics University of Washington

> > April 2025

Metropolis-Hastings sampling

Notation

- ▶ $V = \{X_1, ..., X_n\}$ set of random variables (nodes of a graphical model) also known as Markov network
- $X_{1:n} \in \{\pm 1\}$ (for simplicity)
- $E = \{(i,j), 1 \le i < j \le n\}$ edges of graph
- graph is not complete, some edges are missing
- We write $i \sim j$ for $(i, j) \in E$ or $(j, i) \in E$
- neigh_i = neighbors of X_i

• Markov property $X_i \perp$ all other variables | neigh_i

▶ $x = (x_1, ..., x_n) \in \{\pm 1\}^n = S$ an assignment to all variables in V ▶ Distribution over S

$$P(x) = \frac{1}{Z} e^{-\phi(x)} \quad \text{with } \phi(x) = \sum_{i=1}^{n} h_i x_i + \sum_{(i,j) \in E} h_{ij} x_i x_j$$
(1)

(and $h_{ij} > 0$ for all $(i, j) \in E$) $Z = \sum_{x \in S} e^{-\phi(x)}$ Usually, intractable to compute Z

Wanted samples x^1, x^2, \ldots from *P*

Gibbs sampling algorithm

- 1. Initialize x^0 with some arbitrary values
- 2. For t = 1, 2, ... we will sample sequentially $x^t | x^{t-1}$ as follows
 - 2.1 Pick $i \in 1$: *n* uniformly at random
 - 2.2 Sample $X_i^t | \operatorname{neigh}_i \sim \operatorname{Bernoulli}(\pi_i^+)$
 - 2.3 Every T steps (where T is a LARGE number), output x^{t}
- Q Why does this work?

 $\pi = P$

A1 We are sampling from a Markov chain on S (transition probability matrix P on next page)

XtH L Xt Xt

-> p6 Setuiled Balance

-> p7 Transition Prob

 $\rightarrow P^{g} \frac{\pi^{+}}{\pi^{-}}$

for all that

- A2 If we take enough steps T, the distribution converges to the stationary distribution of this chain, let's call it \mathscr{P} . We take a sample from it x^T $\overrightarrow{\mu}^{l}$
- A3 If we continue for another T steps, the chain has "forgotten" about x^T ; the new sample x^{2T} is independent of x^T . Etc, samples $x^{T,2T,...NT}$ are i.i.d. from P^{∞}

 π on "S = 1 ± 12^{n} is stationary distribution

of Gibbs sampling

ODO To show that $P^{\infty} = P$ the distribution we wanted to sample from.

The detailed balance

Gibbs Theorem Let π be a distribution over S, and P a transition matrix of a Markov chain. Then if the following detailed balance holds, π is the stationary distribution of P. $\pi(\mathsf{x})\mathsf{P}(\mathsf{x},\mathsf{x}') = \pi(\mathsf{x}')\mathsf{P}(\mathsf{x}',\mathsf{x})$ (9) desired distribution TI (L) 'Yx'IX XX Is it the for 1 X-i ≠ X_i for any i differ in ≥ 2 variables Gibbe? $\pi(x) = \frac{1}{Z} e^{-\varphi(x)}$ $\pi(x) \cdot \mathbf{O} = \pi(x') \cdot \mathbf{O} \checkmark$ $\varphi(x)$ 2 X-i=X'; for some u

The transition probability P of Gibbs sampling

- ▶ The transitions are between states x, x' that only differ in one variable *i*. All the other transition probabilities are 0.
- lf x^t and x' differ only in variable *i*, then

 $\chi^{t}_{-1} = \chi^{l}_{-1}$

$$\mathsf{P}(\mathsf{x}^{t+1} = \mathsf{x}' | \mathsf{x}) = \begin{cases} \pi_i^+(\mathsf{x}_{-i}) & \mathsf{x}'_i = +1 \\ \pi_i^-(\mathsf{x}_{-i}) & \mathsf{x}'_i = -1 \end{cases}$$
(8)

Gibbs sampling idea

 $\frac{\pi_i^+}{\pi_i^+}$

 π_i^-

$$P(\mathbf{x}) = \frac{1}{Z} e^{-\phi(\mathbf{x})}$$
 with $\phi(\mathbf{x}) = \sum_{i=1}^{n} h_i x_i + \sum_{(i,j) \in E} h_{ij} x_i x_j$

▶ We cannot sample directly from P
▶ But we can sample each X_i ~ P_{Xi|X_i} = P_{Xi|neighi} for any i = 1 : n
▶ Why? For any x_{-i} let

$$= \Pr[X_i = + |x_{-i}] \quad \pi_i^- = \Pr[X_i = - |x_{-i}]$$
(2)

$$= \frac{P(X_i = +1, x_{-i})}{P(x_{-i})} = \frac{P(X_i = +1, x_{-i})}{P(X_i = +1, x_{-i}) + P(X_i = -1, x_{-i})}$$
(3)

$$P(X_{i} = -1, X_{-i}) = P(X_{i} = -1, X_{-i}) + P(X_{i} = -1, X_{-i})$$

$$= \frac{P(X_i = +1, x_{-i}) + P(X_i = -1, x_{-i})}{P(X_i = +1, x_{-i}) + P(X_i = -1, x_{-i})}$$
 hence (4)

$$\frac{\pi_i^+}{\pi_i^-} = \frac{P(X_i = +1, \mathbf{x}_{-i})}{P(X_i = -1, \mathbf{x}_{-i})} = \frac{e^{-\phi(X_i = +1, \mathbf{x}_{-i})}}{e^{-\phi(X_i = -1, \mathbf{x}_{-i})}} = e^{-\phi(X_i = +1, \mathbf{x}_{-i}) + \phi(X_i = -1, \mathbf{x}_{-i})}$$
(5)

$$= e^{-2h_i - 2\sum_{j \sim i} h_{ij}} \xrightarrow{\qquad \qquad } Detailed Balance Holds!$$
(6)

$$1 = \pi_i^+ + \pi_i^- \quad \text{hence } \pi_i^+ = \frac{e^{-2h_i - 2\sum_{j \sim i} h_{ij}}}{1 + e^{-2h_i - 2\sum_{j \sim i} h_{ij}}} = \frac{e^{-h_i - \sum_{j \sim i} h_{ij}}}{e^{h_i + \sum_{j \sim i} h_{ij}} + e^{-h_i - \sum_{j \sim i} h_{ij}}}$$
(7)

- Jug

$$\blacktriangleright X_i | \frac{\text{neigh}_i}{\text{neigh}_i} \sim \text{Bernoulli}(\pi_i^+) \quad \longleftarrow$$

Metropolis-Hastings (MH) idea

- MH is a rejection sampling algorithm
- We sample x' | x^{t-1} ~ S a proposal distribution
- Then we accept x^t = x' with some acceptance probability a(x, x') that ensures the detail balance
- (if we don't accept, $x^t = x^{t-1}$)
- \blacktriangleright With MH, we have more flexibility in exploring the sample space around \mathbf{x}^{t-1} than with Gibbs

Metropolis-Hastings algorithm

- In Proposal distribution $S(x, x') \propto$ transition probability $x \rightarrow x'$ no need to be normalized, no need to be symmetric
- 1. Initialize x^0 with some arbitrary values
- 2. For $t = \overline{1, 2, \ldots}$ we will sample sequentially $x^t | x^{t-1}$ as follows
 - 2.1 Sample $\underline{x'} \sim S(\underline{x^{t-1}}, \underline{x'})$ 2.2 Compute acceptance probability

$$a(x^{t-1}, x') = \min\left(1, \frac{P(x')S(x', x^{t-1})}{P(x^{t-1})S(x^{t-1}, x')}\right).$$

2.3
$$\mathbf{x}^{t} = \begin{cases} \mathbf{x}' & \text{w.p. a} \\ \mathbf{x}^{t-1} & \text{w.p. 1-a} \end{cases}$$
 (yet a stay)
2.4 Every T steps (where T is a LARGE number), output \mathbf{x}^{t}

P= desired Stationary distribution s = proposed transition