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Notation

Gibbs sampling

The detailed balance

Metropolis-Hastings sampling
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1 Paradigms for clustering

2 Methods based on non-parametric density estimation

3 Model-based: Dirichlet process mixture models
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Paradigms for clustering

What is clustering? Problem and Notation

Informal definition Clustering = Finding groups in data
Notation D = {x1, x2, . . . xn} a data set

n = number of data points
K = number of clusters (K << n)
� = {C1,C2, . . . ,CK} a partition of D into disjoint subsets

k(i) = the label of point i
L(�) = cost (loss) of � (to be minimized)

Second informal definition Clustering = given n data points, separate them into K clusters
Hard vs. soft clusterings

Hard clustering �: an item belongs to only 1 cluster
Soft clustering � = {�ki}i=1:n

k=1:K
�ki = the degree of membership of point i to cluster k

X

k

�ki = 1 for all i

(usually associated with a probabilistic model)
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Paradigms for clustering

Clustering Paradigms

Depend on type of data, type of clustering, type of cost (probabilistic or not), and constraints
(about K , shape of clusters)

Data = vectors {xi} in Rd

Parametric Cost based [hard]
(K known) Model based [soft]

Non-parametric Dirichlet process mixtures [soft]
(K determined Information bottleneck [soft]
by algorithm) Modes of distribution [hard]

Gaussian blurring mean shift? [hard] Level sets of distribution [hard]
Data = similarities between pairs of points [Sij ]i,j=1:n, Sij = Sji � 0 Similarity based
clustering
Graph partitioning spectral clustering [hard, K fixed, cost based]

typical cuts [hard non-parametric, cost based]
A�nity propagation [hard/soft non-parametric]
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Model-based: Dirichlet process mixture models

The Dirichlet distribution

Z 2 {1 : r} a discrete random variable, let ✓j = Pz (j), j = 1, . . . r .
Multinomial distribution Probability of i.i.d. sample of size N from Pz

P(z1,...n) =
rY

j=1

✓
nj
j

where nj = #the value j is observed, j = 1, . . . r
n1:r are the su�cient statistics of the data.
The Dirichlet distribution is defined over domain of ✓1,... r , with real parameters N0

1,... r > 0
by

D(✓1,... r ; n
0
1,... r ) =

�(
P

j n
0
j )Q

j �(n
0
j )

Y

j

✓
n0j �1

j

where �(p) =
R1
0 tp�1e�tdt.
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Model-based: Dirichlet process mixture models

Dirichlet process mixtures

Model-based
generalization of mixture models to

infinite K
Bayesian framework

denote ✓k = parameters for component fk
assume fk (x) ⌘ f (x , ✓k ) 2 {f (x , ✓)}
assume prior distributions for parameters g0(✓)
prior with hyperparameter ↵ > 0 on the number of clusters
very flexible model
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Model-based: Dirichlet process mixture models

A sampling model for the data

Example: Gaussian mixtures, d = 1, �k = � fixed
✓ = µ
prior for µ is Normal(0,�2

0 Id )
Sampling process

for i = 1 : n sample xi , k(i) as follows
denote {1 : K} the clusters after step i � 1
define nk the size of cluster k after step i � 1

1

k(i) =

(
k w.p

nk
i�1+↵ , k = 1 : K

K + 1 w.p ↵
i�1+↵

(1)

2 if k(i) = K + 1 sample µi ⌘ µK+1 from Normal(0,�2
0)

3 sample xi from Normal(µk(i),�
2)

can be shown that the distribution of x1:n is interchangeable (does not depend on data
permutation)
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Model-based: Dirichlet process mixture models

The hyperparameters

�0 controls spread of centers
should be large

↵ controls number of cluster centers
↵ large ) many clusters

cluster sizes non-uniform (larger clusters attract more new points)
many single point clusters possible

General Dirichlet mixture model

cluster densities {f (x , ✓)}
parameters ✓ sampled from prior g0(✓,�)
cluster membership k(i) sampled as in (1)
xi sampled from f (x , ✓k(i))
Model Hyperparameters ↵,�
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Model-based: Dirichlet process mixture models

Clustering with Dirichlet mixtures

The clustering problem

↵, g0,�, {f } given
D given
wanted ✓1:n (not all distinct!)
note:

✓1:n determines a hard clustering �
the posterior of ✓1:n given the data determines a soft clustering via P(xi | k) /

R
f (xi |✓k )gk (✓k )d✓k

Estimating ✓1:n cannot be solved in closed form
Usually solved by MCMC (Markov Chain Monte Carlo) sampling
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Model-based: Dirichlet process mixture models

Clustering with Dirichlet mixtures via MCMC

MCMC estimation for Dirichlet mixture
Input ↵, g0,�, {f }, D
State cluster assignments k(i), i = 1 : n,

parameters ✓k for all distinct k
Iterate 1 for i = 1 : n (reassign data to clusters)

1 remove i from its cluster (hence
P

k nk = n � 1)
2 resample k(i) by

k(i) =

(
existing k w.p / nk

n�1+↵ f (xi , ✓k )

new cluster w.p ↵
n�1+↵

R
f (xi , ✓)g0(✓)d✓

(2)

3 if k(i) is new label, sample a new ✓k(i) / g0f (xi , ✓)

2 for k 2 {k(1 : n)} (resample cluster parameters)
1 sample ✓k from posterior gk (✓) / g0(✓, �)

Q
i2Ck

f (xi , ✓)

gk can be computed in closed form if g0 is conjugate prior

Output a state with high posterior
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