STAT 403

5/30/25

# dicture 23

MCMC some Applications

· HW7 OPTIONAL

- Project !!!
- BE PRESENT06/6 LECTURE (mandatory)

### Lecture Notes VIII - Markov Chain Monte Carlo

Marina Meila mmp@stat.washington.edu

> Department of Statistics University of Washington

> > April 2025

Applications \* Radable Bayesian estimation jugate Notation N(<u>u</u>, 02) prior Parameler  $\theta \in \Theta$ •  $f(\theta) = prior distribution$ Gibbs sampling 🗸 closed form ~N(0,52) · Aata D The detailed balance · Model class To large  $L(\theta) = R[\theta/\theta]$ tikelihood aranted  $f(\theta | D) = postenior f \theta$ given DMetropolis-Hastings sampling Bayes' formula  $f(\theta|D) = \frac{f(\theta) L(\theta)}{\Phi}$ ∫ f (+) L(+) d+ + evidena interchile

Bayesian Inference with hidden Variables -> ?

### 2. Lecture II – Clustering – Part II: Non-parametric clustering

Marina Meilă mmp@stat.washington.edu

> Department of Statistics University of Washington

CSE 547/STAT 548 Winter 2022

 < □ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ >



2 Methods based on non-parametric density estimation





Marina Meila (UW)

### What is clustering? Problem and Notation

- Informal definition Clustering = Finding groups in data
- Notation  $\mathcal{D} = \{x_1, x_2, \dots x_n\}$  a data set
  - *n* = number of **data points**
  - K = number of clusters ( $K \ll n$ )
  - $\Delta = \{C_1, C_2, \dots, C_K\} \text{ a partition of } \mathcal{D} \text{ into disjoint subsets}$
  - k(i) = the label of point *i*
  - $\mathcal{L}(\Delta) = \text{cost (loss) of } \Delta \text{ (to be minimized)}$
- Second informal definition Clustering = given *n* data points, separate them into *K* clusters
- Hard vs. soft clusterings
  - $\bullet$  Hard clustering  $\Delta:$  an item belongs to only 1 cluster
  - Soft clustering  $\gamma = \{\gamma_{ki}\}_{k=1:K}^{i=1:n}$

 $\gamma_{ki}$  = the degree of membership of point *i* to cluster *k* 

$$\sum_k \gamma_{ki} = 1 \quad \text{for all } i$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

CSE 547/STAT 548 Winter 2022

3/

(usually associated with a probabilistic model)

### **Clustering Paradigms**

Depend on type of data, type of clustering, type of cost (probabilistic or not), and constraints (about K, shape of clusters)

| <ul> <li>Data = vectors {x<sub>i</sub></li> </ul>                                                             | $in \mathbb{R}^d$                                                      |
|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Parametric                                                                                                    | Cost based [hard]                                                      |
| (K known)                                                                                                     | Model based [soft]                                                     |
|                                                                                                               |                                                                        |
| Non-parametric                                                                                                | Dirichlet process mixtures [soft]                                      |
| (K determined                                                                                                 | Information bottleneck [soft]                                          |
| by algorithm)                                                                                                 | Modes of distribution [hard]                                           |
| ,                                                                                                             | Gaussian blurring mean shift? [hard] Level sets of distribution [hard] |
| • Data = similarities between pairs of points $[S_{ij}]_{i,j=1:n}$ , $S_{ij} = S_{ij} \ge 0$ Similarity based |                                                                        |
| clustering                                                                                                    |                                                                        |
| Graph partitioning                                                                                            | g spectral clustering [hard, K fixed, cost based]                      |
|                                                                                                               |                                                                        |

Affinity propagation [har

typical cuts [hard non-parametric, cost based] [hard/soft non-parametric]

ヘロト ヘロト ヘヨト ヘヨト

CSE 547/STAT 548 Winter 2022

3

4/

### The Dirichlet distribution

- $Z \in \{1 : r\}$  a discrete random variable, let  $\theta_j = P_z(j), j = 1, \dots r$ .
- Multinomial distribution Probability of i.i.d. sample of size N from Pz

$$P(z^{1,\ldots n}) = \prod_{j=1}^{r} \theta_{j}^{n_{j}}$$

where  $n_j = \#$  the value j is observed,  $j = 1, \ldots r$ 

- *n*<sub>1:r</sub> are the **sufficient statistics** of the data.
- The Dirichlet distribution is defined over domain of  $\theta_{1,...,r}$ , with real parameters  $N'_{1,...,r} > 0$  by

$$D(\theta_{1,\ldots,r};n'_{1,\ldots,r}) = \frac{\Gamma(\sum_{j}n'_{j})}{\prod_{j}\Gamma(n'_{j})}\prod_{j}\theta_{j}^{n'_{j}-1}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

22

where  $\Gamma(p) = \int_0^\infty t^{p-1} e^{-t} dt$ .

## Dirichlet process mixtures $\in$ Non-parametric clutering $\in$ Clustering

Model-based · "infinite" K = K is a random variable that can grow with n generalization of mixture models to NOT meanineful for the Bayesian framework model undustandigo • denote  $\theta_k$  = parameters for component  $f_k$ • assume  $f_k(x) \equiv f(x, \theta_k) \in \{f(x, \theta)\}$ • assume prior distributions for parameters  $g_0(\theta)$ • prior with hyperparameter  $\alpha > 0$  on the number of clusters very flexible model  $x_i \in C_i$  cluster kk(i) = 1  $k(i) \in 1:k$ point xi e Ci Marina Meila (UW) CSE 547/STAT 548 Winter 2022 23

### A sampling model for the data

• Example: Gaussian mixtures, d = 1,  $\sigma_k = \sigma$  fixed •  $\theta = \mu$ • prior for  $\mu$  is Normal $(0, \sigma_0^2 I_d)$  Sampling process = Model we are fitting
 for i = 1 : n sample x<sub>i</sub>, k(i) as follows denote  $\{1: K\}$  the clusters after step i-1define  $n_k$  the size of cluster k after step i-1 $k(i) = \begin{cases} k & \text{w.p} \frac{n_k}{i-1+\alpha}, \ k=1:K\\ K+1 & \text{w.p} \frac{\alpha}{i-1+\alpha} \end{cases}$ (1)2) if k(i) = K + 1 sample  $\mu_i \equiv \mu_{K+1}$  from Normal $(0, \sigma_0^2)$ **(a)** sample  $x_i$  from  $Normal(\mu_{k(i)}, \sigma^2)$ • can be shown that the distribution of  $x_{1:n}$  is interchangeable (does not depend on data Posterior: permutation) 0.6 0.35 0.5 0.4 0.3 0.15 0.2 0.1 0.05 Red: mean density, Blue: median density, Grev: 5-95 quantile, Red: mean density. Blue: median density. Grey: 5-95 quantile Others: draws. Black: data. Others: draws.

### The hyperparameters

- $\sigma_0$  controls spread of centers
  - should be large
- $\alpha$  controls number of cluster centers
  - $\alpha$  large  $\Rightarrow$  many clusters
- cluster sizes non-uniform (larger clusters attract more new points)

イロン イ団 とく ヨン イヨン

CSE 547/STAT 548 Winter 2022

э

25

• many single point clusters possible

### General Dirichlet mixture model

- cluster densities  $\{f(x, \theta)\}$
- parameters  $\theta$  sampled from prior  $g_0(\theta,\beta)$
- cluster membership k(i) sampled as in (1)
- $x_i$  sampled from  $f(x, \theta_{k(i)})$
- Model Hyperparameters  $\alpha, \beta$

### Clustering with Dirichlet mixtures

#### The clustering problem

- $\alpha, g_0, \beta, \{f\}$  given
- $\bullet \ \mathcal{D} \ given$
- wanted  $\theta_{1:n}$  (not all distinct!)
- o note:
  - $\theta_{1:n}$  determines a hard clustering  $\Delta$
  - the posterior of  $\theta_{1:n}$  given the data determines a soft clustering via  $P(x_i | k) \propto \int f(x_i | \theta_k) g_k(\theta_k) d\theta_k$

イロン イ団 とく ヨン イヨン

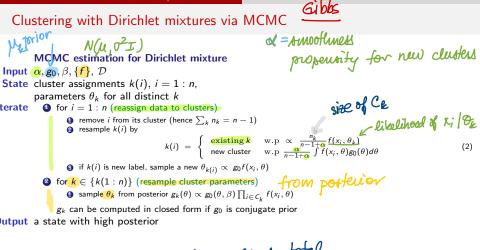
CSE 547/STAT 548 Winter 2022

э

26

Estimating  $\theta_{1:n}$  cannot be solved in closed form Usually solved by MCMC (Markov Chain Monte Carlo) sampling





n points 
$$x_i$$
 out  $\Rightarrow$   $n-1$  total  
No new clusters:  
 $n_{k} = [C_k]$  after  $x_i$  out  
 $n-1$   
Marine Mella (UW)  
N=1 total  
 $n_{k} = [C_k]$  after  $x_i$  out  
 $\sum n_{k} = n-1$   
 $\sum x_{k} = n-1$   
 $\sum x_{k} = n-1$ 

Pantera tigris (P.t.) 3. Sampling (Bayesian estimation) for Phylogenetic Trees ]P.t. altaica **3** 92/94/78 P.t. virgata 1 COR3 3/1 87/87/70 COR1 P.t. corbetti 1 COR2 93/95/58 COR4 2/1 67/64/74 1 JAX1 94/95/93 JAX2 P.t. jacksoni JAX3 4/1 \_\_\_\_\_\_ JAX5 96/92/92 2/1 57/54/N JAX4 TIG5 <sup>1/1</sup>TIG4 TIG2 P.t. tigris 4/1 — TIG1 76/77/NS 6/1 TIG6 77/73/73 TIG3 SUM1 SUM4 SUM3 SUM2 68/71/54 1/1 SUM5 P.t. sumatrae - SUM8 SUM6 P.t. amoyensis - AMO1 471 Neofelis nebulosa Tiger family Phylogeny