FAT 403 GoodNote: Lecture II

Lecture Notes II - Monte Carlo simulation

Marina Meila mmp@stat.washington.edu

> Department of Statistics University of Washington

> > April 2025

MC: Calculating the expectations of a function by sampling

MC for computing an integral

MC for estimating a probability

MC for estimating a distribution

MC: Calculating the expectation of a function by sampling

Given a function f(x) and a distribution F known (and its density p(x) = F'(x)).

Let $\theta = \mathbb{E}[f(X)]$ be the parameter of interest

$$\theta = \mathbb{E}[f(X)] \equiv \mu_f \equiv \int_{-\infty}^{\infty} f(x)p(x)dx.$$

Idea Estimate θ by sample average $\hat{\theta}_N$

- 1. Sample $X_{1:N} \sim F$ 2. $\hat{\theta}_N = \frac{1}{N} \sum_{i=1}^{N} f(X_i)$

Note Here we don't collect data, we sample from a known F

Example
$$f(x) = x$$
, $F = \exp(\lambda = 0.9)$ $\theta = \mathbb{E}[X] = \mu$, $\hat{\theta} = \hat{\mu} = \bar{X}$ sample mean

Mean and variance of $\hat{\theta}_N$

$$\blacktriangleright \mathbb{E}[\hat{\theta}_N] = \mathbb{E}\left[\frac{1}{N}\sum_{i=1}^N f(X_i)\right] = \frac{1}{N}\sum_{i=1}^N \mathbb{E}\left[f(X_i)\right] = \mu_f \text{ unbiased}$$

$$\blacktriangleright \operatorname{Var} \hat{\theta}_N = \frac{1}{N} \operatorname{Var} f(X_1) = \frac{1}{N} \left(\int f^2(x) p(x) dx - \mu_f^2 \right)$$

(*)

- ▶ Wanted $\mathcal{I} = \int_a^b f(x) dx$
- ► Idea

$$\mathcal{I} = (b-a) \int_{a}^{b} f(x) \frac{1}{b-a} dx \tag{1}$$

$$= Z \int_{a}^{b} f(x) \operatorname{uniform}(x) dx = Z \mu_{f}$$
 (2)

- Now compute μ_f by sampling Algorithm
 - 1. Sample N samples $X_{1:N} \sim \text{uniform}[a, b]$
 - 2. $\hat{I} = \frac{1}{N} \sum_{i=1}^{N} f(X_i) \times (b-a)$

MC for estimating a probability

- ▶ Wanted θ = Probability of event $E \subset \mathbb{R}$ under a known distribution F
- ► Idea

Algorithm

- 1. Sample N samples $X_{1:N} \sim F$
- 2. $\hat{\theta} = \frac{\sum_{i=1}^{N} I(X_i \in E)}{N}$

MC for estimating a distribution

- ▶ Wanted θ = CDF of unknown distribution F
- ▶ Idea

Algorithm

- 1. Get data $X_{1:n} \sim F$ 2. $\hat{F}(x) = \frac{\sum_{i=1}^{n} I(X_i \leq x)}{n}$