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Importance sampling

Rejection sampling
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Estimating E,[f(X)] revisited
Given a function f(x) and a distribution F known (and its density p(x) = F’(x)).

Want .
BFO0) = i = [ fG0p()a

(Note: the interval can be any interval [a, b])

Idea 1 Estimate us by sample average iy
» Algorithm 1

1. Sample Xi.n o P
2. fn = § i F(X)

Idea 2 Let g(x) be any other density, with ‘ g(x) > 0 whenever p(x) > 0 |.

Then,
> f(x)p(x .
e = [0 T0PL G = mlF0))
—oo  q(x)
——
= f(x)
> Algorithm 2
] 1. Sample Xi.y ~ ¢q
H A F(X)p(X;
E 2 fng = X (q(>)?,-<) !
o

» When could Algorithm 2 be better than Algorithm 17
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The variance of fiy 4
Var i ¢ = <f 2(x)q(x)dx — uf)
> Only M = [ f2(x)q(x)dx depends on ¢

_ [ fPP(x)
M_/ q2(x) alx)ax

» Want g that makes M as small as possible

-/

2(0P(x)

a(x)



The variance of fiy 4
Var i ¢ = <f 2(x)q(x)dx — u,,)
> Only M = [ f2(x)q(x)dx depends on ¢

L [P0RR [ PREN,
M_/ a*(x) ()d_/ q ¢

» Want g that makes M as small as possible
> (4" () = F(x)p(x)
> Let's see why. First we need to normalize g
f
a0 = LB w2 = [ feoptaae = e (1)
» Now calculate M for g*
f2 2
meo= [EOP o [ foptdx = 2 @)
f(x)p(x)
f —_—
f

» Finally, the variance Var fir 4 = %(M* - ,u%) =

Theoretically, N =1 sample is enough!
But, g* depends on the true us that we are trying to estimate!
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Importance sampling in practice

heory | g*(x) o< f(x)p(x)

P In practice, we want a distribution g so that
> g~q"
» g is easy to sample from
P g(x) is easy to calculate for any x
» Rule of thumb 1: g should have modes where f(x)p(x) is large
» Rule of thumb 2: avoid g(x) < p(x)f(x) (tails of g should not decrease too fast!)
When f(x)p(x) is far from uniform, even a very rough approximation can reduce variance
by orders of magnitude.
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Links to some examples

Monte Carlo course notes, Ch. 4, by Tom Kennedy, U of Arizona Monte Carlo course notes,
Ch. 6, by Tom Kennedy, U of Arizona
Monte Carlo course notes by Eric Anderson, U. C. Berkeley
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https://math.arizona.edu/~tgk/mc/book_chap4.pdf
https://math.arizona.edu/~tgk/mc/book_chap6.pdf
https://math.arizona.edu/~tgk/mc/book_chap6.pdf
https://ib.berkeley.edu/labs/slatkin/eriq/classes/guest_lect/mc_lecture_notes.pdf

Examples
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Rejection sampling

» Sampling from F(x) when we only know p(x) = F’(x)
» (or, when X is multidimensional)

Given p(x) a density
Want An algorithm to get samples from p(x)
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Rejection sampling

» Sampling from F(x) when we only know p(x) = F’(x)
» (or, when X is multidimensional)

Given p(x) a density
Want An algorithm to get samples from p(x)
> Will use g(x) another distribution
> — p(x)
Let | M = sup, o)
Note that p(x) > 0 implies g(x) >0

» Rejection Sampling Algorithm
1. sample Y ~ g
2. sample U ~ unif[0, 1]
3. if U< ﬁ% then output X = Y
else go to step 1.
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Why does this work?

» Denote Fgs the CDF of the samples from the Rejection Sampling algorithm.

®3)

Frs(x) = Pr[X < x|Y accepted | =

Pr is the probability under the joint distribution of U and Y
» the denominator

Pr {U < i#} = / (PrU~umf[O 1 {U < V%D q(y)dy (4)

M q(Y)
1 p(y) _ _ 1
Maly )q(y)dy v /p(y)dy = v (5)
» now the numerator
1 p(Y) _ 1 p(y)
Pr [X <x, U< VW] = /(Pl’UNunif[oJ] {U < Mﬁ]) I(y <x)q(y)dy (6)
LDy < atay @)

a(y)
M/p(y) < x dy:M/ P(ydy—fF(X)
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» Therefore Frs(x) = F(x) for all x QED




Practical Rejection Sampling. What is a good g?
» Intuitively, g should be as close to p as possible
» Acceptance probability Pr [U < %%] = %
» Therefore, a good g will have M = sup, % small
(Note that M > 1)
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