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Importance sampling

Rejection sampling
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Estimating Ep[f (X )] revisited

Given a function f (x) and a distribution F known (and its density p(x) = F ′(x)).
Want

Ep [f (X )] ≡ µf ≡
∫ ∞
−∞

f (x)p(x)dx .

(Note: the interval can be any interval [a, b])

Idea 1 Estimate µf by sample average µ̂N
I Algorithm 1

1. Sample X1:N ∼ p
2. µ̂N = 1

N

∑N
i=1 f (Xi )

Idea 2 Let q(x) be any other density, with q(x) > 0 whenever p(x) > 0 .

Then,

µf =

∫ ∞
−∞

f (x)p(x)

q(x)︸ ︷︷ ︸
f̃ (x)

q(x)dx = Eq [f̃ (X )]

I Algorithm 2
1. Sample X1:N ∼ q

2. µ̂N,q = 1
N

∑N
i=1

f (Xi )p(Xi )

q(Xi )

I When could Algorithm 2 be better than Algorithm 1?
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The variance of µ̂N,q

Var µ̂f ,q = 1
N

(∫
f̃ 2(x)q(x)dx − µ2f

)
I Only M =

∫
f̃ 2(x)q(x)dx depends on q

M =

∫
f 2(x)p2(x)

q2(x)
q(x)dx =

∫
f 2(x)p2(x)

q(x)
dx

I Want q that makes M as small as possible

I q∗(x) ∝ f (x)p(x)

I Let’s see why. First we need to normalize q

q∗(x) =
f (x)p(x)

Z
with Z =

∫
f (x)p(x)dx = µf (1)

I Now calculate M for q∗

M∗ =

∫
f 2(x)p2(x)

f (x)p(x)
µf

dx = µf

∫
f (x)p(x)dx︸ ︷︷ ︸

µf

= µ2f (2)

I Finally, the variance Var µ̂f ,q = 1
N
(M∗ − µ2f ) = 0 !

I Theoretically, N = 1 sample is enough!
I But, q∗ depends on the true µf that we are trying to estimate!
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Importance sampling in practice

Theory q∗(x) ∝ f (x)p(x)

I In practice, we want a distribution q so that
I q ≈ q∗

I q is easy to sample from
I q(x) is easy to calculate for any x

I Rule of thumb 1: q should have modes where f (x)p(x) is large
I Rule of thumb 2: avoid q(x)� p(x)f (x) (tails of q should not decrease too fast!)

When f (x)p(x) is far from uniform, even a very rough approximation can reduce variance
by orders of magnitude.
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Links to some examples

Monte Carlo course notes, Ch. 4, by Tom Kennedy, U of Arizona Monte Carlo course notes,
Ch. 6, by Tom Kennedy, U of Arizona
Monte Carlo course notes by Eric Anderson, U. C. Berkeley

https://math.arizona.edu/~tgk/mc/book_chap4.pdf
https://math.arizona.edu/~tgk/mc/book_chap6.pdf
https://math.arizona.edu/~tgk/mc/book_chap6.pdf
https://ib.berkeley.edu/labs/slatkin/eriq/classes/guest_lect/mc_lecture_notes.pdf
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Examples
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Rejection sampling

I Sampling from F (x) when we only know p(x) = F ′(x)
I (or, when X is multidimensional)

Given p(x) a density
Want An algorithm to get samples from p(x)

I Will use q(x) another distribution

I Let M = supx
p(x)
q(x)

Note that p(x) > 0 implies q(x) > 0

I Rejection Sampling Algorithm
1. sample Y ∼ q
2. sample U ∼ unif[0, 1]

3. if U < 1
M

p(Y )
q(Y ) then output X = Y

else go to step 1.



S
T
A
T

4
0
3
G
o
o
d
N
o
te
:
L
ec

tu
re

II
I

8

Rejection sampling

I Sampling from F (x) when we only know p(x) = F ′(x)
I (or, when X is multidimensional)

Given p(x) a density
Want An algorithm to get samples from p(x)

I Will use q(x) another distribution

I Let M = supx
p(x)
q(x)

Note that p(x) > 0 implies q(x) > 0

I Rejection Sampling Algorithm
1. sample Y ∼ q
2. sample U ∼ unif[0, 1]

3. if U < 1
M

p(Y )
q(Y ) then output X = Y

else go to step 1.



S
T
A
T

4
0
3
G
o
o
d
N
o
te
:
L
ec

tu
re

II
I

9

Why does this work?

I Denote FRS the CDF of the samples from the Rejection Sampling algorithm.

FRS (x) = Pr [X ≤ x |Y accepted ] =
Pr
[
X ≤ x , U < 1

M
p(Y )
q(Y )

]
Pr
[
U < 1

M
p(Y )
q(Y )

] (3)

Pr is the probability under the joint distribution of U and Y
I the denominator

Pr

[
U <

1

M

p(Y )

q(Y )

]
=

∫ (
PrU∼unif[0,1]

[
U <

1

M

p(y)

q(y)

])
q(y)dy (4)

=

∫
1

M

p(y)

q(y)
q(y)dy =

1

M

∫
p(y)dy =

1

M
(5)

I now the numerator

Pr

[
X ≤ x , U <

1

M

p(Y )

q(Y )

]
=

∫ (
PrU∼unif[0,1]

[
U <

1

M

p(y)

q(y)

])
I (y ≤ x)q(y)dy (6)

=

∫
1

M

p(y)

q(y)
I (y ≤ x)q(y)dy (7)

=
1

M

∫
p(y)I (y ≤ x)dy =

1

M

∫ x

−∞
p(y)dy =

1

M
F (x)

I Therefore FRS (x) = F (x) for all x QED
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Practical Rejection Sampling. What is a good q?

I Intuitively, q should be as close to p as possible

I Acceptance probability Pr
[
U < 1

M
p(Y )
q(Y )

]
= 1

M

I Therefore, a good q will have M = supx
p(x)
q(x)

small

(Note that M ≥ 1)
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