Lecture Notes VI – Modern resampling methods. Conformal prediction

Marina Meila mmp@stat.washington.edu

> Department of Statistics University of Washington

> > May 2025

Jackknife

Bag of little bootstraps

Conformal prediction. Jackknife+

2

The jackknife

- ▶ like Leave-one-out CV
- $\mathcal{D}_{-i} = \mathcal{D} \setminus \{(x_i, y_i)\} \text{ or } \mathcal{D} \setminus \{x_i\}$ θ is parameter of interest
- - $\hat{\theta} = \text{estimate of } \theta \text{ from } \mathcal{D}$
 - $\hat{\theta}_{-i} = \text{estimate of } \theta \text{ from } \mathcal{D}_{-i}, i = 1:n$
- **| jackknife Algorithm** estimates $F(\hat{\theta})$ and from it bias and variance of $\hat{\theta}$.
 - 1. Estimate $\hat{\theta}$ from \mathcal{D}
 - 2 for $i = 1 \cdot n$ estimate $\hat{\theta}_{-i}$ from \mathcal{D}_{-i}
 - 3. Use $\hat{F}(\hat{\theta}) \approx \hat{F}(\hat{\theta}_{-i}, i = 1 : n)$ to estimate bias, variance, ... $\hat{\theta}$

Bag of little bootstraps [arXiv:1112.5016]

- ▶ For large n, sampling, estimating $\hat{\theta}^*$ are expensive! Can we use $n' = |\mathcal{D}^*| \ll n$?
- ► Bag of little Bootstraps Algorithm

```
for k = 1 : K
```

- 1. sample $\mathcal{D}^{*(k)}$ of size n' from \mathcal{D} without replacement
- 2. do boostrap on $\mathcal{D}^{*(k)}$ with sample size n

for
$$b=1:B$$
 sample $(n_{i,k,b},i=1:n')\sim \text{multinomial}\left(n,\left[\frac{1}{n'},\dots\frac{1}{n'}\right]\right)$, for $i=1:n'$ we sample multiplicities of points in $\mathcal{D}^{*(k)}$

- 2.2 estimate $\hat{\theta}^{*(k,b)}$ from $\mathcal{D}^{*(k,b)}$ (fast because only n' distinct samples)
- 3. estimate $V^{*(k)} = \hat{\text{Var}}\hat{\theta}^{*(k)}$ from $\mathcal{D}^{*(k,1:B)}$ $\hat{\text{Var}}(\hat{\theta}) = \frac{1}{K} \sum_{k=1}^{K} V^{*(k)}$

Bag of little Boostraps

- ► Theoretical results
- $ightharpoonup n' \sim \sqrt{n}$
- $ightharpoonup K \sim \frac{n}{n'}$
- ► B as "sual for boostrap, e.g. 50–100
- ▶ In practice $K \approx 50$ okay
- ${\blacktriangleright}$ Computation ${K\times B\times n'}$ when estimation algorithm can use weighted data points efficiently

Conformal prediction

Conformal prediction: CI for a single prediction $\hat{y} = f(x)$

Given data set $\mathcal{D} = \{(x_i, y_i), i = 1 : N\}$ Training algorithm \mathcal{A} , so that $\mathcal{A}(\mathcal{D}) = f$ the predictor Want CI for $\hat{y} = f(x)$ where x is a new data point

Want CI for $\hat{y} = f(x)$ where x is a new data point so that the CI is NOT dependent on \mathcal{A} being statistically correct (e.g. \mathcal{A} overfits, ...)

- ▶ jackknife+ is a simple algorithm for CP
- More advanced algorithms exist. This is an active area of research in statistics.

!!!! Do NOT use CP to "crossvalidate" your algorithm!

jackknife+

jackknife+ Algorithm

In data set $\mathcal{D} = \{(x_i, y_i), i = 1 : n\}$

Training algorithm A, so that $A(\mathcal{D}) = f$ the predictor Confidence level $1 - \alpha$

Want CI for $\hat{y} = f(x)$ where x is a new data point

- **1**. Precompute $f_{-i} \leftarrow \mathcal{A}(\mathcal{D}_{-i})$ for i = 1 : n
- 2. Compute "leave one out" residuals $R_i = |y_i f_{-i}(x_i)|$, for i = 1 : n
- 3. For every new x: compute f(x), then get $1-\alpha$ Prediction Interval [a,b] for f(x) by
 - 3.1 Compute lower bounds $a_i = f_{-i}(x) R_i$, for i = 1 : n
 - 3.2 Sort $a_{1:n}$ 3.3 Set $a \leftarrow \lfloor \frac{\alpha}{2} n \rfloor$ quantile of $a_{1:n}$
 - 3.4 Compute upper bounds $b_i = f_{-i}(x) + R_i$, for i = 1 : n
 - 3.5 Sort b_{1:n}
 - 3.6 Set $b \leftarrow \lceil \left(1 \frac{\alpha}{2}\right) n \rceil$ quantile of $b_{1:n}$
 - 3.7 Output $CI^{\alpha} = [a, b]$
- 4. Theorem $P[y(x) \in CI^{\alpha}] > 1 \alpha$

STAT 403 GoodNote: Lecture VI