


S
T
A
T

4
0
3
G
o
o
d
N
o
te
:
L
ec

tu
re

II
I

1

Lecture Notes III – Importance sampling and rejection sampling

Marina Meila

mmp@stat.washington.edu

Department of Statistics

University of Washington

April 2025



S
T
A
T

4
0
3
G
o
o
d
N
o
te
:
L
ec

tu
re

II
I

2

Importance sampling

Rejection sampling
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The variance of µ̂N,q

Var µ̂f ,q =
1

N

⇣R
f̃ 2(x)q(x)dx � µ2

f

⌘

I Only M =
R
f̃ 2(x)q(x)dx depends on q

M =

Z
f 2(x)p2(x)

q2(x)
q(x)dx =

Z
f 2(x)p2(x)

q(x)
dx

I Want q that makes M as small as possible

I q⇤(x) / f (x)p(x)

I Let’s see why. First we need to normalize q

q⇤(x) =
f (x)p(x)

Z
with Z =

Z
f (x)p(x)dx = µf (1)

I Now calculate M for q⇤

M⇤
=

Z
f 2(x)p2(x)

f (x)p(x)
µf

dx = µf

Z
f (x)p(x)dx

| {z }
µf

= µ2

f (2)

I Finally, the variance Var µ̂f ,q =
1

N (M⇤ � µ2

f ) = 0 !

I Theoretically, N = 1 sample is enough!

I But, q⇤ depends on the true µf that we are trying to estimate!
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Importance sampling in practice

Theory q⇤(x) / f (x)p(x)

I In practice, we want a distribution q so that

I q ⇡ q⇤

I q is easy to sample from

I q(x) is easy to calculate for any x

I Rule of thumb 1: q should have modes where f (x)p(x) is large

I Rule of thumb 2: avoid q(x) ⌧ p(x)f (x) (tails of q should not decrease too fast!)

When f (x)p(x) is far from uniform, even a very rough approximation can reduce variance

by orders of magnitude.



Table 5.2. Results of a Simulation Experiment to Find 0 = P(ST ¾b) for

T= min{n]S, < a or S, > b) with S,= X, + + X,, X, N(u, 1) and

-4, b = 7

Direct 0 s.e. S.e. Variance

Reduction

0.389 0.0049 0.389 0.0055

- 0.1 0.149 0.0035 0.147 0.0010 12

- 0.2 0.041 0.0020 0.0412 1.8 x 10-4 110

- 0.3 0.011 0.0010 0.00996 3.8 x 10-5 750

- 0.5 0.0005 0.0007 0.000505 2.3 x 1076 9,600
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Rejection sampling

I Sampling from F (x) when we only know p(x) = F 0(x)
I (or, when X is multidimensional)

Given p(x) a density

Want An algorithm to get samples from p(x)

I Will use q(x) another distribution

I Let M = supx
p(x)
q(x)

Note that p(x) > 0 implies q(x) > 0

I Rejection Sampling Algorithm

1. sample Y ⇠ q
2. sample U ⇠ unif[0, 1]

3. if U < 1

M
p(Y )

q(Y )
then output X = Y

else go to step 1.
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Practical Rejection Sampling. What is a good q?

I Intuitively, q should be as close to p as possible

I Acceptance probability Pr
h
U < 1

M
p(Y )

q(Y )

i
=

1

M

I Therefore, a good q will have M = supx
p(x)
q(x) small

(Note that M � 1)
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Examples


