STAT 403

4/16/25

Lecture 7

0H 2-3 PDL B-321

Lecture Notes III - Importance sampling and rejection sampling

Marina Meila mmp@stat.washington.edu

> Department of Statistics University of Washington

> > April 2025

Rejection sampling

The variance of $\hat{\mu}_{N,q}$

$$\operatorname{Var} \hat{\mu}_{f,q} = \frac{1}{N} \left(\int \tilde{f}^2(x) q(x) dx - \mu_f^2 \right)$$

• Only $M = \int \tilde{f}^2(x)q(x)dx$ depends on q

$$M = \int \frac{f^2(x)p^2(x)}{q^2(x)}q(x)dx = \int \frac{f^2(x)p^2(x)}{q(x)}dx$$

Want q that makes M as small as possible

 $| q^*(x) \propto f(x)p(x) |$

• Let's see why. First we need to normalize q

$$q^{*}(x) = \frac{f(x)p(x)}{Z}$$
 with $Z = \int f(x)p(x)dx = \mu_{f}$ (1)

Now calculate M for q*

$$M^{*} = \int \frac{f^{2}(x)p^{2}(x)}{\frac{f(x)p(x)}{\mu_{f}}} dx = \mu_{f} \underbrace{\int f(x)p(x)dx}_{\mu_{f}} = \mu_{f}^{2}$$
(2)

Finally, the variance Var $\hat{\mu}_{f,q} = \frac{1}{N}(M^* - \mu_f^2) = 0!$

- Theoretically, N = 1 sample is enough!
- But, q* depends on the true µ_f that we are trying to estimate!

Importance sampling in practice 2. Average $f = f \cdot p$ where $q^*(x) \propto f(x)p(x)$ In practice, we want a distribution q so that $q \approx q^*$ $q \approx q^*$ $q \approx q^*$ q(x) is easy to sample from q(x) is easy to calculate for any xRule of thumb 1: q should have modes where f(x)p(x) is large Rule of thumb 2: avoid $q(x) \ll p(x)f(x)$ (tails of q should not decrease too fast!) When f(x)p(x) is far from uniform, even a very rough approximation can reduce variance by orders of magnitude. $f = f \cdot f$

Table 5.2. Results of a Simulation Experiment to Find $0 = P(S_T \ge b)$ for $T = \min\{n|S_n \le a \text{ or } S_n \ge b\}$ with $S_n = X_1 + \cdots + X_n$, $X_i \sim N(\mu, 1)$ and a = -4, b = 7

μ	Direct ∂	s.e.	ð	s.e.	Variance
		J	, in the second s	ſ	Reduction
0	0.389	0.0049	0.389	0.0055	1
-0.1	0.149	0.0035	0.147	0.0010	12
-0.2	0.041	0.0020	0.0412	1.8×10^{-4}	110
-0.3	0.011	0.0010	0.00996	3.8×10^{-5}	750
-0.5	0.0005	0.0007	0.000505	2.3×10^{-6}	9,600
	5e ⁻⁴	7 e ^{-L}	ł I		1

Rejection sampling.

- Sampling from F(x) when we only know p(x) = F'(x)
- (or, when X is multidimensional)

Given p(x) a density Want An algorithm to get samples from p(x)

Ex: sample from uniform (A)

Rejection sampling

- Sampling from F(x) when we only know p(x) = F'(x)
- (or, when X is multidimensional)

Practical Rejection Sampling. What is a good q?

- Intuitively, q should be as close to p as possible
- Acceptance probability $Pr\left[U < \frac{1}{M} \frac{p(Y)}{q(Y)}\right] = \frac{1}{M}$
- ▶ Therefore, a good q will have $M = \sup_x \frac{p(x)}{q(x)}$ small (Note that $M \ge 1$)

⇒ g(x) not too close to 0 even when p Amall

Examples
•
$$p = N(v_1)$$

1) Cauchy • $g = \frac{1}{\pi} - \frac{1}{1+x^2}$
 $F = \frac{1}{\pi} \left(\frac{\pi}{2} + \tan^{-1}(x) \right) - \frac{x^2}{2}$
 $M = \sup_{x} \frac{P(x)}{2(x)} = \frac{1}{\sqrt{2\pi}} \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} = \sqrt{\frac{\pi}{2}} (1+x^2)e^{-\frac{x^2}{2}}$
 $= \sqrt{\frac{\pi}{2}} (1+x)e^{-\frac{1}{2}} = \sqrt{\frac{\pi}{2}} \sum_{x=1}^{x} \frac{1}{\sqrt{2}} \sum_{x=1}^$

e E