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Notation

Gibbs sampling

The detailed balance

Metropolis-Hastings sampling
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Notation

» V = {Xi,...Xn} set of random variables (nodes of a graphical model)
also known as Markov network

Xi:n € {£1} (for simplicity)

E = {(i,j), 1 <i<j < n} edges of graph

graph is not complete, some edges are missing

We write i ~ j for (i,j) € E or (j,i) € E

neigh; = neighbors of X;

vVVyYVYYVYY

» Markov property ‘ X; L all other variables | neigh;

» x = (x1,...xn) € {£1}" = S an assignment to all variables in V
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V = {Xi,... Xs} set of random variables (nodes of a graphical model)
also known as Markov network

Xi:n € {£1} (for simplicity)

E = {(i,j), 1 <i<j < n} edges of graph

graph is not complete, some edges are missing

We write i ~ j for (i,j) € E or (j,i) € E

neigh; = neighbors of X;

Markov property ‘ X; L all other variables | neigh; ‘

x = (x1,...xn) € {£1}" = S an assignment to all variables in V
Distribution over S

P() = 2e ¥ with ¢(x) Zh xi+ D0 hixix @)
(ij)EE
(and hj > 0 for all (i,j) € E)

Z =3 cs e—?(x)
Usually, intractable to compute Z

Wanted samples x!,x?, ... from P



An example
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Gibbs sampling idea
1 —o(x
P(x) = e 209 with ¢(x th, +(%Eh,,x,xj

» We cannot sample directly from P
> But we can sample each X; ~ Px.|x_, = Px;|ncign; forany i=1:n
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Gibbs sampling idea

P(x) = %e7¢(x) with ¢(x th,Jr Z hijxix;

(i.j)eE

» We cannot sample directly from P
> But we can sample each X; ~ Px.|x_, = Px;|ncign; forany i=1:n
> Why? For any x_; let

Tl'l-Jr = Pr[X,- = —HX,,‘], Tri_ = PF[X,' = —‘X,,’]. (2)
+ P(XI = +17X7i) _ P(X, = +17X7i)
T o= = (3)
! P(x_;) P(Xi = +1,x_;) + P(X; = —1,x_)
P(X: = — .
= = (Xi Lx) hence (4)
! P(Xi = 4+1,x_;) + P(X; = —1,x_;)
i _ P(Xi = +1,x_;) _ e~ #Xi=t1x) = e~ P(Xi=Hlx_)Fe(Xi=—1x_)) (5)
m PXi=—Lxy) e d(imo1x)
_ ef2h,-72 i hi (6)
—2hj =237 hij e hi=j~ihi
— + - + _ — (7
1 = w4+ hence m;" = 1t e—2hi—2%; i hy - ehit i hi +e’hf*2j~; h&j')

> X;|neigh; ~ Bernoulli(n;")



S
g
]
g
3
e
]
H
8
3
)
o
g
g
=
<
S
@«

Gibbs sampling algorithm

[y

Al
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. Initialize x? with some arbitrary values
. For t =1,2,... we will sample sequentially x!|x!~! as follows

2.1 Pick i € 1: n uniformly at random
2.2 Sample X/ | neigh; ~ Bernoulli(;")
2.3 Every T steps (where T is a LARGE number), output x*

Why does this work?

We are sampling from a Markov chain on S (transition probability matrix P on next page)
If we take enough steps T, the distribution converges to the stationary distribution of this
chain, let's call it P. We take a sample from it xT

If we continue for another T steps, the chain has “forgotten” about xT; the new sample
x2T is independent of x”. Etc, samples x7:27-"NT are i.i.d. from P>

To show that P°° = P the distribution we wanted to sample from.
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The transition probability P of Gibbs sampling
» The transitions are between states x,x’ that only differ in one variable i. All the other

transition probabilities are 0.
> If x! and x’ differ only in variable i, then

+ . ! __
P(Xt+1 _ X/|X) _ { 7T,;(X7,) i’ =41 )
1
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The detailed balance

Theorem
Let m be a distribution over S, and P a transition matrix of a Markov chain. Then if the
following detailed balance holds, 7 is the stationary distribution of P.

T(x)P(x,x") = 7(xX')P(x,x) 9)
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Metropolis-Hastings (MH) idea

\4

MH is a rejection sampling algorithm

We sample x’ |xt~1 ~ S a proposal distribution

Then we accept x* = x” with some acceptance probability a(x, x") that ensures the detail
balance

(if we don't accept, xt = xt~1)

vy

v

» With MH, we have more flexibility in exploring the sample space around x!~1 than with
Gibbs




Metropolis-Hastings algorithm

In Proposal distribution S(x,x’) o transition probability x — x
no need to be normalized, no need to be symmetric
. Initialize x? with some arbitrary values
2. For t =1,2,... we will sample sequentially x"“|xt_1 as follows
2.1 Sample x’ ~ S(x*71,x")
2.2 Compute acceptance probability

[y

a(x'"1,x') = min (1 M)

T P(xt—1)S(xt=1,x")

xt71 wp. 1—a

2.4 Every T steps (where T is a LARGE number), output x*

’
23 xt = { X w.p. a

(10)



Does it satisfy the detailed balance?

> If X’ rejected v’
> If x accepted

P(xX,x) = S(¥,x)a(x,x)

P(x)P(x,x') = P(x)S(x,x’) min (17 %)
= min (P(x)S(X',x), P(x)S(x,x"))

= P(X)P(X,x) by symmetry

(11)
(12)

(13)
(14)



Does it satisfy the detailed balance?

> If X’ rejected v’
> If x accepted

P(xX,x) = S(¥,x)a(x,x)
P(x)P(x,x') = P(x)S(x,x’) min (17 773((2))55((; )’;;)
= min (P(x)S(X',x), P(x)S(x,x"))
= P(X)P(X,x) by symmetry

Recap: What we need to be able to do MH sampling
> To calculate P(x)/P(x’) but not P itself (okay not to have Z)
» To calculate S(x,x")/S(x’,x)
» To sample from S(x,x’)

(11)
(12)

(13)
(14)
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